Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = UAV SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2560 KiB  
Article
Benchmarking YOLO Models for Marine Search and Rescue in Variable Weather Conditions
by Aysha Alshibli and Qurban Memon
Automation 2025, 6(3), 35; https://doi.org/10.3390/automation6030035 - 2 Aug 2025
Viewed by 115
Abstract
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO [...] Read more.
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO datasets. The results show that while YOLOv7 achieved the highest mAP@50, it struggled with detecting small objects. In contrast, YOLOv10 and YOLOv11 deliver faster inference speeds but compromise slightly on precision. The key challenges discussed include environmental variability, sensor limitations, and scarce annotated data, which can be addressed by such techniques as attention modules and multimodal data fusion. Overall, the research results provide practical guidance for deploying efficient deep learning models in SAR, emphasizing specialized datasets and lightweight architectures for edge devices. Full article
(This article belongs to the Section Intelligent Control and Machine Learning)
Show Figures

Figure 1

29 pages, 3661 KiB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 271
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 3520 KiB  
Article
Vision-Guided Maritime UAV Rescue System with Optimized GPS Path Planning and Dual-Target Tracking
by Suli Wang, Yang Zhao, Chang Zhou, Xiaodong Ma, Zijun Jiao, Zesheng Zhou, Xiaolu Liu, Tianhai Peng and Changxing Shao
Drones 2025, 9(7), 502; https://doi.org/10.3390/drones9070502 - 16 Jul 2025
Viewed by 496
Abstract
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven [...] Read more.
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven dynamic path planning with vision-based dual-target detection and tracking. Developed within the Gazebo simulation environment and based on modular ROS architecture, the system supports stable takeoff and smooth transitions between multi-rotor and fixed-wing flight modes. An external command module enables real-time waypoint updates. This study proposes three path-planning schemes based on the characteristics of drones. Comparative experiments have demonstrated that the triangular path is the optimal route. Compared with the other schemes, this path reduces the flight distance by 30–40%. Robust target recognition is achieved using a darknet-ROS implementation of the YOLOv4 model, enhanced with data augmentation to improve performance in complex maritime conditions. A monocular vision-based ranging algorithm ensures accurate distance estimation and continuous tracking of rescue vessels. Furthermore, a dual-target-tracking algorithm—integrating motion prediction with color-based landing zone recognition—achieves a 96% success rate in precision landings under dynamic conditions. Experimental results show a 4% increase in the overall mission success rate compared to traditional SAR methods, along with significant gains in responsiveness and reliability. This research delivers a technically innovative and cost-effective UAV solution, offering strong potential for real-world maritime emergency response applications. Full article
Show Figures

Figure 1

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 978
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

28 pages, 47806 KiB  
Article
Experimental Validation of UAV Search and Detection System in Real Wilderness Environment
by Stella Dumenčić, Luka Lanča, Karlo Jakac and Stefan Ivić
Drones 2025, 9(7), 473; https://doi.org/10.3390/drones9070473 - 3 Jul 2025
Cited by 1 | Viewed by 341
Abstract
Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging environments. Introducing unmanned aerial vehicles (UAVs) can enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved. Motivated by this, we experiment with autonomous [...] Read more.
Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging environments. Introducing unmanned aerial vehicles (UAVs) can enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved. Motivated by this, we experiment with autonomous UAV search for humans in Mediterranean karst environment. The UAVs are directed using the Heat equation-driven area coverage (HEDAC) ergodic control method based on known probability density and detection function. The sensing framework consists of a probabilistic search model, motion control system, and object detection enabling to calculate the target’s detection probability. This paper focuses on the experimental validation of the proposed sensing framework. The uniform probability density, achieved by assigning suitable tasks to 78 volunteers, ensures the even probability of finding targets. The detection model is based on the You Only Look Once (YOLO) model trained on a previously collected orthophoto image database. The experimental search is carefully planned and conducted, while recording as many parameters as possible. The thorough analysis includes the motion control system, object detection, and search validation. The assessment of the detection and search performance strongly indicates that the detection model in the UAV control algorithm is aligned with real-world results. Full article
Show Figures

Figure 1

31 pages, 18652 KiB  
Article
Improved Real-Time SPGA Algorithm and Hardware Processing Architecture for Small UAVs
by Huan Wang, Yunlong Liu, Yanlei Li, Hang Li, Xuyang Ge, Jihao Xin and Xingdong Liang
Remote Sens. 2025, 17(13), 2232; https://doi.org/10.3390/rs17132232 - 29 Jun 2025
Viewed by 397
Abstract
Real-time Synthetic Aperture Radar (SAR) imaging for small Unmanned Aerial Vehicles (UAVs) has become a significant research focus. However, limitations in Size, Weight, and Power (SwaP) restrict the imaging quality and timeliness of small UAV-borne SAR, limiting its practical application. This paper presents [...] Read more.
Real-time Synthetic Aperture Radar (SAR) imaging for small Unmanned Aerial Vehicles (UAVs) has become a significant research focus. However, limitations in Size, Weight, and Power (SwaP) restrict the imaging quality and timeliness of small UAV-borne SAR, limiting its practical application. This paper presents a non-iterative real-time Feature Sub-image Based Stripmap Phase Gradient Autofocus (FSI-SPGA) algorithm. The FSI-SPGA algorithm combines 2D Constant False Alarm Rate (CFAR) for coarse point selection and spatial decorrelation for refined point selection. This approach enables the accurate extraction of high-quality scattering points. Using these points, the algorithm constructs a feature sub-image containing comprehensive phase error information and performs a non-iterative phase error estimation based on this sub-image. To address the multifunctional, low-power, and real-time requirements of small UAV SAR, we designed a highly efficient hybrid architecture. This architecture integrates dataflow reconfigurability and dynamic partial reconfiguration and is based on an ARM + FPGA platform. It is specifically tailored to the computational characteristics of the FSI-SPGA algorithm. The proposed scheme was assessed using data from a 6 kg small SAR system equipped with centimeter-level INS/GPS. For SAR images of size 4096 × 12,288, the FSI-SPGA algorithm demonstrated a 6 times improvement in processing efficiency compared to traditional methods while maintaining the same level of precision. The high-efficiency reconfigurable ARM + FPGA architecture processed the algorithm in 6.02 s, achieving 12 times the processing speed and three times the energy efficiency of a single low-power ARM platform. These results confirm the effectiveness of the proposed solution for enabling high-quality real-time SAR imaging under stringent SwaP constraints. Full article
Show Figures

Figure 1

20 pages, 741 KiB  
Article
Long-Endurance Collaborative Search and Rescue Based on Maritime Unmanned Systems and Deep-Reinforcement Learning
by Pengyan Dong, Jiahong Liu, Hang Tao, Yang Zhao, Zhijie Feng and Hanjiang Luo
Sensors 2025, 25(13), 4025; https://doi.org/10.3390/s25134025 - 27 Jun 2025
Viewed by 331
Abstract
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, [...] Read more.
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, and underwater. However, in these vision-based maritime SAR systems, collaboration between UAVs and USVs is a critical issue for successful SAR operations. To address this challenge, in this paper, we propose a long-endurance collaborative SAR scheme which exploits the complementary strengths of the maritime unmanned systems. In this scheme, a swarm of UAVs leverages a multi-agent reinforcement-learning (MARL) method and probability maps to perform cooperative first-phase search exploiting UAV’s high altitude and wide field of view of vision sensing. Then, multiple USVs conduct precise real-time second-phase operations by refining the probabilistic map. To deal with the energy constraints of UAVs and perform long-endurance collaborative SAR missions, a multi-USV charging scheduling method is proposed based on MARL to prolong the UAVs’ flight time. Through extensive simulations, the experimental results verified the effectiveness of the proposed scheme and long-endurance search capabilities. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System: 2nd Edition)
Show Figures

Figure 1

19 pages, 8609 KiB  
Article
A Microwave Vision-Enhanced Environmental Perception Method for the Visual Navigation of UAVs
by Rui Li, Dewei Wu, Peiran Li, Chenhao Zhao, Jingyi Zhang and Jing He
Remote Sens. 2025, 17(12), 2107; https://doi.org/10.3390/rs17122107 - 19 Jun 2025
Viewed by 342
Abstract
Visual navigation technology holds significant potential for applications involving unmanned aerial vehicles (UAVs). However, the inherent spectral limitations of optical-dependent navigation systems prove particularly inadequate for high-altitude long-endurance (HALE) UAV operations, as they are fundamentally constrained in maintaining reliable environment perception under conditions [...] Read more.
Visual navigation technology holds significant potential for applications involving unmanned aerial vehicles (UAVs). However, the inherent spectral limitations of optical-dependent navigation systems prove particularly inadequate for high-altitude long-endurance (HALE) UAV operations, as they are fundamentally constrained in maintaining reliable environment perception under conditions of fluctuating illumination and persistent cloud cover. To address this challenge, this paper introduces microwave vision to assist optical vision for environmental measurement and proposes a novel microwave vision-enhanced environmental perception method. In particular, the richness of perceived environmental information can be enhanced by SAR and optical image fusion processing in the case of sufficient light and clear weather. In order to simultaneously mitigate inherent SAR speckle noise and address existing fusion algorithms’ inadequate consideration of UAV navigation-specific environmental perception requirements, this paper designs a SAR Target-Augmented Fusion (STAF) algorithm based on the target detection of SAR images. On the basis of image preprocessing, this algorithm utilizes constant false alarm rate (CFAR) detection along with morphological operations to extract critical target information from SAR images. Subsequently, the intensity–hue–saturation (IHS) transform is employed to integrate this extracted information into the optical image. The experimental results show that the proposed microwave vision-enhanced environmental perception method effectively utilizes microwave vision to shape target information perception in the electromagnetic spectrum and enhance the information content of environmental measurement results. The unique information extracted by the STAF algorithm from SAR images can effectively enhance the optical images while retaining their main attributes. This method can effectively enhance the environmental measurement robustness and information acquisition ability of the visual navigation system. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

20 pages, 838 KiB  
Article
Energy-Efficient Target Area Imaging for UAV-SAR-Based ISAC: Beamforming Design and Trajectory Optimization
by Jiayi Zhou, Xiangyin Zhang, Kaiyu Qin, Feng Yang, Libo Wang and Deyu Song
Remote Sens. 2025, 17(12), 2082; https://doi.org/10.3390/rs17122082 - 17 Jun 2025
Viewed by 441
Abstract
Integrated Sensing and Communication (ISAC) has been enhanced to serve as a pivotal enabler for next-generation communication systems. In the context of target area detection, a UAV-SAR (Unmanned Aerial Vehicle–Synthetic Aperture Radar) based ISAC system, which shares both physical infrastructure and spectrum, can [...] Read more.
Integrated Sensing and Communication (ISAC) has been enhanced to serve as a pivotal enabler for next-generation communication systems. In the context of target area detection, a UAV-SAR (Unmanned Aerial Vehicle–Synthetic Aperture Radar) based ISAC system, which shares both physical infrastructure and spectrum, can enhance the utilization of spectrum and hardware resources. However, existing studies on UAV-SAR-based ISAC systems for target imaging remain limited. In this study, we first established an ISAC mechanism to enable SAR imaging and communication. Then, we analyzed the energy consumption model, which includes both UAV propulsion and ISAC energy consumption. To maximize system energy efficiency, we propose an optimization method based on sequential convex optimization with linear state-space approximation. Furthermore, we propose a plan with general constraints, including the initial and final positions, the signal-to-noise ratio (SNR) constraint for SAR imaging, the data transmission rate constraint, and the total power limitation of the UAV. To achieve maximum energy efficiency, we jointly optimized the UAV’s trajectory, velocity, communication beamforming, sensing beamforming, and power allocation. Numerical results demonstrate that compared to existing benchmarks and PSO algorithms, the proposed method significantly improves the energy efficiency of UAV-SAR-based ISAC systems through optimized trajectory design. Full article
Show Figures

Figure 1

27 pages, 4618 KiB  
Article
Simulation Environment Conceptual Design for Life-Saving UAV Flights in Mountainous Terrain
by Natália Gecejová, Marek Češkovič and Pavol Kurdel
Drones 2025, 9(6), 416; https://doi.org/10.3390/drones9060416 - 7 Jun 2025
Viewed by 1102
Abstract
The civil and military use of autonomously or remotely controlled unmanned aerial vehicles (UAVs) has become standard in many sectors. However, their role as supplementary vehicles for helicopter emergency medical services (HEMS) or search and rescue (SAR)—particularly when aiding individuals in hard-to-reach terrains—remains [...] Read more.
The civil and military use of autonomously or remotely controlled unmanned aerial vehicles (UAVs) has become standard in many sectors. However, their role as supplementary vehicles for helicopter emergency medical services (HEMS) or search and rescue (SAR)—particularly when aiding individuals in hard-to-reach terrains—remains underexplored and in need of further innovation. The feasibility of using UAVs in such operations depends on multiple factors, including legislative, economic, and market conditions. However, the most critical considerations are external factors that impact UAV flight, such as meteorological conditions (wind speed and direction), the designated operational area, the proficiency of the pilot–operator, and the classification and certification of the UAV, particularly if it has been modified for such missions. Additionally, the feasibility of the remote or autonomous control of the UAV in mountainous environments plays a crucial role in determining their effectiveness. Establishing a specialized simulation environment to address these challenges is essential for assessing UAV performance in mountainous regions. This is particularly relevant in the Slovak Republic, a very rugged landscape, where the planned expansion of UAV-assisted rescue operations must be preceded by thorough testing, flight verification, and operational planning within protected landscape areas. Moreover, significant legislative changes will be required, which can only be implemented after the comprehensive testing of UAV operations in these specific mountain environments. Full article
Show Figures

Figure 1

22 pages, 1341 KiB  
Article
Generalising Rescue Operations in Disaster Scenarios Using Drones: A Lifelong Reinforcement Learning Approach
by Jiangshan Xu, Dimitris Panagopoulos, Adolfo Perrusquía, Weisi Guo and Antonios Tsourdos
Drones 2025, 9(6), 409; https://doi.org/10.3390/drones9060409 - 3 Jun 2025
Viewed by 873
Abstract
Search and rescue (SAR) operations in post-earthquake environments are hindered by unseen environment conditions and uncertain victim locations. While reinforcement learning (RL) has been used to enhance unmanned aerial vehicle (UAV) navigation in such scenarios, its limited generalisation to novel environments, such as [...] Read more.
Search and rescue (SAR) operations in post-earthquake environments are hindered by unseen environment conditions and uncertain victim locations. While reinforcement learning (RL) has been used to enhance unmanned aerial vehicle (UAV) navigation in such scenarios, its limited generalisation to novel environments, such as post-disaster environments, remains a challenge. To deal with this issue, this paper proposes an RL-based framework that combines the principles of lifelong learning and eligibility traces. Here, the approach uses a shaping reward heuristic based on pre-training experiences obtained from similar environments to improve generalisation, and simultaneously, eligibility traces are used to accelerate convergence of the overall approach. The combined contributions allows the RL algorithm to adapt to new environments, whilst ensuring fast convergence, critical for rescue missions. Extensive simulation studies show that the proposed framework can improve the average reward return by 46% compared to baseline RL algorithms. Ablation studies are also conducted, which demonstrate a 23% improvement in the overall reward score in environments with different complexities and a 56% improvement in scenarios with varying numbers of trapped individuals. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles for Enhanced Emergency Response)
Show Figures

Figure 1

25 pages, 11085 KiB  
Article
Quantitative Vulnerability Assessment of Buildings Exposed to Landslides Under Extreme Rainfall Scenarios
by Guangming Li, Dong Liu, Mengjiao Ruan, Yuhua Zhang, Jun He, Zizheng Guo, Haojie Wang and Mengchen Cheng
Buildings 2025, 15(11), 1838; https://doi.org/10.3390/buildings15111838 - 27 May 2025
Viewed by 444
Abstract
Landslides triggered by extreme rainfall often cause severe casualties and property losses. Therefore, it is essential to accurately assess and predict building vulnerability under landslide scenarios for effective risk mitigation. This study proposed a quantitative framework for vulnerability assessments of structures. It integrated [...] Read more.
Landslides triggered by extreme rainfall often cause severe casualties and property losses. Therefore, it is essential to accurately assess and predict building vulnerability under landslide scenarios for effective risk mitigation. This study proposed a quantitative framework for vulnerability assessments of structures. It integrated extreme rainfall analysis, landslide kinematic assessment, and the dynamic response of structures. The study area is located in the northern mountainous region of Tianjin, China. It lies within the Yanshan Mountains, serving as a key transportation corridor linking North and Northeast China. The Sentinel-1A satellite imagery consisting of 77 SLC scenes (from October 2014 to November 2023) identified a slow-moving landslide in the region by using the SBAS-InSAR technique. High-resolution topographic data of the slope were first acquired through UAV-based remote sensing. Next, historical rainfall data from 1980 to 2017 were analyzed. The Gumbel distribution was used to determine the return periods of extreme rainfall events. The potential slope failure range and kinematic processes of the landslide were then simulated by using numerical simulations. The dynamic responses of buildings impacted by the landslide were modeled by using ABAQUS. These simulations allowed for the estimation of building vulnerability and the generation of vulnerability maps. Results showed that increased rainfall intensity significantly enlarged the plastic zone within the slope. This raised the likelihood of landslide occurrence and led to more severe building damage. When the rainfall return period increased from 50 to 100 years, the number of damaged buildings rose by about 10%. The vulnerability of individual buildings increased by 10% to 15%. The maximum vulnerability value increased from 0.87 to 1.0. This model offers a valuable addition to current quantitative landslide risk assessment frameworks. It is especially suitable for areas where landslides have not yet occurred. Full article
(This article belongs to the Special Issue Buildings and Infrastructures under Natural Hazards)
Show Figures

Figure 1

22 pages, 121478 KiB  
Article
Ground-Moving Target Relocation for a Lightweight Unmanned Aerial Vehicle-Borne Radar System Based on Doppler Beam Sharpening Image Registration
by Wencheng Liu, Zhen Chen, Zhiyu Jiang, Yanlei Li, Yunlong Liu, Xiangxi Bu and Xingdong Liang
Electronics 2025, 14(9), 1760; https://doi.org/10.3390/electronics14091760 - 25 Apr 2025
Viewed by 368
Abstract
With the rapid development of lightweight unmanned aerial vehicles (UAVs), the combination of UAVs and ground-moving target indication (GMTI) radar systems has received great interest. However, because of size, weight, and power (SWaP) limitations, the UAV may not be able to equip a [...] Read more.
With the rapid development of lightweight unmanned aerial vehicles (UAVs), the combination of UAVs and ground-moving target indication (GMTI) radar systems has received great interest. However, because of size, weight, and power (SWaP) limitations, the UAV may not be able to equip a highly accurate inertial navigation system (INS), which leads to reduced accuracy in the moving target relocation. To solve this issue, we propose using an image registration algorithm, which matches a Doppler beam sharpening (DBS) image of detected moving targets to a synthetic aperture radar (SAR) image containing coordinate information. However, when using conventional SAR image registration algorithms such as the SAR scale-invariant feature transform (SIFT) algorithm, additional difficulties arise. To overcome these difficulties, we developed a new image-matching algorithm, which first estimates the errors of the UAV platform to compensate for geometric distortions in the DBS image. In addition, to showcase the relocation improvement achieved with the new algorithm, we compared it with the affine transformation and second-order polynomial algorithms. The findings of simulated and real-world experiments demonstrate that our proposed image transformation method offers better moving target relocation results under low-accuracy INS conditions. Full article
(This article belongs to the Special Issue New Challenges in Remote Sensing Image Processing)
Show Figures

Figure 1

27 pages, 5151 KiB  
Review
Advancing Sparse Vegetation Monitoring in the Arctic and Antarctic: A Review of Satellite and UAV Remote Sensing, Machine Learning, and Sensor Fusion
by Arthur Platel, Juan Sandino, Justine Shaw, Barbara Bollard and Felipe Gonzalez
Remote Sens. 2025, 17(9), 1513; https://doi.org/10.3390/rs17091513 - 24 Apr 2025
Cited by 1 | Viewed by 1297
Abstract
Polar vegetation is a critical component of global biodiversity and ecosystem health but is vulnerable to climate change and environmental disturbances. Analysing the spatial distribution, regional variations, and temporal dynamics of this vegetation is essential for implementing conservation efforts in these unique environments. [...] Read more.
Polar vegetation is a critical component of global biodiversity and ecosystem health but is vulnerable to climate change and environmental disturbances. Analysing the spatial distribution, regional variations, and temporal dynamics of this vegetation is essential for implementing conservation efforts in these unique environments. However, polar regions pose distinct challenges for remote sensing, including sparse vegetation, extreme weather, and frequent cloud cover. Advances in remote sensing technologies, including satellite platforms, uncrewed aerial vehicles (UAVs), and sensor fusion techniques, have improved vegetation monitoring capabilities. This review explores applications—including land cover mapping, vegetation health assessment, biomass estimation, and temporal monitoring—and the methods developed to address these needs. We also examine the role of spatial, spectral, and temporal resolution in improving monitoring accuracy and addressing polar-specific challenges. Sensors such as Red, Green, and Blue (RGB), multispectral, hyperspectral, Synthetic Aperture Radar (SAR), light detection and ranging (LiDAR), and thermal, as well as UAV and satellite platforms, are analysed for their roles in low-stature polar vegetation monitoring. We highlight the potential of sensor fusion and advanced machine learning techniques in overcoming traditional barriers, offering a path forward for enhanced monitoring. This paper highlights how advances in remote sensing enhance polar vegetation research and inform adaptive management strategies. Full article
Show Figures

Graphical abstract

32 pages, 5922 KiB  
Review
Potential of Earth Observation for the German North Sea Coast—A Review
by Karina Raquel Alvarez, Felix Bachofer and Claudia Kuenzer
Remote Sens. 2025, 17(6), 1073; https://doi.org/10.3390/rs17061073 - 18 Mar 2025
Viewed by 736
Abstract
Rising sea levels, warming ocean temperatures, and other climate change impacts threaten the German North Sea coast, making monitoring of this system even more critical. This study reviews the potential of remote sensing for the German North Sea coast, analyzing 97 publications from [...] Read more.
Rising sea levels, warming ocean temperatures, and other climate change impacts threaten the German North Sea coast, making monitoring of this system even more critical. This study reviews the potential of remote sensing for the German North Sea coast, analyzing 97 publications from 2000 to 2024. Publications fell into four main research topics: coastal morphology (33), water quality (34), ecology (22), and sediment (8). More than two-thirds of these papers (69%) used satellite platforms, whereas about one third (29%) used aircrafts and very few (4%) used uncrewed aerial vehicles (UAVs). Multispectral data were the most used data type in these studies (59%), followed by synthetic aperture radar data (SAR) (23%). Studies on intertidal topography were the most numerous overall, making up one-fifth (21%) of articles. Research gaps identified in this review include coastal morphology and ecology studies over large areas, especially at scales that align with administrative or management areas such as the German Wadden Sea National Parks. Additionally, few studies utilized free, publicly available high spatial resolution imagery, such as that from Sentinel-2 or newly available very high spatial resolution satellite imagery. This review finds that remote sensing plays a notable role in monitoring the German North Sea coast at local scales, but fewer studies investigated large areas at sub-annual temporal resolution, especially for coastal morphology and ecology topics. Earth Observation, however, has the potential to fill this gap and provide critical information about impacts of coastal hazards on this region. Full article
Show Figures

Graphical abstract

Back to TopTop