Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Terminalia sericea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1912 KB  
Article
Effects of Soil Properties on the Distribution of Woody Plants in Communally Managed Rangelands in Ngaka Modiri Molema District, North-West Province, South Africa
by Makuété A. P. Tiawoun, Pieter W. Malan and Alvino A. Comole
Ecologies 2022, 3(3), 361-375; https://doi.org/10.3390/ecologies3030027 - 1 Sep 2022
Cited by 4 | Viewed by 2906
Abstract
Soil properties are important drivers of species distribution and community structure in grassland. This study was undertaken to assess the influence of soil properties on woody plant distribution around six selected communally managed rangelands in the District. At each communal rangeland, a total [...] Read more.
Soil properties are important drivers of species distribution and community structure in grassland. This study was undertaken to assess the influence of soil properties on woody plant distribution around six selected communally managed rangelands in the District. At each communal rangeland, a total of 25 plots of 20 × 20 m were surveyed to record the density, frequency, and composition of woody species. Soil samples were collected for thirteen soil variables. A Tukey HSD (Tukey’s honestly significant difference) post hoc test was used to compare soil properties and canonical correspondence analysis (CCA) to relate the soil properties to the woody species distribution. The study recorded a total of 17 woody species in 9 families. Fabaceae was the most dominant family, and Senegalia mellifera was the most abundant and frequent encroaching species. Most of the species were native, whereas Prosopis velutina was the only invasive alien species recorded. Senegalia mellifera, P. velutina, and Terminalia sericea were considered the most encroaching in the study sites, with densities exceeding 2000 TE ha-1 (i.e., tree equivalent). CCA results exhibited the strong effect of soil variables on the distribution of woody plant species. CCA ordination analyses showed that K was the most influential soil variable on woody species distributions, followed by Mg, CEC, Na, pH, sand, clay and silt. In terms of woody distribution, the CCA diagram showed similarities between Disaneng, Logageng and Tshidilamolomo. This study provides baseline information on woody species diversity for future management of this ecosystem. Full article
Show Figures

Figure 1

15 pages, 315 KB  
Article
Effect of Soil Type: Qualitative and Quantitative Analysis of Phytochemicals in Some Browse Species Leaves Found in Savannah Biome of South Africa
by Humbelani Silas Mudau, Hilda Kwena Mokoboki, Khuliso Emmanuel Ravhuhali and Zimbili Mkhize
Molecules 2022, 27(5), 1462; https://doi.org/10.3390/molecules27051462 - 22 Feb 2022
Cited by 27 | Viewed by 3712
Abstract
In semi-arid regions, browse plant species are used as feed and for medicinal purposes for both animals and humans. The limitation of the utilization of these species to medicinal purposes or as feed for livestock is a lack of knowledge on the concentration [...] Read more.
In semi-arid regions, browse plant species are used as feed and for medicinal purposes for both animals and humans. The limitation of the utilization of these species to medicinal purposes or as feed for livestock is a lack of knowledge on the concentration level of phytochemicals and other bioactive compounds found in these plants. The study sought to assay the qualitative and quantitative bioactive constituents of some browse species found in the savannah biome of South Africa, viz. Adansonia digitate, Androstachys johnsonii, Balanites maughamii, Berchemia discolor, Berchemia zeyheri, Bridelia mollis hutch, Carissa edulis, Catha edulis, Colophospermum mopane, Combretum Imberbe, Combretum molle, Combretum collinum, Dalbergia melanoxylon, Dichrostachys cinerea, Diospros lycioides, Diospyros mespiliformis, Euclea divinorum, Flueggea virosa, Grewia flava, Grewia flavescens, Grewia monticola, Grewia occidentalis, Melia azedarach, Peltophorum africanum, Prosopis velutina, Pseudolachnostylis maprouneifolia, Pterocarpus rotundifolius, Schinus molle, Schotia brachypetala, Sclerocarya birrea, Searsia lancea, Searsia leptodictya, Searsia pyroides, Senegalia caffra, Senegalia galpinii, Senegalia mellifera, Senegalia nigrescens, Senegalia polyacantha, Strychnos madagascariensis, Terminalia sericea, Trichilia emetic, Vachellia erioloba, Vachellia hebeclada, Vachellia karroo, Vachellia nilotica, Vachellia nilotica subsp. Kraussiana, Vachellia rechmanniana, Vachellia robusta, Vachellia tortilis, Vachellia tortilis subsp. raddiana, Vangueria infausta, and Ziziphus mucronata. These browse species’ leaf samples were harvested from two provinces (Limpopo and North-West) of South Africa. The Limpopo province soil type was Glenrosa, Mispah, and Lithosols (GM-L), and the soil types in the North-West Province were Aeolian Kalahari Sand, Clovelly, and Hutton (AKS-CH). The harvested browse samples were air dried at room temperature for about seven days and ground for analysis. The methanol and distilled water extracts of the browse species leaves showed the presence of common phytoconstituents, including saponins, flavonoids, tannins, phenols, cardio glycosides, terpenoids, and phlobatannins, as major active compounds in browse species leaves. In the quantitative analysis, phytochemical compounds, such as soluble phenols, insoluble tannins, and condensed tannins, were quantified for common species found in both sites. Two-way ANOVA and multivariate analysis were used to test soil type and species effect on soluble phenols, insoluble tannins, and condensed tannins of woody species. Dichrostachys cinerea (0.1011% DM) in GM-L soil type and Z. mucronata (0.1009% DM) in AKS-CH soil type showed the highest (p < 0.05) concentration of soluble phenols. In AKS-CH soil type, D. cinerea (0.0453% DM) had the highest insoluble tannins concentration, while V. hebeclada had the lowest (0.0064% DM) insoluble tannins content. Vacchelia hebeclada had lower (p < 0.05) condensed tannins concentration levels than all other browse plants in both soil types. Under multivariate analysis tests, there was a significant effect (p < 0.001) of soil type, species, and soil type x species interaction on soluble phenols, insoluble tannins, and condensed tannins of woody species. In this study, most of the woody species found in GM-L soil type showed a lower amount of tannins than those harvested in AKS-CH soil type. There is a need to identify the amount of unquantified phytochemicals contained in these browse species and valorize the high-bioactive-compound browse species to enhance and maximize browsing of these browse species for animal production. Full article
49 pages, 1676 KB  
Review
A Review of Ethnoveterinary Knowledge, Biological Activities and Secondary Metabolites of Medicinal Woody Plants Used for Managing Animal Health in South Africa
by Kelebogile Martha Selogatwe, John Awungnjia Asong, Madeleen Struwig, Rendani Victress Ndou and Adeyemi Oladapo Aremu
Vet. Sci. 2021, 8(10), 228; https://doi.org/10.3390/vetsci8100228 - 12 Oct 2021
Cited by 20 | Viewed by 7942
Abstract
Globally, the use of ethnoveterinary medicine as remedies for animal health among different ethnic groups justify the need for a systematic exploration to enhance their potential. In addition, the increasing popularity and utilisation of woody plants remain common in traditional medicine, which may [...] Read more.
Globally, the use of ethnoveterinary medicine as remedies for animal health among different ethnic groups justify the need for a systematic exploration to enhance their potential. In addition, the increasing popularity and utilisation of woody plants remain common in traditional medicine, which may be attributed to their inherent benefits. The current review was aimed at analysing ethnoveterinary surveys, biological activities, and secondary metabolites/phytochemical profiles of the woody plants of South Africa. Eligible literature (period: 2000 to 2020) were retrieved from different databases such as Google Scholar, PubMed, Sabinet, and Science Direct. Based on the inclusion and exclusion criteria, 20 ethnoveterinary surveys were eligible and were subjected to further analysis. We identified 104 woody plant species from 44 plant families that are used in the treatment of different diseases in animals, particularly cattle (70%) and goats (20%). The most mentioned (with six citations) woody plants were Terminalia sericea Burch. ex DC and Ziziphus mucronata Willd., which were followed by plants with five (Cussonia spicata Thunb., Pterocarpus angolensis DC and Vachellia karroo (Hayne) Banfi & Galasso) or four (Acokanthera oppositifolia (Lam.) Codd, Cassia abbreviata Oliv., and Strychnos henningsii Gilg) individual mentions. The most dominant families were Fabaceae (19%), Apocynaceae (5.8%), Rubiaceae (5.8%), Anacardiaceae (4.8%), Combretaceae (4.8%), Euphorbiaceae (4.8%), Malvaceae (4.8%), Rhamnaceae (4.8%), and Celastraceae (3.8%). Bark (33%), leaves (29%), and roots (19%) were the plant parts dominantly used to prepare remedies for ethnoveterinary medicine. An estimated 20% of woody plants have been screened for antimicrobial, anthelmintic, antioxidant, and cytotoxicity effects. Phytochemical profiles established a rich pool of valuable secondary metabolites (phenolic, flavonoids and condensed tannins) that may be responsible for the exerted biological activities. Overall, the significant portion of woody plants lacking empirical evidence on their biological effects indicates a major knowledge gap that requires more research efforts. Full article
(This article belongs to the Special Issue Frontiers of Herbal Medicine and Acupuncture in Veterinary Medicine)
Show Figures

Figure 1

14 pages, 2246 KB  
Article
Phytochemical Profiling and Quality Control of Terminalia sericea Burch. ex DC. Using HPTLC Metabolomics
by Nduvho Mulaudzi, Chinedu P. Anokwuru, Sidonie Y. Tankeu, Sandra Combrinck, Weiyang Chen, Ilze Vermaak and Alvaro M Viljoen
Molecules 2021, 26(2), 432; https://doi.org/10.3390/molecules26020432 - 15 Jan 2021
Cited by 10 | Viewed by 4019
Abstract
Terminalia sericea is used throughout Africa for the treatment of a variety of conditions and has been identified as a potential commercial plant. The study was aimed at establishing a high-performance thin layer chromatography (HPTLC) chemical fingerprint for T. sericea root bark as [...] Read more.
Terminalia sericea is used throughout Africa for the treatment of a variety of conditions and has been identified as a potential commercial plant. The study was aimed at establishing a high-performance thin layer chromatography (HPTLC) chemical fingerprint for T. sericea root bark as a reference for quality control and exploring chemical variation within the species using HPTLC metabo3lomics. Forty-two root bark samples were collected from ten populations in South Africa and extracted with dichloromethane: methanol (1:1). An HPTLC method was optimized to resolve the major compounds from other sample components. Dichloromethane: ethyl acetate: methanol: formic acid (90:10:30:1) was used as the developing solvent and the plates were visualized using 10% sulfuric acid in methanol as derivatizing agent. The concentrations of three major bioactive compounds, sericic acid, sericoside and resveratrol-3-O-β-rutinoside, in the extracts were determined using a validated ultra-performance liquid chromatography-photodiode array (UPLC-PDA) detection method. The rTLC software (written in the R-programming language) was used to select the most informative retardation factor (Rf) ranges from the images of the analysed sample extracts. Further chemometric models, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were constructed using the web-based high throughput metabolomic software. The rTLC chemometric models were compared with the models previously obtained from ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). A characteristic fingerprint containing clear bands for the three bioactive compounds was established. All three bioactive compounds were present in all the samples, although their corresponding band intensities varied. The intensities correlated with the UPLC-PDA results, in that samples containing a high concentration of a particular compound, displayed a more intense band. Chemometric analysis using HCA revealed two chemotypes, and the subsequent construction of a loadings plot indicated that sericic acid and sericoside were responsible for the chemotypic variation; with sericoside concentrated in Chemotype 1, while sericic acid was more abundant in Chemotype 2. A characteristic chemical fingerprint with clearly distinguishable features was established for T. sericea root bark that can be used for species authentication, and to select samples with high concentrations of a particular marker compound(s). Different chemotypes, potentially differing in their therapeutic potency towards a particular target, could be distinguished. The models revealed the three analytes as biomarkers, corresponding to results reported for UPLC-MS profiling and thereby indicating that HPTLC is a suitable technique for the quality control of T. sericea root bark. Full article
(This article belongs to the Special Issue Chemometrics Tools Used in Analytical Chemistry)
Show Figures

Figure 1

12 pages, 2853 KB  
Article
Nutrient Release Dynamics Associated with Native and Invasive Leaf Litter Decomposition: A Mesocosm Experiment
by Thendo Mutshekwa, Ross N. Cuthbert, Ryan J. Wasserman, Florence M. Murungweni and Tatenda Dalu
Water 2020, 12(9), 2350; https://doi.org/10.3390/w12092350 - 21 Aug 2020
Cited by 12 | Viewed by 3886
Abstract
Leaf litter contributes to the functioning of aquatic ecosystems through allochthonous inputs of carbon, nitrogen, and other elements. Here, we examine leaf litter nutrient inputs and decomposition associated with four plant species using a mesocosm approach. Native sycamore fig Ficus sycomorus L., and [...] Read more.
Leaf litter contributes to the functioning of aquatic ecosystems through allochthonous inputs of carbon, nitrogen, and other elements. Here, we examine leaf litter nutrient inputs and decomposition associated with four plant species using a mesocosm approach. Native sycamore fig Ficus sycomorus L., and silver cluster–leaf Terminalia sericea Burch. ex DC. decomposition dynamics were compared to invasive tickberry Lantana camara L. and guava Psidium guajava L., whereby phosphate, nitrate, nitrite, silicate, and ammonium releases were quantified over time. Leaf inputs significantly reduced pH, with reductions most marked by invasive L. camara. Conductivity was heightened by all leaf input treatments, except native T. sericea. Leaf inputs significantly affected all nutrient levels monitored in the water over time, except for silicate. In particular, leaf litter from invasive L. camara drove significantly increased nutrient concentrations compared to other native plant species, whilst effects of invasive P. guajava were less statistically clear. The end weights of the leaf litter demonstrated decomposition differences among the species types, following a decreasing order of P. guajava > T. sericea > F. sycomorus > L. camara, further suggesting high organic inputs from invasive L. camara. The study results highlight that differential leaf litter decomposition rates of four plant species can play a significant role in nutrient release, in turn altering aquatic ecosystem productivity. However, these effects likely depend on species-specific differences, rather than between invasive–native species generally. Shifting terrestrial plant communities may alter aquatic community composition, but specific effects are likely associated with leaf traits. Full article
Show Figures

Figure 1

18 pages, 3444 KB  
Article
Unravelling the Antibacterial Activity of Terminalia sericea Root Bark through a Metabolomic Approach
by Chinedu P Anokwuru, Sidonie Tankeu, Sandy van Vuuren, Alvaro Viljoen, Isaiah D. I Ramaite, Orazio Taglialatela-Scafati and Sandra Combrinck
Molecules 2020, 25(16), 3683; https://doi.org/10.3390/molecules25163683 - 13 Aug 2020
Cited by 21 | Viewed by 4861
Abstract
Terminalia sericea Burch. ex. DC. (Combretaceae) is a popular remedy for the treatment of infectious diseases. It is widely prescribed by traditional healers and sold at informal markets and may be a good candidate for commercialisation. For this to be realised, a thorough [...] Read more.
Terminalia sericea Burch. ex. DC. (Combretaceae) is a popular remedy for the treatment of infectious diseases. It is widely prescribed by traditional healers and sold at informal markets and may be a good candidate for commercialisation. For this to be realised, a thorough phytochemical and bioactivity profile is required to identify constituents that may be associated with the antibacterial activity and hence the quality of raw materials and consumer products. The aim of this study was to explore the phytochemistry and identify the antibacterial constituents of T. sericea root bark, using a metabolomic approach. The chemical profiles and antibacterial activities of 42 root bark samples collected from three districts in the Limpopo Province, South Africa, were evaluated. Dichloromethane:methanol (1:1) extracts were analysed using ultraperformance liquid chromatography (UPLC)-mass spectrometry (MS), and chemometric models were constructed from the aligned data. The extracts were tested against Bacillus cereus (ATCC 11778), Staphylococcus epidermidis (ATCC 12223), Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 8739), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 27853), Shigella sonnei (ATCC 9292) and Salmonella typhimurium (ATCC 14028), using the minimum inhibition microdilution assay. Nine compounds; sericic acid, sericoside, resveratrol-3-O-β-rutinoside, ellagic acid, flavogallonic acid dilactone, methyl-flavogallonate, quercetin-3-(2′′-galloylrhamnoside), resveratrol-3-(6′′-galloyl)-O-β-d-glucopyranoside and arjunetin, were isolated from the root bark. All the compounds, with the exception of sericic acid, sericoside and resveratrol-3-O-β-rutinoside, were isolated for the first time from the root bark of T. sericea. Chemometric analysis revealed clustering that was not population specific, and the presence of three groupings within the samples, characterised by sericic acid, sericoside and an unidentified compound (m/z 682/4.66 min), respectively. The crude extracts from different populations displayed varied antibacterial activities against S. typhimurium (minimum inhibitory concentrations (MICs) 0.25–1.0 mg/mL), but similar activity towards Bacillus cereus (1.0 mg/mL). Several compounds present in the root bark were highly active towards all or most of the pathogens tested, but this activity was not reflected by the chemical profiles of extracts prepared from the individual samples. Among the pure compounds tested, only flavogallonic acid dilactone and methyl-flavogallonate exhibited broad-spectrum activity. A biochemometric analysis indicated that there was no consistent association between the levels of phytochemicals and the activity of the active or non-active extracts. Although it was deduced that the major constituents of T. sericea root bark contributed to the chemotypic variation, further investigation of the interactions of compounds present in the root bark may provide antibacterial efficacies not evident when examining compounds singularly. The data reported herein will provide information that is fundamentally important for the development of quality control protocols. Full article
(This article belongs to the Special Issue Natural Product-Inspired Molecules: From Weed to Remedy)
Show Figures

Graphical abstract

17 pages, 3323 KB  
Article
Antioxidant Activity and Spectroscopic Characteristics of Extractable and Non-Extractable Phenolics from Terminalia sericea Burch. ex DC.
by Chinedu Anokwuru, Muendi Sigidi, Marlaine Boukandou, Peter Tshisikhawe, Afsatou Traore and Natasha Potgieter
Molecules 2018, 23(6), 1303; https://doi.org/10.3390/molecules23061303 - 29 May 2018
Cited by 25 | Viewed by 5296
Abstract
The aim of this study was to determine the antioxidant activity of the extractable and non-extractable phenolics of Terminalia. Sericea Burch. Ex DC. Free, ester bound, ether or glycoside bound and insoluble phenolics were extracted from the fruit, leaves, stem, and root samples. [...] Read more.
The aim of this study was to determine the antioxidant activity of the extractable and non-extractable phenolics of Terminalia. Sericea Burch. Ex DC. Free, ester bound, ether or glycoside bound and insoluble phenolics were extracted from the fruit, leaves, stem, and root samples. Follin Ciocalteu was used to estimate the phenolic content while DPPH (2,2-diphenyl-1-picrylhydrazyl) assay was used to determine the antioxidant activity. The data obtained were subjected to multivariate analysis for relationships. The result indicated that the highest average total phenolic contents and antioxidant activities were found in the free (14.8 mgGAE/g; IC50 6.8 μg/mL) and ester bound (15.1 mgGAE/g; IC50 6.4 μg/mL) extractable phenolics. There was a strong negative correlation between TPC and DPPH (r = −0.828). Agglomerative hierarchical clustering revealed three clusters. Cluster one contained the insoluble and glycoside phenolics while cluster 2 contained only free phenolic acid of the root. The third cluster was predominantly free and ester bound phenolic extracts. The principal component analysis score plot indicated two major clusters with factor 1 (F1) explaining 61% of the variation. The nuclear magnetic resonance spectroscopy spectra indicated that gallic acid and resveratrol are the major phenolic compounds present in the root. This study has demonstrated that extractable phenolics contributed more to the antioxidant activities compared to the non-extractables. Full article
(This article belongs to the Special Issue Extractable and Non-Extractable Antioxidants)
Show Figures

Figure 1

Back to TopTop