Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Theileria orientalis infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2326 KiB  
Article
Investigation of Comorbidity and Risk Factors Analysis During Lumpy Skin Disease Outbreaks in India
by Gundallahalli Bayyappa Manjunatha Reddy, Shraddha Bijalwan, Siju Susan Jacob, Sunil Tadakod, Snigdha Madhaba Maharana, Sudeep Nagaraj, Sai Mounica Pabbineedi, Chandana Ramesh Uma, Viveka Prabhu Balappa, Chethan Kumar Harlipura Basavarajappa, Pinaki Prasad Sengupta, Sharanagouda Shiddanagouda Patil and Baldev Raj Gulati
Microorganisms 2025, 13(3), 472; https://doi.org/10.3390/microorganisms13030472 - 20 Feb 2025
Cited by 3 | Viewed by 1133
Abstract
Lumpy skin disease (LSD) is a re-emerging viral transboundary disease affecting cattle and buffaloes, resulting in a significant socio-economic impact on the affected regions. LSD is primarily transmitted among susceptible livestock through hematophagous vectors, including ticks and flies. Ticks also function as reservoirs [...] Read more.
Lumpy skin disease (LSD) is a re-emerging viral transboundary disease affecting cattle and buffaloes, resulting in a significant socio-economic impact on the affected regions. LSD is primarily transmitted among susceptible livestock through hematophagous vectors, including ticks and flies. Ticks also function as reservoirs for various haemoprotozoan parasites, increasing the likelihood of coinfections in affected animals. This study investigates the comorbidity of LSD and associated risk factors using diverse datasets. A total of 414 samples from LSD-suspected animals were screened for LSD, infectious bovine rhinotracheitis (IBR), malignant catarrhal fever (MCF), babesiosis, and theileriosis (Theileria annulata and Theileria orientalis), as well as anaplasmosis. Among these, 214 (51.6%) tested positive for LSD. A strong correlation was identified between LSD and oriental theileriosis caused by Theileria orientalis (50.9%). Other significant associations were observed with IBR (34.1%), anaplasmosis (24.7%), tropical theileriosis (15.4%), babesiosis (12.6%), and MCF (12.1%). The transmission dynamics of LSD revealed that hematophagous vectors, particularly Stomoxys, Haematobia, and Rhipicephalus, play a crucial role in its spread, especially in unorganised farming systems. Additionally, Haematobia and Stomoxys flies were implicated in the high transmission rate of oriental theileriosis (39%) in conjunction with LSD. Notably, ticks (Rhipicephalus) facilitated the concurrent transmission of one, two, or three infections alongside LSD. While Musca, a non-hematophagous fly, was found to carry LSD virus (LSDV), it did not test positive for other pathogens. This study highlights the potential for cattle to harbour multiple diseases simultaneously with LSD, emphasising the necessity for integrated transmission studies and comprehensive disease screening in affected livestock. These findings underscore the importance of implementing targeted prevention and control strategies to mitigate disease impact in livestock populations. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

13 pages, 2468 KiB  
Article
Role of Recognition MicroRNAs in Hemaphysalis longicornis and Theileria orientalis Interactions
by Jin Luo, Yangchun Tan, Shuaiyang Zhao, Qiaoyun Ren, Guiquan Guan, Jianxun Luo, Hong Yin and Guangyuan Liu
Pathogens 2024, 13(4), 288; https://doi.org/10.3390/pathogens13040288 - 28 Mar 2024
Cited by 4 | Viewed by 1791 | Correction
Abstract
Ticks are an important type of pathogen transmission vector, and pathogens not only cause serious harm to livestock but can also infect humans. Because of the roles that ticks play in disease transmission, reducing tick pathogen infectivity has become increasingly important and requires [...] Read more.
Ticks are an important type of pathogen transmission vector, and pathogens not only cause serious harm to livestock but can also infect humans. Because of the roles that ticks play in disease transmission, reducing tick pathogen infectivity has become increasingly important and requires the identification and characterization of these pathogens and their interaction mechanisms. In this study, we determined the miRNA expression profile of Hemaphysalis longicornis infected with Theileria orientalis, predicted the target genes of miRNAs involved in this infection process, and investigated the role of miRNA target recognition during host–pathogen interactions. The results showed that longipain is a target gene of miR-5309, which was differentially expressed at different developmental stages and in various tissues in the control group. However, the miR-5309 level was reduced in the infection group. Analysis of the interaction between miRNA and the target gene showed that miR-5309 negatively regulated the expression of the longipain protein during the infection of H. longicornis with T. orientalis. To verify this inference, we compared longipain with the blocking agent orientalis. In this study, the expression of longipain was upregulated by the inhibition of miR-5309 in ticks, and the ability of the antibody produced by the tick-derived protein to attenuate T. orientalis infection was verified through animal immunity and antigen–antibody binding tests. The results showed that expression of the longipain + GST fusion protein caused the cattle to produce antibodies that could be successfully captured by ticks, and cellular immunity was subsequently activated in the ticks, resulting in a subtractive effect on T. orientalis infection. This research provides ideas for the control of ticks and tickborne diseases and a research basis for studying the mechanism underlying the interaction between ticks and pathogens. Full article
(This article belongs to the Special Issue Climate Change and Ticks and Tick-Borne Diseases)
Show Figures

Figure 1

7 pages, 436 KiB  
Brief Report
Theileria orientalis Ikeda in Cattle, Alabama, USA
by Nneka Iduu, Subarna Barua, Shollie Falkenberg, Chance Armstrong, Jenna Workman Stockler, Annie Moye, Paul H. Walz and Chengming Wang
Vet. Sci. 2023, 10(11), 638; https://doi.org/10.3390/vetsci10110638 - 30 Oct 2023
Cited by 5 | Viewed by 3363
Abstract
Theileria orientalis Ikeda genotype, a parasite causing a disease in cattle that leads to significant economic challenges in Asia, New Zealand, and Australia, has been identified in seven U.S. States since 2017. Two previously validated PCR tests for Theileria followed by DNA sequencing [...] Read more.
Theileria orientalis Ikeda genotype, a parasite causing a disease in cattle that leads to significant economic challenges in Asia, New Zealand, and Australia, has been identified in seven U.S. States since 2017. Two previously validated PCR tests for Theileria followed by DNA sequencing were performed to test blood samples collected from 219 cattle in Alabama, USA, during the period of 2022–2023. Bidirectional Sanger sequencing revealed that the MPSP gene sequences (639–660 bp) from two cattle in Lee and Mobile Counties of Alabama exhibited a 100% match with those of recognized T. orientalis Ikeda strains, and showed similarities ranging from 76% to 88% with ten other T. orientalis genotypes. A high copy number of T. orientalis Ikeda was detected in the blood of infected cattle (ALP-1: 1.7 × 105 and 1.3 × 106/mL whole blood, six months apart; ALP-2: 7.1 × 106/mL whole blood). Although the confirmed competent vector for T. orientalis Ikeda, Haemaphysalis longicornis tick, has not yet been identified in Alabama, the persistent nature of T. orientalis Ikeda infection and the detection of a high pathogen burden in seemingly healthy cattle in this study suggest that other tick species, as well as shared needles and dehorning procedures, could facilitate pathogen transmission within the herd. Continued investigations are necessary for the surveillance of T. orientalis Ikeda and Haemaphysalis longicornis ticks in Alabama and other U.S. states, along with assessing the pathogenicity of T. orientalis Ikeda infections in cattle. Full article
(This article belongs to the Special Issue Control Strategies of Ticks and Tick-Borne Pathogens)
Show Figures

Figure 1

12 pages, 3880 KiB  
Article
Bovine Piroplasma Populations in the Philippines Characterized Using Targeted Amplicon Deep Sequencing
by Eloiza May Galon, Adrian Miki Macalanda, Tatsuki Sugi, Kyoko Hayashida, Naoko Kawai, Taishi Kidaka, Rochelle Haidee Ybañez, Paul Franck Adjou Moumouni, Aaron Edmond Ringo, Hang Li, Shengwei Ji, Junya Yamagishi, Adrian Ybañez and Xuenan Xuan
Microorganisms 2023, 11(10), 2584; https://doi.org/10.3390/microorganisms11102584 - 18 Oct 2023
Cited by 1 | Viewed by 2125
Abstract
Molecular assays and capillary electrophoresis sequencing have been used to identify parasites in livestock. The low sample capacity, which increases labor and processing time, is one drawback. Targeted amplicon sequencing (Ampliseq) uses the fast and large sample capacity platform to identify parasites in [...] Read more.
Molecular assays and capillary electrophoresis sequencing have been used to identify parasites in livestock. The low sample capacity, which increases labor and processing time, is one drawback. Targeted amplicon sequencing (Ampliseq) uses the fast and large sample capacity platform to identify parasites in the target host, overcoming this limitation. DNA was extracted from 162 whole blood samples collected from cattle in three provinces in the Philippines. Using Illumina’s Miseq platform, the V4 hypervariable region of the piroplasma 18S rRNA gene was amplified and sequenced. The AMPtk pipeline was used to obtain distinct amplicon sequence variants (ASVs) and the NCBI BLAST non-redundant database was used to assign taxonomy. In total, 95 (58.64%) samples were positive for piroplasma. Using the AMPTk pipeline, 2179 ASVs were obtained. A total of 79 distinct ASVs were obtained after clustering and filtering, which belonged to genera Babesia (n = 58), Theileria (n = 17), Hepatozoon (n = 2), and Sarcocystis (n = 2). The ASV top hits were composed of 10 species: Babesia bovis, B. bigemina, Theileria orientalis, Babesia sp., Hepatozoon canis, Sarcocystis cruzi, T. annulata, T. equi, T. mutans, and Theileria sp. Thung Song. The results generated in this study demonstrated the applicability of Ampliseq in detecting piroplasmid parasites infecting cattle in the Philippines. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

14 pages, 995 KiB  
Review
Epidemiology and Transmission of Theileria orientalis in Australasia
by Biniam T. Lakew, Steve Eastwood and Stephen W. Walkden-Brown
Pathogens 2023, 12(10), 1187; https://doi.org/10.3390/pathogens12101187 - 22 Sep 2023
Cited by 17 | Viewed by 3844
Abstract
Oriental theileriosis, a disease primarily impacting cattle is caused by an apicomplexan hemoprotozoan parasite, Theileria orientalis. It has now become established in the Australasia region. The organism was long considered a benign cause of persistent infections; however, an increase in clinical outbreaks [...] Read more.
Oriental theileriosis, a disease primarily impacting cattle is caused by an apicomplexan hemoprotozoan parasite, Theileria orientalis. It has now become established in the Australasia region. The organism was long considered a benign cause of persistent infections; however, an increase in clinical outbreaks since 2006 in the eastern Australian states and New Zealand was associated with the identification of the pathogenic Ikeda (Type 2) and Chitose (Type 1) genotypes. Unlike the pathogenic T. parva and T. annulate, which target leucocytes, clinical manifestation with T. orientalis is due to its effects on erythrocytes, with the infection sometimes designated as Theileria associated bovine anemia (TABA). In Australia and New Zealand, the tick Haemaphysalis longicornis is the principal vector, though other Haemaphysalis species are also likely vectors. The endemic status of infection with pathogenic genotypes in areas with low or absent tick populations is an apparent paradox that may be attributable to alternative modes of transmission, such as mechanical transmission by hematophagous insects (lice, mosquitoes, and biting flies), vertical transmission, and transmission via iatrogenic means. This review addresses the evidence for the different modes of transmission of T. orientalis with particular focus on the reported and potential vectors in Australasia. Full article
(This article belongs to the Special Issue Bovine Theileriosis Caused by the Theileria orientalis Group)
Show Figures

Figure 1

9 pages, 719 KiB  
Article
Dermacentor variabilis Does Not Transstadially Transmit the U.S. Isolate of Theileria orientalis Ikeda: A Controlled Acquisition and Transmission Study
by Cynthia K. Onzere, Amany Hassan, David R. Herndon, Kennan Oyen, Karen C. Poh, Glen A. Scoles and Lindsay M. Fry
Parasitologia 2023, 3(3), 284-292; https://doi.org/10.3390/parasitologia3030029 - 14 Sep 2023
Cited by 2 | Viewed by 1911
Abstract
Theileria orientalis Ikeda, an emerging U.S. bovine hemoparasite, causes anemia, abortion, ill-thrift, and occasionally death. While Haemaphysalis longicornis is the primary vector, it is possible that other U.S. ticks are capable of parasite transmission and may contribute to disease spread. Dermacentor variabilis is [...] Read more.
Theileria orientalis Ikeda, an emerging U.S. bovine hemoparasite, causes anemia, abortion, ill-thrift, and occasionally death. While Haemaphysalis longicornis is the primary vector, it is possible that other U.S. ticks are capable of parasite transmission and may contribute to disease spread. Dermacentor variabilis is highly prevalent in the U.S., exhibits a similar geographical distribution to T. orientalis, and is a competent vector of the related parasite, Theileria equi. Herein, we conducted controlled acquisition and transmission studies using splenectomized calves to assess whether D. variabilis can transstadially transmit T. orientalis. D. variabilis nymphs were applied to an infected, splenectomized calf for parasite acquisition and subsequently incubated to molt into adults. Freshly molted adults were applied to two splenectomized T. orientalis-naïve calves to investigate parasite transmission. Calves were monitored for 59 days, and no evidence of parasite transmission was detected using PCR for the T. orientalis Ikeda major piroplasm surface protein gene, blood smear cytology, complete blood counts, or physical examination. Salivary glands from a subset of D. variabilis adults were assessed for T. orientalis using PCR, and the parasite was not detected. These findings support the conclusion that D. variabilis is not capable of transstadial transmission of the U.S. T. orientalis Ikeda isolate. Full article
Show Figures

Figure 1

11 pages, 648 KiB  
Article
Tick-borne Pathogen Detection and Its Association with Alterations in Packed Cell Volume of Dairy Cattle in Thailand
by Paul Franck Adjou Moumouni, Eloiza May Galon, Maria Agnes Tumwebaze, Benedicto Byamukama, Ruttayaporn Ngasaman, Saruda Tiwananthagorn, Ketsarin Kamyingkird, Tawin Inpankaew and Xuenan Xuan
Animals 2023, 13(18), 2844; https://doi.org/10.3390/ani13182844 - 7 Sep 2023
Cited by 5 | Viewed by 2666
Abstract
Tick-borne diseases (TBDs) massively impact bovine production. In endemic countries, animals are often subclinically infected, showing no signs of the illness. Anemia is a hallmark of TBDs, but there is inadequate information on its presence in infected Thai cattle. In the present study, [...] Read more.
Tick-borne diseases (TBDs) massively impact bovine production. In endemic countries, animals are often subclinically infected, showing no signs of the illness. Anemia is a hallmark of TBDs, but there is inadequate information on its presence in infected Thai cattle. In the present study, 265 cattle from four provinces in Thailand were surveyed to identify tick-borne pathogens (TBPs) and to evaluate the changes in the packed cell volume (PCV) values associated with detection. Microscopy and polymerase chain reaction (PCR) were also compared for TBP detection. Babesia/Theileria/Hepatozoon was detected in 33.58% (89/265) of the cattle samples. Specifically, Babesia bovis (9/265), B. bigemina (12/265), Theileria orientalis (62/265), and Anaplasma marginale (50/265) were identified using species-specific assays. Significant decreases in the mean PCV levels were observed in cattle that were positive for at least one TBP (p < 0.001), Babesia/Theileria/Hepatozoon (p < 0.001), T. orientalis (p < 0.001), and A. marginale (p = 0.049). The results of PCR and microscopy for the detection of TBPs suggested slight and fair agreement between the two detection tools. The present findings contribute to a better understanding of TBDs in the field and shall facilitate the formulation of effective control for TBDs in Thailand. Full article
Show Figures

Figure 1

13 pages, 1829 KiB  
Article
Molecular Detection and Identification of Piroplasm in Cattle from Kathmandu Valley, Nepal
by Medhavi Dhakal, Tulsi Ram Gompo, Prakash Devkota, Sharmila Chapagain Kafle, Janak Raj Subedi, Haiyan Gong, Hiroaki Arima, Richard Culleton, Masahito Asada and Kishor Pandey
Pathogens 2023, 12(8), 1045; https://doi.org/10.3390/pathogens12081045 - 15 Aug 2023
Cited by 2 | Viewed by 3562
Abstract
Background: Tick-borne protozoan parasites (TBPPs) cause significant problems for domestic animals’ health in Nepal. TBPPs are routinely diagnosed by labor-intensive blood smear microscopy. In Nepal, there are some reports of Babesia and Theileria in cattle, although species identification is rarely performed. Therefore, we [...] Read more.
Background: Tick-borne protozoan parasites (TBPPs) cause significant problems for domestic animals’ health in Nepal. TBPPs are routinely diagnosed by labor-intensive blood smear microscopy. In Nepal, there are some reports of Babesia and Theileria in cattle, although species identification is rarely performed. Therefore, we performed conventional nested PCR (nPCR) followed by sequence analysis to identify TBPP species infecting cattle in Nepal. Methods: One hundred and six blood samples were collected from cattle in the Kathmandu Valley. Thin blood smears were prepared for microscopic examination. Parasite DNA was extracted from the blood, and nPCR and sequencing were performed to identify the TBPPs present. Results: Among the 106 samples, 45 (42.5%) were positive for piroplasm (Babesia spp. and Theileria spp.) via microscope observation and 56 (52.8%) samples were positive via nPCR. The obtained PCR products were used for direct sequencing, and we identified the species as B. bigemina, B. bovis, T. annulate and T. orientalis. Phylogenetic analyses showed that the B. bovis, B. bigemina and T. orientalis sequences from this study belonged to each species clade. On the other hand, T. annulate was divided into two clades in the analysis, and our T. annulate sequences were also divided in these two clades. The piroplasm-positive cattle showed lower hemoglobin and red blood cells than healthy cattle. Conclusions: To the best of our knowledge, this study is the first to apply molecular detection and species determination of TBPPs in cattle in Nepal. The results of this study may be used as a starting point for the development of successful TBPP surveillance and prevention programs in Nepal. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

13 pages, 2960 KiB  
Article
Molecular Detection and Phylogenetic Analyses of Babesia spp. and Theileria spp. in Livestock in Bangladesh
by Uday Kumar Mohanta, Boniface Chikufenji, Eloiza May Galon, Shengwei Ji, Zhuowei Ma, Shimaa Abd El-Salam El-Sayed, Aaron Edmond Ringo, Thanh Thom Do and Xuenan Xuan
Microorganisms 2023, 11(6), 1563; https://doi.org/10.3390/microorganisms11061563 - 13 Jun 2023
Cited by 7 | Viewed by 3384
Abstract
Piroplasmosis, caused by Babesia spp. and Theileria spp., poses significant constraints for livestock production and upgradation in Bangladesh. Besides examining blood smears, few molecular reports are available from some selected areas in the country. Therefore, the actual scenario of piroplasmosis in Bangladesh is [...] Read more.
Piroplasmosis, caused by Babesia spp. and Theileria spp., poses significant constraints for livestock production and upgradation in Bangladesh. Besides examining blood smears, few molecular reports are available from some selected areas in the country. Therefore, the actual scenario of piroplasmosis in Bangladesh is deficient. This study aimed to screen the piroplasms in different livestock species by molecular tools. A total of 276 blood samples were collected from cattle (Bos indicus), gayals (Bos frontalis) and goats (Capra hircus) in five geographies of Bangladesh. After that, screening was conducted through a polymerase chain reaction, and species were confirmed by sequencing. The prevalence of Babesia bigemina, B. bovis, B. naoakii, B. ovis, Theileria annulata and T. orientalis was 49.28%, 0.72%, 1.09%, 32.26%, 6.52% and 46.01%, respectively. The highest prevalence (79/109; 72.48%) of co-infections was observed with B. bigemina and T. orientalis. The phylogenetic analyses revealed that the sequences of B. bigemina (BbigRAP-1a), B. bovis (BboSBP-4), B. naoakii (AMA-1), B. ovis (ssu rRNA) and T. annulata (Tams-1) were included in one clade in the respective phylograms. In contrast, T. orientalis (MPSP) sequences were separated into two clades, corresponding to Types 5 and 7. To our knowledge, this is the first molecular report on piroplasms in gayals and goats in Bangladesh. Full article
Show Figures

Figure 1

12 pages, 1186 KiB  
Article
A U.S. Isolate of Theileria orientalis Ikeda Is Not Transstadially Transmitted to Cattle by Rhipicephalus microplus
by Cynthia K. Onzere, David R. Herndon, Amany Hassan, Kennan Oyen, Karen C. Poh, Glen A. Scoles and Lindsay M. Fry
Pathogens 2023, 12(4), 559; https://doi.org/10.3390/pathogens12040559 - 5 Apr 2023
Cited by 8 | Viewed by 3734
Abstract
Theileria orientalis Ikeda has caused an epidemic of bovine anemia and abortion across several U.S. states. This apicomplexan hemoparasite is transmitted by Haemaphysalis longicornis ticks; however, it is unknown if other North American ticks are competent vectors. Since the disease movement is largely [...] Read more.
Theileria orientalis Ikeda has caused an epidemic of bovine anemia and abortion across several U.S. states. This apicomplexan hemoparasite is transmitted by Haemaphysalis longicornis ticks; however, it is unknown if other North American ticks are competent vectors. Since the disease movement is largely determined by the host tick range(s), the prediction of the T. orientalis spread among U.S. cattle populations requires determination of additional competent tick vectors. Although Rhipicephalus microplus has mostly been eradicated from the U.S., outbreaks in populations occur frequently, and the U.S. remains at risk for reintroduction. Since R. microplus is a vector of Theileria equi and T. orientalis DNA has been detected in R. microplus, the goal of this study was to determine whether R. microplus is a competent vector of T. orientalis. Larval R. microplus were applied to a splenectomized, T. orientalis Ikeda-infected calf for parasite acquisition, removed as molted adults, and applied to two T. orientalis naïve, splenectomized calves for transmission. After 60 days, the naïve calves remained negative for T. orientalis by PCR and cytology. Additionally, T. orientalis was not detected in the salivary glands or larval progeny of acquisition-fed adults. These data suggest that R. microplus is not a competent vector of the U.S. T. orientalis Ikeda isolate. Full article
(This article belongs to the Special Issue Ticks & Piroplasms: Updates and Emerging Challenges)
Show Figures

Figure 1

6 pages, 526 KiB  
Article
Molecular Investigation of Theileria and Babesia Species in Domestic Mammals from Sardinia, Italy
by Valentina Chisu, Elisa Serra, Cipriano Foxi, Giovanna Chessa and Giovanna Masala
Vet. Sci. 2023, 10(1), 59; https://doi.org/10.3390/vetsci10010059 - 14 Jan 2023
Cited by 7 | Viewed by 2495
Abstract
Piroplasmoses are tick-borne diseases caused by hemoprotozoan parasites of veterinary and public health significance. This study focuses on the molecular identification and characterization of species belonging to the Theileria/Babesia genera in 152 blood samples, collected from 80 horses and 72 cattle from several [...] Read more.
Piroplasmoses are tick-borne diseases caused by hemoprotozoan parasites of veterinary and public health significance. This study focuses on the molecular identification and characterization of species belonging to the Theileria/Babesia genera in 152 blood samples, collected from 80 horses and 72 cattle from several farms in Sardinia, by targeting the 18S rRNA gene. The PCR results highlighted that 72% of the samples were positive for Theileria/Babesia spp., with a rate of infection of 68% and 75% for the horses and cattle, respectively. Sequencing and the BLASTn analysis showed that the 18S rRNA generated in this study has 99–100% homology with the B. bigemina, T. orientalis/sergenti/buffeli, T. equi and T. annulata strains isolated from different hosts worldwide. These findings improve the knowledge on Babesia and Theileria infections in domestic mammals and confirm the significant prevalence of piroplasmosis among subclinical and carrier animals throughout the island. Furthermore, the presence of T. annulata, reported for the first time in the study area, expands the repertoire of pathogens already detected in Sardinia. Our results gather updates on the diversity and distribution of piroplasms in Sardinia and suggest the need to develop procedures to improve animal and public health safety. Full article
Show Figures

Figure 1

8 pages, 961 KiB  
Article
Detection of Theileria orientalis Genotypes from Cattle in Kyrgyzstan
by Sezayi Ozubek, Mehmet Can Ulucesme, Veli Yılgor Cirak and Munir Aktas
Pathogens 2022, 11(10), 1185; https://doi.org/10.3390/pathogens11101185 - 14 Oct 2022
Cited by 7 | Viewed by 2172
Abstract
The ikeda and chitose genotypes of Theileria orientalis, which for many years were thought to be benign, cause a disease that results in significant economic losses in the cattle industry. This study was carried out in order to determine the genotypes of [...] Read more.
The ikeda and chitose genotypes of Theileria orientalis, which for many years were thought to be benign, cause a disease that results in significant economic losses in the cattle industry. This study was carried out in order to determine the genotypes of T. orientalis in cattle in Kyrgyzstan, and 149 archived DNA samples known to be T. orientalis were analyzed by the PCR amplification of the major piroplasm surface protein (MPSP) gene region. Single-Strand Conformation Polymorphism (SSCP) analysis was performed to uncover the nucleotide changes in the archived DNA samples, and 15 samples showing different band profiles were subjected to sequence analysis. As a result of the sequence analysis, it was seen that the samples belonged to the buffeli and chitose A genotypes. In order to identify mixed genotypes, PCR was performed using primers specific for these genotypes, and buffeli (type 3), chitose (type 1) and buffeli+chitose were found to be positive in 26.2%, 2% and 71.8% of samples, respectively. As a result of this study, we showed the presence of buffeli (type 3) and chitose (type 1) genotypes of T. orientalis in cattle in Kyrgyzstan. Comprehensive epidemiological studies are needed to understand the clinical infections caused by the pathogenic chitose A and to determine the geographical distribution and different genotypes of T. orientalis. Full article
(This article belongs to the Special Issue Bovine Theileriosis Caused by the Theileria orientalis Group)
Show Figures

Figure 1

15 pages, 996 KiB  
Article
Characterisation of the Theileria orientalis Piroplasm Proteome across Three Common Genotypes
by Cheryl Jenkins, Melinda L. Micallef, Matthew P. Padula and Daniel R. Bogema
Pathogens 2022, 11(10), 1135; https://doi.org/10.3390/pathogens11101135 - 30 Sep 2022
Cited by 3 | Viewed by 2731
Abstract
Theileria orientalis is an emerging apicomplexan pathogen of cattle occurring in areas populated by the principal vector tick, Haemaphysalis longicornis. Unlike transforming Theileria spp. that induce cancer-like proliferation of lymphocytes via their schizont stage, T. orientalis destroys host erythrocytes during its piroplasm [...] Read more.
Theileria orientalis is an emerging apicomplexan pathogen of cattle occurring in areas populated by the principal vector tick, Haemaphysalis longicornis. Unlike transforming Theileria spp. that induce cancer-like proliferation of lymphocytes via their schizont stage, T. orientalis destroys host erythrocytes during its piroplasm phase resulting in anaemia. The underlying pathogenic processes of T. orientalis infection are poorly understood; consequently, there are no vaccines for prevention of T. orientalis infection and chemotherapeutic options are limited. To identify antigens expressed during the piroplasm phase of T. orientalis, including those which may be useful targets for future therapeutic development, we examined the proteome across three common genotypes of the parasite (Ikeda, Chitose and Buffeli) using preparations of piroplasms purified from bovine blood. A combination of Triton X-114 extraction, one-dimensional electrophoresis and LC-MS/MS identified a total of 1113 proteins across all genotypes, with less than 3% of these representing host-derived proteins. Just over three quarters of T. orientalis proteins (78%) identified were from the aqueous phase of the TX-114 extraction representing cytosolic proteins, with the remaining 22% from the detergent phase, representing membrane-associated proteins. All enzymes involved in glycolysis were expressed, suggesting that this is the major metabolic pathway used during the T. orientalis piroplasm phase. Proteins involved in binding and breakdown of haemoglobin were also identified, suggesting that T. orientalis uses haemoglobin as a source of amino acids. A number of proteins involved in host cell interaction were also identified which may be suitable targets for the development of chemotherapeutics or vaccines. Full article
(This article belongs to the Special Issue Bovine Theileriosis Caused by the Theileria orientalis Group)
Show Figures

Figure 1

16 pages, 2866 KiB  
Article
Complete Genomes of Theileria orientalis Chitose and Buffeli Genotypes Reveal within Species Translocations and Differences in ABC Transporter Content
by Jerald Yam, Daniel R. Bogema, Melinda L. Micallef, Steven P. Djordjevic and Cheryl Jenkins
Pathogens 2022, 11(7), 801; https://doi.org/10.3390/pathogens11070801 - 15 Jul 2022
Cited by 5 | Viewed by 3138
Abstract
Theileria orientalis causes losses to cattle producers in Eastern Asia, Oceania and, more recently, North America. One pathogenic genotype (Ikeda) has been sequenced to the chromosomal level, while only draft genomes exist for globally distributed Chitose and Buffeli genotypes. To provide an accurate [...] Read more.
Theileria orientalis causes losses to cattle producers in Eastern Asia, Oceania and, more recently, North America. One pathogenic genotype (Ikeda) has been sequenced to the chromosomal level, while only draft genomes exist for globally distributed Chitose and Buffeli genotypes. To provide an accurate comparative gene-level analysis and help further understand their pathogenicity, we sequenced isolates of the Chitose and Buffeli genotypes of T. orientalis using long-read sequencing technology. A combination of several long-read assembly methods and short reads produced chromosomal-level assemblies for both Fish Creek (Chitose) and Goon Nure (Buffeli) isolates, including the first complete and circular apicoplast genomes generated for T. orientalis. Comparison with the Shintoku (Ikeda) reference sequence showed both large and small translocations in T. orientalis Buffeli, between chromosomes 2 and 3 and chromosomes 1 and 4, respectively. Ortholog clustering showed expansion of ABC transporter genes in Chitose and Buffeli. However, differences in several genes of unknown function, including DUF529/FAINT-domain-containing proteins, were also identified and these genes were more prevalent in Ikeda and Chitose genotypes. Phylogenetics and similarity measures were consistent with previous short-read genomic analysis. The generation of chromosomal sequences for these highly prevalent T. orientalis genotypes will also support future studies of population genetics and mixed genotype infections. Full article
(This article belongs to the Special Issue Bovine Theileriosis Caused by the Theileria orientalis Group)
Show Figures

Figure 1

12 pages, 5942 KiB  
Article
Molecular Detection and Genetic Diversity of Tick-Borne Pathogens in Goats from the Southern Part of Thailand
by Ruenruetai Udonsom, Aongart Mahittikorn and Charoonluk Jirapattharasate
Pathogens 2022, 11(4), 477; https://doi.org/10.3390/pathogens11040477 - 15 Apr 2022
Cited by 13 | Viewed by 3306
Abstract
Tick-borne hemoprotozoan and rickettsial diseases affect the health and productivity of small ruminants in tropical and subtropical regions. Despite the large population of goats in the southern part of Thailand, there is limited information on the prevalence of tick-borne pathogens. In this study, [...] Read more.
Tick-borne hemoprotozoan and rickettsial diseases affect the health and productivity of small ruminants in tropical and subtropical regions. Despite the large population of goats in the southern part of Thailand, there is limited information on the prevalence of tick-borne pathogens. In this study, polymerase chain reaction was used to detect the presence of Theileria spp., T. ovis, T. orientalis, Babesia ovis, Anaplasma ovis, and A. marginale in 262 goats from three provinces in the southern part of Thailand. In this investigation, Theileria spp. and A. ovis were detected while T. ovis, B. ovis, and A. marginale were not detected. Overall infection rates of Theileria spp. and A. ovis were 10.3% and 1.5%, respectively. The co-infections of two parasites was observed in 1.5% of goats. Sequence analysis showed the presence of T. luwenshuni and T. orientalis in the goat samples. This study is the first to use the molecular detection of T. orientalis in Thai goats, and presents genetic characterization using the major piroplasm surface protein (MPSP) gene. In the phylogenetic analysis, the T. orientalis MPSP sequence was classified as type 7. The A. ovis major surface protein 4 (MSP4) gene sequences shared high identities and similarity with each other and clustered with isolates from other regions. This study provides information about the prevalence and genetic diversity of tick-borne pathogens in goats in the study area, and is expected to be valuable for the development of effective control measures to prevent disease in animals in Thailand. Full article
Show Figures

Figure 1

Back to TopTop