Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = Triatominaes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1182 KiB  
Article
Urban Triatomines in Central México: Linking Ecological Niche Models with New Triatoma barberi (Reduviidae:Triatominae) Records
by Salvador Zamora-Ledesma, Norma Hernández-Camacho, Jesús Luna-Cozar, Robert W. Jones, María Elena Villagrán-Herrera and Brenda Camacho-Macías
Zoonotic Dis. 2025, 5(2), 15; https://doi.org/10.3390/zoonoticdis5020015 - 5 Jun 2025
Viewed by 847
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a significant health concern in Latin America, with triatomine insects serving as its primary vectors. Among them, Triatoma barberi is an important yet understudied species in Querétaro, Mexico. This study employs ecological niche modeling (ENM) [...] Read more.
Chagas disease, caused by Trypanosoma cruzi, is a significant health concern in Latin America, with triatomine insects serving as its primary vectors. Among them, Triatoma barberi is an important yet understudied species in Querétaro, Mexico. This study employs ecological niche modeling (ENM) to predict the potential distribution of T. barberi in the region, using occurrence records and environmental variables. The MaxEnt algorithm was used to generate the model, which was validated through AUC and TSS metrics. Results indicate that temperature seasonality and altitude are key drivers of T. barberi distribution, with high-suitability areas found in semi-urban and peri-urban zones. Additionally, six new occurrence records were documented, suggesting a growing urban presence of this species. These findings highlight the need for enhanced vector surveillance and targeted control measures to reduce the risk of Chagas disease transmission. Full article
Show Figures

Figure 1

14 pages, 1985 KiB  
Article
Comparative Analysis of Vectorial Capacity Among Triatoma brasiliensis brasiliensis, Triatoma juazeirensis, and Their Experimental Hybrids
by Nathália Cordeiro Correia, Carlos José de Carvalho Moreira, Fernanda Oliveira Firmino, Dayse da Silva Rocha, João Paulo Sales Oliveira-Correia, Cleber Galvão and Jane Costa
Microorganisms 2025, 13(5), 1025; https://doi.org/10.3390/microorganisms13051025 - 29 Apr 2025
Viewed by 525
Abstract
The existence of a natural hybridization zone of members of the Triatoma brasiliensis complex in Pernambuco, a Brazilian state with areas highly infested by Trypanosoma cruzi vectors, raised questions to be studied about the vectorial capacity of these hybrids. Recently, it was demonstrated [...] Read more.
The existence of a natural hybridization zone of members of the Triatoma brasiliensis complex in Pernambuco, a Brazilian state with areas highly infested by Trypanosoma cruzi vectors, raised questions to be studied about the vectorial capacity of these hybrids. Recently, it was demonstrated that experimental hybrids of T. brasiliensis brasiliensis and Triatoma juazeirensis present vectorial competence superior to that of the parental species. The objective of the present study was to compare bionomic aspects related to the vectorial capacity of T. b. brasiliensis, T. juazeirensis, and their experimental hybrids. Feeding and defecation behavior patterns in fifth instar nymphs were comparatively analyzed between four groups, two parental and two hybrids, respectively: T. b. brasiliensis, T. juazeirensis, Hjb (♀ T. juazeirensis × ♂ T. b. brasiliensis), and Hbj (♀ T. b. brasiliensis × ♂ T. juazeirensis). Fifteen newly molted fifth instar nymphs from each of the mentioned groups were previously subjected to a period of fasting for 10 days and individually kept in identified bottles. In the experiment, the insects were placed in a jar containing a mouse immobilized in nylon mesh, in accordance with the guidelines of the animal ethics committee. The following variables were observed: 1-total number of feedings carried out; 2-time to start feeding; 3-duration of feeding and weight acquired; 4-defecations during feeding; 5-defecation within one minute after cessation of feeding; 6-defecation within ten minutes after cessation of feeding; 7-defecation behavior. Specimens from all groups demonstrated voracity, starting their meal immediately after contact with the mouse, and most of the insects defecated immediately after feeding, with 78% of the insects defecating within 30 s. The results obtained suggest that T. brasiliensis, T. juazeirensis, and their experimental hybrids presented bionomic characteristics compatible with the species considered good vectors in the literature. However, T. b. brasiliensis and T. juazeirensis demonstrated even more effective characteristics for T. cruzi transmission regarding their feeding and defecation patterns when compared to their hybrids. Full article
Show Figures

Figure 1

30 pages, 1300 KiB  
Review
Trypanosoma cruzi/Triatomine Interactions—A Review
by Günter A. Schaub
Pathogens 2025, 14(4), 392; https://doi.org/10.3390/pathogens14040392 - 17 Apr 2025
Viewed by 1256
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, and its vectors, the triatomines, and highlights open questions. Four important facts should be emphasized at the outset: (1) The development of T. cruzi strains and their interactions [...] Read more.
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, and its vectors, the triatomines, and highlights open questions. Four important facts should be emphasized at the outset: (1) The development of T. cruzi strains and their interactions with the mammalian host and the insect vector vary greatly. (2) Only about 10 of over 150 triatomine species have been studied for their interactions with the protozoan parasite. (3) The use of laboratory strains of triatomines makes generalizations difficult, as maintenance conditions influence the interactions. (4) The intestinal microbiota is involved in the interactions, but the mutualistic symbionts, Actinomycetales, have so far only been identified in four species of triatomines. The effects of the vector on T. cruzi are reflected in a different colonization ability of T. cruzi in different triatomine species. In addition, the conditions in the intestine lead to strong multiplication in the posterior midgut and rectum, with infectious metacyclic trypomastigotes developing almost exclusively in the latter. Starvation and feeding of the vector induce the development of certain stages of T. cruzi. The negative effects of T. cruzi on the triatomines depend on the T. cruzi strain and are particularly evident when the triatomines are stressed. The intestinal immunity of the triatomines responds to ingested blood-stage trypomastigotes of some T. cruzi strains and affects many intestinal bacteria, but not all and not the mutualistic symbionts. The specific interaction between T. cruzi and the bacteria is evident after the knockdown of antimicrobial peptides: the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. In long-term infections, the suppression of intestinal immunity is indicated by the growth of specific microbiota. Full article
Show Figures

Figure 1

16 pages, 1173 KiB  
Article
New Approaches to the Ecology of Triatoma sordida in Peridomestic Environments of an Endemic Area of Minas Gerais, Brazil
by Carolina Valença-Barbosa, Isabel Mayer de Andrade, Fellipe Dias Tavares de Simas, Ozorino Caldeira Cruz Neto, Nilvanei Aparecido da Silva, Camila Fortunato Costa, Bruno Oliveira Bolivar Moreira, Paula Finamore-Araujo, Marcus Vinicius Niz Alvarez, André Borges-Veloso, Otacílio da Cruz Moreira, Liléia Diotaiuti and Rita de Cássia Moreira de Souza
Pathogens 2025, 14(2), 178; https://doi.org/10.3390/pathogens14020178 - 11 Feb 2025
Viewed by 918
Abstract
Triatoma sordida is a native South American species and the most frequently captured triatomine in artificial environments in Brazil. Although considered a secondary vector of Trypanosoma cruzi, it is typically associated with low infection rates. To investigate its role in an endemic [...] Read more.
Triatoma sordida is a native South American species and the most frequently captured triatomine in artificial environments in Brazil. Although considered a secondary vector of Trypanosoma cruzi, it is typically associated with low infection rates. To investigate its role in an endemic area for Chagas disease in northern Minas Gerais, Brazil, we employed a multidimensional approach that combined triatomine capture data with quantitative and qualitative analyses of T. cruzi. A total of 1861 T. sordida specimens were captured, of which 1455 were examined and 210 (14.4%) were found to be infected with T. cruzi. The most prevalent discrete typing unit (DTU) was TcI (80%), followed by TcII (8%), TcV (5%), and TcIII (3%). Molecular techniques provided new insights into the ecology of T. sordida, revealing a higher infection rate than previously reported and a parasitic load lower than that observed in other quantified species. Chickens were confirmed as the primary food source, playing an epidemiological role in maintaining infected insects with four T. cruzi DTUs. The observed diversity of T. cruzi DTUs suggests a lack of environmental segregation, likely due to the extensive movement of various host species between wild and domestic habitats, resulting in overlapping transmission cycles. Full article
Show Figures

Figure 1

25 pages, 393 KiB  
Review
The Body of Chagas Disease Vectors
by Jean-Pierre Dujardin
Pathogens 2025, 14(1), 98; https://doi.org/10.3390/pathogens14010098 - 20 Jan 2025
Cited by 3 | Viewed by 1206
Abstract
Morphometry is an effort to describe or measure the morphology of the body, or parts of it. It also provides quantitative data on the interactions of living organisms with their environment, external or internal. As a discipline, morphometrics has undergone significant developments in [...] Read more.
Morphometry is an effort to describe or measure the morphology of the body, or parts of it. It also provides quantitative data on the interactions of living organisms with their environment, external or internal. As a discipline, morphometrics has undergone significant developments in the last decade, making its implementation more visual and less laborious. Chagas disease vectors, often referred to by the common name of “kissing bugs”, belong to the subfamily Triatominae. Due to their apparent morphological plasticity, they have been the subject of numerous morphometric studies. Most of these have been applied taking into account the particularities of this group of vectors, such as domesticity (synanthropy), food preferences, dispersal ability, insecticide resistance, as well as some taxonomic issues. This brief review over nearly three decades is organized here according to the body organs considered by the authors. Full article
18 pages, 2638 KiB  
Article
Glycosylation Patterns in Meccus (Triatoma) pallidipennis Gut: Implications for the Development of Vector Control Strategies
by Elia Torres-Gutiérrez, Frida Noelly Candelas-Otero, Olivia Alicia Reynoso-Ducoing, Berenice González-Rete, Mauro Omar Vences-Blanco, Margarita Cabrera-Bravo, Martha Irene Bucio-Torres and Paz María Silvia Salazar-Schettino
Microorganisms 2025, 13(1), 58; https://doi.org/10.3390/microorganisms13010058 - 1 Jan 2025
Viewed by 1069
Abstract
The primary mode of transmission for Chagas disease is vector-borne transmission, spread by hematophagous insects of the Triatominae subfamily. In Mexico, the triatomine Meccus pallidipennis is particularly significant in the transmission of Trypanosoma cruzi. This study focused on analyzing protein expression and [...] Read more.
The primary mode of transmission for Chagas disease is vector-borne transmission, spread by hematophagous insects of the Triatominae subfamily. In Mexico, the triatomine Meccus pallidipennis is particularly significant in the transmission of Trypanosoma cruzi. This study focused on analyzing protein expression and modifications by glycosylation in different regions of the digestive tract of fifth-instar nymphs of M. pallidipennis. Two gut sections were dissected and extracted: the anterior midgut (AMG) and the proctodeum or rectum (RE). Proteins were extracted from each tissue sample and profiled by one- and two-dimensional electrophoresis; protein glycosylation was analyzed by lectin affinity. Our results showed significant differences in protein expression and glycosylation between both gut regions, with modifications being more frequent in the RE. The proteins HSP70, actin, and tubulin were analyzed, finding a differential expression of the latter two between AMG and RE. Understanding glycosylation patterns provides critical insights into vector–pathogen interactions that could eventually inform novel control approaches. Furthermore, the potential use of lectins as insecticidal agents highlights the broader implications of glycoprotein research in the future development of strategies on vector control to disrupt T. cruzi transmission. Full article
(This article belongs to the Special Issue Vector-Borne Zoonoses: Surveillance, Transmission and Interventions)
Show Figures

Figure 1

11 pages, 471 KiB  
Article
The Impact of Environmental and Housing Factors on the Distribution of Triatominae (Hemiptera, Reduviidae) in an Endemic Area of Chagas Disease in Puebla, Mexico
by Miguel Ortega-Caballero, Maria Cristina Gonzalez-Vazquez, Miguel Angel Hernández-Espinosa, Alejandro Carabarin-Lima and Alia Mendez-Albores
Diseases 2024, 12(10), 238; https://doi.org/10.3390/diseases12100238 - 2 Oct 2024
Cited by 1 | Viewed by 1502
Abstract
Background: Chagas disease (CD), a Neglected Tropical Disease caused by Trypanosoma cruzi, affects millions of people in Latin America and the southern US and spreads worldwide. CD results from close interactions between humans, animals, and vectors, influenced by sociodemographic factors and housing [...] Read more.
Background: Chagas disease (CD), a Neglected Tropical Disease caused by Trypanosoma cruzi, affects millions of people in Latin America and the southern US and spreads worldwide. CD results from close interactions between humans, animals, and vectors, influenced by sociodemographic factors and housing materials. Methods: This study aimed to evaluate how these factors, along with seasonal changes, affect the distribution of CD vectors in an endemic community near Puebla, Mexico, using a cross-sectional survey. A total of 383 people from this area, known for the presence of major vectors such as Triatoma barberi and Triatoma pallidipennis, were surveyed. Results: As a result of the survey, it was found that only 27.4% of respondents knew about CD, and 83.3% owned potential reservoir pets; additionally, the quality of the wall, roof, and floor significantly influenced vector sightings, while the seasonal pattern showed less of an association. Chi-square tests confirmed these associations between vector sightings and housing materials (p < 0.001); vector sightings versus seasonal patterns showed less of an association (p = 0.04), and land use changes did not show an association (p = 0.27). Conclusions: Construction materials play an important role in the sighting of triatomines in homes, so important actions should be taken to improve homes. However, further experimental or longitudinal studies are needed to establish causality. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

15 pages, 3985 KiB  
Article
One Genome, Multiple Phenotypes: Would Rhodnius milesi Carcavallo, Rocha, Galvão & Jurberg, 2001 (Hemiptera, Triatominae) Be a Valid Species or a Phenotypic Polymorphism of R. neglectus Lent, 1954?
by Fabricio Ferreira Campos, Jader de Oliveira, Jociel Klleyton Santos Santana, Amanda Ravazi, Yago Visinho dos Reis, Laura Marson Marquioli, Cleber Galvão, Maria Tercília Vilela de Azeredo-Oliveira, João Aristeu da Rosa and Kaio Cesar Chaboli Alevi
Diversity 2024, 16(8), 472; https://doi.org/10.3390/d16080472 - 5 Aug 2024
Cited by 9 | Viewed by 1416
Abstract
Species of the Rhodnius genus have a complex taxonomy because the events of phenotypic plasticity and cryptic speciation make it difficult to correctly classify these vectors. During the taxonomic history of the genus, five synonymization events occurred. Additionally, some authors suggest that R. [...] Read more.
Species of the Rhodnius genus have a complex taxonomy because the events of phenotypic plasticity and cryptic speciation make it difficult to correctly classify these vectors. During the taxonomic history of the genus, five synonymization events occurred. Additionally, some authors suggest that R. milesi possibly represent only phenotypic polymorphisms of R. neglectus. Thus, we analyzed the specific status of R. milesi in relation to R. neglectus using phylogenetic studies with the mitochondrial gene cytochrome B and the study of reproductive barriers. The phylogenetic reconstruction grouped R. milesi together with R. neglectus from different localities, demonstrating that these taxa represent the same species based on the phylogenetic species concept. Experimental crosses demonstrate the absence of pre- and postzygotic barriers under laboratory conditions. Additionally, when the hatch rates of crosses are compared to intraspecific crosses, it can be noted that they are high and very similar. Finally, the mortality rate of the hybrids does not indicate hybrid inviability, the absence of chromosome pairing errors does not indicate hybrid sterility, and the proportion between male and female hybrids demonstrates that Haldane’s rule was not acting. Therefore, we perform the formal synonymization of R. milesi with R. neglectus. Full article
Show Figures

Figure 1

33 pages, 1251 KiB  
Review
Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors—A Review
by Günter A. Schaub
Microorganisms 2024, 12(5), 855; https://doi.org/10.3390/microorganisms12050855 - 25 Apr 2024
Cited by 9 | Viewed by 2803
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development [...] Read more.
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

17 pages, 4526 KiB  
Article
Differential Spreading of Microsatellites in Holocentric Chromosomes of Chagas Disease Vectors: Genomic and Evolutionary Implications
by Francisco Panzera, Ángeles Cuadrado, Pablo Mora, Teresa Palomeque, Pedro Lorite and Sebastián Pita
Insects 2023, 14(9), 772; https://doi.org/10.3390/insects14090772 - 19 Sep 2023
Cited by 6 | Viewed by 1614
Abstract
This study focused on analyzing the distribution of microsatellites in holocentric chromosomes of the Triatominae subfamily, insect vectors of Chagas disease. We employed a non-denaturing FISH technique to determine the chromosomal distribution of sixteen microsatellites across twenty-five triatomine species, involving five genera from [...] Read more.
This study focused on analyzing the distribution of microsatellites in holocentric chromosomes of the Triatominae subfamily, insect vectors of Chagas disease. We employed a non-denaturing FISH technique to determine the chromosomal distribution of sixteen microsatellites across twenty-five triatomine species, involving five genera from the two principal tribes: Triatomini and Rhodniini. Three main hybridization patterns were identified: strong signals in specific chromosomal regions, dispersed signals dependent on microsatellite abundance and the absence of signals in certain chromosomal regions or entire chromosomes. Significant variations in hybridization patterns were observed between Rhodniini and Triatomini species. Rhodniini species displayed weak and scattered hybridization signals, indicating a low abundance of microsatellites in their genomes. In contrast, Triatomini species exhibited diverse and abundant hybridization patterns, suggesting that microsatellites are a significant repetitive component in their genomes. One particularly interesting finding was the high abundance of GATA repeats, and to a lesser extent AG repeats, in the Y chromosome of all analyzed Triatomini species. In contrast, the Y chromosome of Rhodniini species did not show enrichment in GATA and AG repeats. This suggests that the richness of GATA repeats on the Y chromosome likely represents an ancestral trait specific to the Triatomini tribe. Furthermore, this information can be used to elucidate the evolutionary relationships between Triatomini and other groups of reduviids, contributing to the understanding of the subfamily’s origin. Overall, this study provides a comprehensive understanding of the composition and distribution of microsatellites within Triatominae genomes, shedding light on their significance in the evolutionary processes of these species. Full article
(This article belongs to the Special Issue Comparative Cytogenetics and Molecular Systematics of Insects)
Show Figures

Figure 1

20 pages, 4294 KiB  
Article
Review of Kissing Bugs (Hemiptera: Reduviidae: Triatominae) from China with Descriptions of Two New Species
by Yisheng Zhao, Mingyuan Fan, Hu Li and Wanzhi Cai
Insects 2023, 14(5), 450; https://doi.org/10.3390/insects14050450 - 10 May 2023
Cited by 31 | Viewed by 6821
Abstract
Triatominae, the only blood-sucking subfamily in Reduviidae, are the vectors of Chagas disease. The majority of them are distributed in the Americas, while the diversity in China has been underestimated, as only two species have been recorded. Here, we describe two new species [...] Read more.
Triatominae, the only blood-sucking subfamily in Reduviidae, are the vectors of Chagas disease. The majority of them are distributed in the Americas, while the diversity in China has been underestimated, as only two species have been recorded. Here, we describe two new species from China, Triatoma picta Zhao & Cai sp. nov. and T. atrata Zhao & Cai sp. nov., and provide a redescription of T. sinica Hsiao, 1965, along with remarks on T. rubrofasciata (De Geer, 1773). To facilitate the identification, we include photos, especially of genitalia, as well as a distribution map and a key to Chinese triatomines. We calculated the pairwise genetic distances between 23 Triatoma species, which further supported the validity of these new species. We anticipate that our taxonomic review will be useful for identifying Chinese Triatominae. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

18 pages, 7630 KiB  
Article
Exploring the Hidden World of Vectors of Chagas Disease: A Fascinating Look at the Taxonomic Aspects of the Psammolestes Genus (Hemiptera, Triatominae)
by Jader de Oliveira, Kaio Cesar Chaboli Alevi, Carlos Eduardo Almeida, Nicoly Olaia, Gustavo Lázari Cacini, Cleber Galvão, Heitor Miraglia Herrera, Filipe Martins Santos and João Aristeu da Rosa
Life 2023, 13(5), 1081; https://doi.org/10.3390/life13051081 - 25 Apr 2023
Cited by 7 | Viewed by 1973
Abstract
Chagas disease (CD) is a neglected illness affecting approximately seven million individuals, with vector transmission occurring via triatomine bugs. The Rhodniini tribe comprises 24 species, grouped into the Rhodnius and Psammolestes genera. Given the importance of accurately identifying CD vectors, the taxonomy of [...] Read more.
Chagas disease (CD) is a neglected illness affecting approximately seven million individuals, with vector transmission occurring via triatomine bugs. The Rhodniini tribe comprises 24 species, grouped into the Rhodnius and Psammolestes genera. Given the importance of accurately identifying CD vectors, the taxonomy of Psammolestes spp. was revisited using morphological and morphometric data. Specimens of P. tertius, P. coreodes, and P. arthuri were collected, and the morphological characteristics of the head, thorax, abdomen, and eggs were analyzed. Morphometric studies of eggs were also conducted. Dichotomous keys allowing for the differentiation of Psammolestes spp. were elaborated based on adult insect and egg morphological characteristics. Through these studies, it was possible to differentiate the three Psammolestes species and confirm that this genus should not be classified under the Rhodnius genus, contributing to Rhodniini taxonomy. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

8 pages, 2720 KiB  
Communication
Characterization of External Female Genitalia in Five Triatoma Laporte Species of South America (Hemiptera: Reduviidae: Triatominae)
by João Paulo Sales Oliveira-Correia, Hélcio Reinaldo Gil-Santana, Jacenir Reis dos Santos-Mallet and Cleber Galvão
Trop. Med. Infect. Dis. 2023, 8(5), 240; https://doi.org/10.3390/tropicalmed8050240 - 23 Apr 2023
Cited by 2 | Viewed by 1601
Abstract
Currently, there are 158 valid species of triatomines, all of which are potential vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. The correct taxonomic identification of triatomines is essential since each species hos a different epidemiological importance. The aim of [...] Read more.
Currently, there are 158 valid species of triatomines, all of which are potential vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. The correct taxonomic identification of triatomines is essential since each species hos a different epidemiological importance. The aim of the study is to compare five species of South American Triatoma. Here we present a comparative study of terminal abdominal segments in females by scanning electron microscopy (SEM) of the species Triatoma delpontei, T. jurbergi, T. infestans var. melanosoma, T. platensis, and T. vandae. The results showed diagnostic characters for the studied species. The dorsal view featured more valuable characters, with seven informative characters. Similarities were observed among T. delpontei, T. infestans var. melanosoma, and T. platensis, and between T. jurbergi and T. vandae, correlating with previous studies. Thus, female genital characters proved to be reliable and useful in the diagnosis of the Triatoma species studied here; additional studies, along with other sets of behavioral, morphological, and molecular data, helped to reinforce the hypotheses found here. Full article
(This article belongs to the Special Issue Advances in Chagas Disease Control)
Show Figures

Figure 1

17 pages, 40855 KiB  
Communication
Climate and Environmental Changes and Their Potential Effects on the Dynamics of Chagas Disease: Hybridization in Rhodniini (Hemiptera, Triatominae)
by Amanda Ravazi, Jader de Oliveira, Fernanda Fernandez Madeira, Giovana Menezes Nunes, Yago Visinho dos Reis, Ana Beatriz Bortolozo de Oliveira, Luísa Martins Sensato Azevedo, Cleber Galvão, Maria Tercília Vilela de Azeredo-Oliveira, João Aristeu da Rosa and Kaio Cesar Chaboli Alevi
Insects 2023, 14(4), 378; https://doi.org/10.3390/insects14040378 - 12 Apr 2023
Cited by 5 | Viewed by 3052
Abstract
Chagas disease affects about eight million people. In view of the issues related to the influence of anthropogenic changes in the dynamics of the distribution and reproductive interaction of triatomines, we performed experimental crosses between species of the Rhodniini tribe in order to [...] Read more.
Chagas disease affects about eight million people. In view of the issues related to the influence of anthropogenic changes in the dynamics of the distribution and reproductive interaction of triatomines, we performed experimental crosses between species of the Rhodniini tribe in order to evaluate interspecific reproductive interactions and hybrid production capacity. Reciprocal crossing experiments were conducted among Rhodnius brethesi × R. pictipes, R. colombiensis × R. ecuadoriensis, R. neivai × R. prolixus, R. robustus × R. prolixus, R. montenegrensis × R. marabaensis; R. montenegrensis × R. robustus, R. prolixus × R. nasutus and R. neglectus × R. milesi. With the exception of crosses between R. pictipes ♀ × R. brethesi ♂, R. ecuadoriensis ♀ × R. colombiensis ♂ and R. prolixus ♀ × R. neivai ♂, all experimental crosses resulted in hybrids. Our results demonstrate that both allopatric and sympatric species produce hybrids, which can generate concern for public health agencies in the face of current anthropogenic events. Thus, we demonstrate that species of the Rhodniini tribe are capable of producing hybrids under laboratory conditions. These results are of great epidemiological importance and raise an important discussion about the influence of climatic and environmental interactions on Chagas disease dynamics. Full article
Show Figures

Figure 1

17 pages, 3401 KiB  
Article
Triatoma yelapensis sp. nov. (Hemiptera: Reduviidae) from Mexico, with a Key of Triatoma Species Recorded in Mexico
by Juan Téllez-Rendón, Lyda Esteban, Laura Rengifo-Correa, Héctor Díaz-Albiter, Herón Huerta and Carolina Dale
Insects 2023, 14(4), 331; https://doi.org/10.3390/insects14040331 - 29 Mar 2023
Cited by 30 | Viewed by 4177
Abstract
Thirty-four species of Triatominae (Hemiptera, Reduviidae) are recorded in Mexico, Triatoma Laporte, 1832 the most speciose genus in this country. Here, we describe Triatoma yelapensis sp. nov. from the Pacific coast of Jalisco (Mexico). The most similar species to T. yelapensis sp. nov. [...] Read more.
Thirty-four species of Triatominae (Hemiptera, Reduviidae) are recorded in Mexico, Triatoma Laporte, 1832 the most speciose genus in this country. Here, we describe Triatoma yelapensis sp. nov. from the Pacific coast of Jalisco (Mexico). The most similar species to T. yelapensis sp. nov. is T. recurva (Stål, 1868), but they differ in head longitude, the proportion of labial segments, coloration pattern of corium and connexivum, spiracles location, and male genitalia. To provide statistical support for the morphological distinctiveness of the new species, we performed a geometric morphometric analysis of T. yelapensis sp. nov., T. dimidiata s.s. (Latreille, 1811), T. gerstaeckeri (Stål, 1859), and T. recurva (Stål, 1868), considering head morphology. We also provide an updated key of the genus Triatoma for species recorded in Mexico. Full article
(This article belongs to the Special Issue Vector-Borne Diseases in a Changing World)
Show Figures

Figure 1

Back to TopTop