Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Ty1 LTR retrotransposon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 11044 KiB  
Article
Cytogenomic Characterization of Transposable Elements and Satellite DNA in Passiflora L. Species
by Gonçalo Santos Silva, Margarete Magalhães Souza, Vanessa de Carvalho Cayres Pamponét, Fabienne Micheli, Cláusio Antônio Ferreira de Melo, Sárah Gomes de Oliveira and Eduardo Almeida Costa
Genes 2024, 15(4), 418; https://doi.org/10.3390/genes15040418 - 27 Mar 2024
Cited by 1 | Viewed by 1660
Abstract
The species Passiflora alata, P. cincinnata, and P. edulis have great economic value due to the use of their fruits for human consumption. In this study, we compared the repetitive genome fractions of these three species. The compositions of the repetitive [...] Read more.
The species Passiflora alata, P. cincinnata, and P. edulis have great economic value due to the use of their fruits for human consumption. In this study, we compared the repetitive genome fractions of these three species. The compositions of the repetitive DNA of these three species’ genomes were analyzed using clustering and identification of the repetitive sequences with RepeatExplorer. It was found that repetitive DNA content represents 74.70%, 66.86%, and 62.24% of the genome of P. alata, P. edulis, and P. cincinnata, respectively. LTR Ty3/Gypsy retrotransposons represent the highest genome proportions in P. alata and P. edulis, while Ty1/Copia comprises the largest proportion of P. cincinnata genome. Chromosomal mapping by Fluorescent In Situ Hybridization (FISH) showed that LTR retrotransposons have a dispersed distribution along chromosomes. The subtelomeric region of chromosomes is where 145 bp satellite DNA is located, suggesting that these elements may play important roles in genome structure and organization in these species. In this work, we obtained the first global characterization of the composition of repetitive DNA in Passiflora, showing that an increase in genome size is related to an increase in repetitive DNA, which represents an important evolutionary route for these species. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

17 pages, 3365 KiB  
Article
Epigenetic Stress and Long-Read cDNA Sequencing of Sunflower (Helianthus annuus L.) Revealed the Origin of the Plant Retrotranscriptome
by Ilya Kirov, Pavel Merkulov, Ekaterina Polkhovskaya, Zakhar Konstantinov, Mikhail Kazancev, Ksenia Saenko, Alexander Polkhovskiy, Maxim Dudnikov, Tsovinar Garibyan, Yakov Demurin and Alexander Soloviev
Plants 2022, 11(24), 3579; https://doi.org/10.3390/plants11243579 - 19 Dec 2022
Cited by 4 | Viewed by 3340
Abstract
Transposable elements (TEs) contribute not only to genome diversity but also to transcriptome diversity in plants. To unravel the sources of LTR retrotransposon (RTE) transcripts in sunflower, we exploited a recently developed transposon activation method (‘TEgenesis’) along with long-read cDNA Nanopore sequencing. This [...] Read more.
Transposable elements (TEs) contribute not only to genome diversity but also to transcriptome diversity in plants. To unravel the sources of LTR retrotransposon (RTE) transcripts in sunflower, we exploited a recently developed transposon activation method (‘TEgenesis’) along with long-read cDNA Nanopore sequencing. This approach allows for the identification of 56 RTE transcripts from different genomic loci including full-length and non-autonomous RTEs. Using the mobilome analysis, we provided a new set of expressed and transpositional active sunflower RTEs for future studies. Among them, a Ty3/Gypsy RTE called SUNTY3 exhibited ongoing transposition activity, as detected by eccDNA analysis. We showed that the sunflower genome contains a diverse set of non-autonomous RTEs encoding a single RTE protein, including the previously described TR-GAG (terminal repeat with the GAG domain) as well as new categories, TR-RT-RH, TR-RH, and TR-INT-RT. Our results demonstrate that 40% of the loci for RTE-related transcripts (nonLTR-RTEs) lack their LTR sequences and resemble conventional eucaryotic genes encoding RTE-related proteins with unknown functions. It was evident based on phylogenetic analysis that three nonLTR-RTEs encode GAG (HadGAG1-3) fused to a host protein. These HadGAG proteins have homologs found in other plant species, potentially indicating GAG domestication. Ultimately, we found that the sunflower retrotranscriptome originated from the transcription of active RTEs, non-autonomous RTEs, and gene-like RTE transcripts, including those encoding domesticated proteins. Full article
(This article belongs to the Special Issue Epigenetics and Genome Evolution in Plants)
Show Figures

Figure 1

15 pages, 2111 KiB  
Article
Cell Compartment-Specific Folding of Ty1 Long Terminal Repeat Retrotransposon RNA Genome
by Małgorzata Zawadzka, Angelika Andrzejewska-Romanowska, Julita Gumna, David J. Garfinkel and Katarzyna Pachulska-Wieczorek
Viruses 2022, 14(9), 2007; https://doi.org/10.3390/v14092007 - 10 Sep 2022
Cited by 1 | Viewed by 2224
Abstract
The structural transitions RNAs undergo during trafficking are not well understood. Here, we used the well-developed yeast Ty1 retrotransposon to provide the first structural model of genome (g) RNA in the nucleus from a retrovirus-like transposon. Through a detailed comparison of nuclear Ty1 [...] Read more.
The structural transitions RNAs undergo during trafficking are not well understood. Here, we used the well-developed yeast Ty1 retrotransposon to provide the first structural model of genome (g) RNA in the nucleus from a retrovirus-like transposon. Through a detailed comparison of nuclear Ty1 gRNA structure with those established in the cytoplasm, virus-like particles (VLPs), and those synthesized in vitro, we detected Ty1 gRNA structural alterations that occur during retrotransposition. Full-length Ty1 gRNA serves as the mRNA for Gag and Gag-Pol proteins and as the genome that is reverse transcribed within VLPs. We show that about 60% of base pairs predicted for the nuclear Ty1 gRNA appear in the cytoplasm, and active translation does not account for such structural differences. Most of the shared base pairs are represented by short-range interactions, whereas the long-distance pairings seem unique for each compartment. Highly structured motifs tend to be preserved after nuclear export of Ty1 gRNA. In addition, our study highlights the important role of Ty1 Gag in mediating critical RNA–RNA interactions required for retrotransposition. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

12 pages, 2557 KiB  
Brief Report
Genomic Survey and Resources for the Boring Giant Clam Tridacna crocea
by Juan Antonio Baeza, Mei Lin Neo and Danwei Huang
Genes 2022, 13(5), 903; https://doi.org/10.3390/genes13050903 - 18 May 2022
Cited by 6 | Viewed by 3501
Abstract
The boring giant clam Tridacna crocea is an evolutionary, ecologically, economically, and culturally important reef-dwelling bivalve targeted by a profitable ornamental fishery in the Indo-Pacific Ocean. In this study, we developed genomic resources for T. crocea. Using low-pass (=low-coverage, ~6×) short read [...] Read more.
The boring giant clam Tridacna crocea is an evolutionary, ecologically, economically, and culturally important reef-dwelling bivalve targeted by a profitable ornamental fishery in the Indo-Pacific Ocean. In this study, we developed genomic resources for T. crocea. Using low-pass (=low-coverage, ~6×) short read sequencing, this study, for the first time, estimated the genome size, unique genome content, and nuclear repetitive elements, including the 45S rRNA DNA operon, in T. crocea. Furthermore, we tested if the mitochondrial genome can be assembled from RNA sequencing data. The haploid genome size estimated using a k-mer strategy was 1.31–1.39 Gbp, which is well within the range reported before for other members of the family Cardiidae. Unique genome content estimates using different k-mers indicated that nearly a third and probably at least 50% of the genome of T. crocea was composed of repetitive elements. A large portion of repetitive sequences could not be assigned to known repeat element families. Taking into consideration only annotated repetitive elements, the most common were classified as Satellite DNA which were more common than Class I-LINE and Class I-LTR Ty3-gypsy retrotransposon elements. The nuclear ribosomal operon in T. crocea was partially assembled into two contigs, one encoding the complete ssrDNA and 5.8S rDNA unit and a second comprising a partial lsrDNA. A nearly complete mitochondrial genome (92%) was assembled from RNA-seq. These newly developed genomic resources are highly relevant for improving our understanding of the biology of T. crocea and for the development of conservation plans and the fisheries management of this iconic reef-dwelling invertebrate. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Graphical abstract

20 pages, 4189 KiB  
Article
An Eruption of LTR Retrotransposons in the Autopolyploid Genomes of Chrysanthemum nankingense (Asteraceae)
by Jun He, Zhongyu Yu, Jiafu Jiang, Sumei Chen, Weimin Fang, Zhiyong Guan, Yuan Liao, Zhenxing Wang, Fadi Chen and Haibin Wang
Plants 2022, 11(3), 315; https://doi.org/10.3390/plants11030315 - 25 Jan 2022
Cited by 5 | Viewed by 3401
Abstract
Whole genome duplication, associated with the induction of widespread genetic changes, has played an important role in the evolution of many plant taxa. All extant angiosperm species have undergone at least one polyploidization event, forming either an auto- or allopolyploid organism. Compared with [...] Read more.
Whole genome duplication, associated with the induction of widespread genetic changes, has played an important role in the evolution of many plant taxa. All extant angiosperm species have undergone at least one polyploidization event, forming either an auto- or allopolyploid organism. Compared with allopolyploidization, however, few studies have examined autopolyploidization, and few studies have focused on the response of genetic changes to autopolyploidy. In the present study, newly synthesized C. nankingense autotetraploids (Asteraceae) were employed to characterize the genome shock following autopolyploidization. Available evidence suggested that the genetic changes primarily involved the loss of old fragments and the gain of novel fragments, and some novel sequences were potential long terminal repeat (LTR) retrotransposons. As Ty1-copia and Ty3-gypsy elements represent the two main superfamilies of LTR retrotransposons, the dynamics of Ty1-copia and Ty3-gypsy were evaluated using RT-PCR, transcriptome sequencing, and LTR retrotransposon-based molecular marker techniques. Additionally, fluorescence in situ hybridization(FISH)results suggest that autopolyploidization might also be accompanied by perturbations of LTR retrotransposons, and emergence retrotransposon insertions might show more rapid divergence, resulting in diploid-like behaviour, potentially accelerating the evolutionary process among progenies. Our results strongly suggest a need to expand the current evolutionary framework to include a genetic dimension when seeking to understand genomic shock following autopolyploidization in Asteraceae. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Graphical abstract

18 pages, 3879 KiB  
Article
Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation
by Muhammad Majid and Huang Yuan
Insects 2021, 12(9), 837; https://doi.org/10.3390/insects12090837 - 17 Sep 2021
Cited by 16 | Viewed by 3787
Abstract
Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification [...] Read more.
Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification of the grasshopper massive genomes is still under investigation. The genus Calliptamus diverged from Peripolus around 17 mya and its species divergence dated back about 8.5 mya, but their genome size shows rather large differences. Here, we used low-coverage Illumina unassembled short reads to investigate the effects of evolutionary dynamics of satDNAs and TEs on genome size variations. The Repeatexplorer2 analysis with 0.5X data resulted in 52%, 56%, and 55% as repetitive elements in the genomes of Calliptamus barbarus, Calliptamus italicus, and Calliptamus abbreviatus, respectively. The LINE and Ty3-gypsy LTR retrotransposons and TcMar-Tc1 dominated the repeatomes of all genomes, accounting for 16–35% of the total genomes of these species. Comparative analysis unveiled that most of the transposable elements (TEs) except satDNAs were highly conserved across three genomes in the genus Calliptamus grasshoppers. Out of a total of 20 satDNA families, 17 satDNA families were commonly shared with minor variations in abundance and divergence between three genomes, and 3 were Calliptamus barbarus specific. Our findings suggest that there is a significant amplification or contraction of satDNAs at genus phylogeny which is the main cause that made genome size different. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

16 pages, 3166 KiB  
Article
RNA Binding Properties of the Ty1 LTR-Retrotransposon Gag Protein
by Julita Gumna, Angelika Andrzejewska-Romanowska, David J. Garfinkel and Katarzyna Pachulska-Wieczorek
Int. J. Mol. Sci. 2021, 22(16), 9103; https://doi.org/10.3390/ijms22169103 - 23 Aug 2021
Cited by 3 | Viewed by 4066
Abstract
A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, [...] Read more.
A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo. Full article
(This article belongs to the Special Issue Proteins and Protein-Ligand Interactions)
Show Figures

Figure 1

13 pages, 2565 KiB  
Article
Quadruplex-Forming Motif Inserted into 3′UTR of Ty1his3-AI Retrotransposon Inhibits Retrotransposition in Yeast
by Viktor Tokan, Jose Luis Rodriguez Lorenzo, Pavel Jedlicka, Iva Kejnovska, Roman Hobza and Eduard Kejnovsky
Biology 2021, 10(4), 347; https://doi.org/10.3390/biology10040347 - 20 Apr 2021
Cited by 3 | Viewed by 3251
Abstract
Guanine quadruplexes (G4s) serve as regulators of replication, recombination and gene expression. G4 motifs have been recently identified in LTR retrotransposons, but their role in the retrotransposon life-cycle is yet to be understood. Therefore, we inserted G4s into the 3′UTR of Ty1his3-AI retrotransposon [...] Read more.
Guanine quadruplexes (G4s) serve as regulators of replication, recombination and gene expression. G4 motifs have been recently identified in LTR retrotransposons, but their role in the retrotransposon life-cycle is yet to be understood. Therefore, we inserted G4s into the 3′UTR of Ty1his3-AI retrotransposon and measured the frequency of retrotransposition in yeast strains BY4741, Y00509 (without Pif1 helicase) and with G4-stabilization by N-methyl mesoporphyrin IX (NMM) treatment. We evaluated the impact of G4s on mRNA levels by RT-qPCR and products of reverse transcription by Southern blot analysis. We found that the presence of G4 inhibited Ty1his3-AI retrotransposition. The effect was stronger when G4s were on a transcription template strand which leads to reverse transcription interruption. Both NMM and Pif1p deficiency reduced the retrotransposition irrespective of the presence of a G4 motif in the Ty1his3-AI element. Quantity of mRNA and products of reverse transcription did not fully explain the impact of G4s on Ty1his3-AI retrotransposition indicating that G4s probably affect some other steps of the retrotransposon life-cycle (e.g., translation, VLP formation, integration). Our results suggest that G4 DNA conformation can tune the activity of mobile genetic elements that in turn contribute to shaping the eukaryotic genomes. Full article
(This article belongs to the Special Issue Regulation of Mobile Genetic Elements at the Molecular Level)
Show Figures

Figure 1

25 pages, 4128 KiB  
Article
Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo
by Shitian Li, Muthusamy Ramakrishnan, Kunnummal Kurungara Vinod, Ruslan Kalendar, Kim Yrjälä and Mingbing Zhou
Forests 2020, 11(1), 31; https://doi.org/10.3390/f11010031 - 24 Dec 2019
Cited by 35 | Viewed by 5265
Abstract
Bamboo, a non-timber grass species, known for exceptionally fast growth is a commercially viable crop. Long terminal repeat (LTR) retrotransposons, the main class I mobile genetic elements in plant genomes, are highly abundant (46%) in bamboo, contributing to genome diversity. They play significant [...] Read more.
Bamboo, a non-timber grass species, known for exceptionally fast growth is a commercially viable crop. Long terminal repeat (LTR) retrotransposons, the main class I mobile genetic elements in plant genomes, are highly abundant (46%) in bamboo, contributing to genome diversity. They play significant roles in the regulation of gene expression, chromosome size and structure as well as in genome integrity. Due to their random insertion behavior, interspaces of retrotransposons can vary significantly among bamboo genotypes. Capitalizing this feature, inter-retrotransposon amplified polymorphism (IRAP) is a high-throughput marker system to study the genetic diversity of plant species. To date, there are no transposon based markers reported from the bamboo genome and particularly using IRAP markers on genetic diversity. Phyllostachys genus of Asian bamboo is the largest of the Bambusoideae subfamily, with great economic importance. We report structure-based analysis of bamboo genome for the LTR-retrotransposon superfamilies, Ty3-gypsy and Ty1-copia, which revealed a total of 98,850 retrotransposons with intact LTR sequences at both the ends. Grouped into 64,281 clusters/scaffold using CD-HIT-EST software, only 13 clusters of retroelements were found with more than 30 LTR sequences and with at least one copy having all intact protein domains such as gag and polyprotein. A total of 16 IRAP primers were synthesized, based on the high copy numbers of conserved LTR sequences. A study using these IRAP markers on genetic diversity and population structure of 58 Asian bamboo accessions belonging to the genus Phyllostachys revealed 3340 amplicons with an average of 98% polymorphism. The bamboo accessions were collected from nine different provinces of China, as well as from Italy and America. A three phased approach using hierarchical clustering, principal components and a model based population structure divided the bamboo accessions into four sub-populations, PhSP1, PhSP2, PhSP3 and PhSP4. All the three analyses produced significant sub-population wise consensus. Further, all the sub-populations revealed admixture of alleles. The analysis of molecular variance (AMOVA) among the sub-populations revealed high intra-population genetic variation (75%) than inter-population. The results suggest that Phyllostachys bamboos are not well evolutionarily diversified, although geographic speciation could have occurred at a limited level. This study highlights the usability of IRAP markers in determining the inter-species variability of Asian bamboos. Full article
(This article belongs to the Special Issue Genetics and Improvement of Forest Trees)
Show Figures

Figure 1

15 pages, 1786 KiB  
Review
Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3
by Jason W. Rausch, Jennifer T. Miller and Stuart F. J. Le Grice
Viruses 2017, 9(3), 44; https://doi.org/10.3390/v9030044 - 15 Mar 2017
Cited by 4 | Viewed by 6427
Abstract
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon [...] Read more.
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (−) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review. Full article
Show Figures

Figure 1

16 pages, 1736 KiB  
Review
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3
by Katarzyna Pachulska-Wieczorek, Stuart F.J. Le Grice and Katarzyna J. Purzycka
Viruses 2016, 8(7), 193; https://doi.org/10.3390/v8070193 - 14 Jul 2016
Cited by 15 | Viewed by 9173
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is [...] Read more.
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation. Full article
(This article belongs to the Special Issue RNA Packaging)
Show Figures

Graphical abstract

18 pages, 740 KiB  
Article
First Insights into the Large Genome of Epimedium sagittatum (Sieb. et Zucc) Maxim, a Chinese Traditional Medicinal Plant
by Di Liu, Shao-Hua Zeng, Jian-Jun Chen, Yan-Jun Zhang, Gong Xiao, Lin-Yao Zhu and Ying Wang
Int. J. Mol. Sci. 2013, 14(7), 13559-13576; https://doi.org/10.3390/ijms140713559 - 27 Jun 2013
Cited by 7 | Viewed by 7521
Abstract
Epimedium sagittatum (Sieb. et Zucc) Maxim is a member of the Berberidaceae family of basal eudicot plants, widely distributed and used as a traditional medicinal plant in China for therapeutic effects on many diseases with a long history. Recent data shows that E. [...] Read more.
Epimedium sagittatum (Sieb. et Zucc) Maxim is a member of the Berberidaceae family of basal eudicot plants, widely distributed and used as a traditional medicinal plant in China for therapeutic effects on many diseases with a long history. Recent data shows that E. sagittatum has a relatively large genome, with a haploid genome size of ~4496 Mbp, divided into a small number of only 12 diploid chromosomes (2n = 2x = 12). However, little is known about Epimedium genome structure and composition. Here we present the analysis of 691 kb of high-quality genomic sequence derived from 672 randomly selected plasmid clones of E. sagittatum genomic DNA, representing ~0.0154% of the genome. The sampled sequences comprised at least 78.41% repetitive DNA elements and 2.51% confirmed annotated gene sequences, with a total GC% content of 39%. Retrotransposons represented the major class of transposable element (TE) repeats identified (65.37% of all TE repeats), particularly LTR (Long Terminal Repeat) retrotransposons (52.27% of all TE repeats). Chromosome analysis and Fluorescence in situ Hybridization of Gypsy-Ty3 retrotransposons were performed to survey the E. sagittatum genome at the cytological level. Our data provide the first insights into the composition and structure of the E. sagittatum genome, and will facilitate the functional genomic analysis of this valuable medicinal plant. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop