Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = Taxol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8171 KiB  
Article
Improving the Treatment of Brain Gliomas Through Small-Particle-Size Paclitaxel-Loaded Micelles with a High Safety Profile
by Bohan Chen, Liming Gong, Jing Feng, MongHsiu Song, Mingji Jin, Liqing Chen, Zhonggao Gao and Wei Huang
Pharmaceutics 2025, 17(8), 965; https://doi.org/10.3390/pharmaceutics17080965 - 25 Jul 2025
Viewed by 290
Abstract
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of [...] Read more.
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of this study was to develop a Solutol HS-15-based micellar nanoparticle (PSM) to enhance the brain glioma targeting of PTX and reduce toxicity. Methods: PSMs were prepared by solvent injection and characterised for particle size, encapsulation rate, haemolysis rate and in vitro release properties. A C6 in situ glioma mouse model was used to assess the brain targeting and anti-tumour effects of the PSM by in vivo imaging, tissue homogenate fluorescence analysis and bioluminescence monitoring. Meanwhile, its safety was evaluated by weight monitoring, serum biochemical indexes and histopathological analysis. Results: The particle size of PSMs was 13.45 ± 0.70 nm, with an encapsulation rate of 96.39%, and it demonstrated excellent cellular uptake. In tumour-bearing mice, PSMs significantly enhanced brain tumour targeting with a brain drug concentration 5.94 times higher than that of free PTX. Compared with Taxol, PSMs significantly inhibited tumour growth (terminal luminescence intensity <1 × 106 p/s/cm2/Sr) and did not cause significant liver or kidney toxicity or body weight loss. Conclusions: PSMs achieve an efficient accumulation of brain gliomas through passive targeting and EPR effects while significantly reducing the systemic toxicity of PTX. Its simple preparation process and excellent therapeutic efficacy support its use as a potential clinically translational candidate for glioma treatment. Full article
Show Figures

Figure 1

17 pages, 7372 KiB  
Article
A Novel HDAC6 Inhibitor Enhances the Efficacy of Paclitaxel Against Ovarian Cancer Cells
by An-Jui Chi, Jui-Ling Hsu, Yun-Xin Xiao, Ji-Wang Chern, Jih-Hwa Guh, Chao-Wu Yu and Lih-Ching Hsu
Molecules 2025, 30(13), 2793; https://doi.org/10.3390/molecules30132793 - 28 Jun 2025
Viewed by 448
Abstract
Ovarian cancer cells overexpress HDAC6, and selective HDAC6 inhibitors have been considered potential new drugs for ovarian cancer either alone or in combination with other anticancer agents. We screened 46 potential novel HDAC6 inhibitors in ES-2 ovarian cancer cells and showed that compound [...] Read more.
Ovarian cancer cells overexpress HDAC6, and selective HDAC6 inhibitors have been considered potential new drugs for ovarian cancer either alone or in combination with other anticancer agents. We screened 46 potential novel HDAC6 inhibitors in ES-2 ovarian cancer cells and showed that compound 25253 demonstrated the most potent anti-proliferative activity and effective synergy with paclitaxel, which was also validated in TOV21G ovarian cancer cells. The combination of 25253 and paclitaxel significantly induced subG1 and apoptotic cells, revealed by PI staining assay and Annexin V-FITC/PI double staining assay, respectively. Western blot analysis showed downregulation of Bcl-2 and Bcl-XL, and upregulation of Bax and Bak, indicating that apoptosis was mediated through the intrinsic pathway. The combination increased γ-H2AX and p-p53 protein levels, suggesting the induction of DNA damage. Furthermore, HDAC6 was downregulated and acetylated α-tubulin was profoundly increased. Compound 25253 enhanced the inhibitory effect of paclitaxel on cell migration and invasion, possibly due to the extensive accumulation of acetylated α-tubulin, which affected microtubule dynamics. Taken together, the combination of 25253 and paclitaxel synergistically inhibited the growth, migration, and invasion of ovarian cancer cells and induced apoptosis, providing supporting evidence that the combination of HDAC6 inhibitors and paclitaxel may be a promising treatment strategy for ovarian cancer. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Graphical abstract

16 pages, 4518 KiB  
Article
Transcriptome and Metabolome Analyses of Taxus chinensis var. mairei Tissues Provide New Insights into the Regulation of Paclitaxel Biosynthesis
by Luyuan Jiang, Yanyan Li, Xiaoyang Jiang, Fenjuan Shao, Wenli Wu, Fan Xu, Iain Wilson, Angela Hoffman, Yanfang Yang and Deyou Qiu
Plants 2025, 14(12), 1775; https://doi.org/10.3390/plants14121775 - 10 Jun 2025
Viewed by 494
Abstract
Taxus is the natural source of the anticancer drug paclitaxel. Although significant progress has been made in elucidating the biosynthetic pathway of paclitaxel, its tissue-specific accumulation and associated regulatory networks in Taxus remains unclear. In this study, we conducted integrated transcriptomic and metabolomic [...] Read more.
Taxus is the natural source of the anticancer drug paclitaxel. Although significant progress has been made in elucidating the biosynthetic pathway of paclitaxel, its tissue-specific accumulation and associated regulatory networks in Taxus remains unclear. In this study, we conducted integrated transcriptomic and metabolomic analyses of the root, leaf, shoot, bark, and wood of Taxus chinensis var. mairei to investigate the tissue-specific biosynthesis and accumulation of paclitaxel. We found that paclitaxel, 10-deacetylbaccatin III, and several taxoids were significantly enriched in the leaf, bark, and shoot, while paclitaxel derivatives, such as taxayunnansin A and taxol B, accumulated primarily in the root. Most genes involved in paclitaxel biosynthesis showed the highest expression in the root and the lowest in the wood. Using weighted gene co-expression network analysis (WGCNA), we identified several candidate transcription factors potentially regulating paclitaxel biosynthesis. Further validation using yeast one-hybrid (Y1H) and dual-luciferase reporter assays confirmed that ERF68 activates the expression of taxane-2α-hydroxylase (T2H) gene, a key gene in the paclitaxel biosynthesis pathway. Collectively, our finding provides crucial insights into the transcriptional regulation of paclitaxel biosynthesis in Taxus. Full article
(This article belongs to the Special Issue Transcriptome Analysis and Marker Development in Plants)
Show Figures

Figure 1

25 pages, 962 KiB  
Review
Xeno-Fungusphere: Fungal-Enhanced Microbial Fuel Cells for Agricultural Remediation with a Focus on Medicinal Plants
by Da-Cheng Hao, Xuanqi Li, Yaoxuan Wang, Jie Li, Chengxun Li and Peigen Xiao
Agronomy 2025, 15(6), 1392; https://doi.org/10.3390/agronomy15061392 - 5 Jun 2025
Viewed by 876
Abstract
The xeno-fungusphere, a novel microbial ecosystem formed by integrating exogenous fungi, indigenous soil microbiota, and electroactive microorganisms within microbial fuel cells (MFCs), offers a transformative approach for agricultural remediation and medicinal plant conservation. By leveraging fungal enzymatic versatility (e.g., laccases, cytochrome P450s) and [...] Read more.
The xeno-fungusphere, a novel microbial ecosystem formed by integrating exogenous fungi, indigenous soil microbiota, and electroactive microorganisms within microbial fuel cells (MFCs), offers a transformative approach for agricultural remediation and medicinal plant conservation. By leveraging fungal enzymatic versatility (e.g., laccases, cytochrome P450s) and conductive hyphae, this system achieves dual benefits. First, it enables efficient degradation of recalcitrant agrochemicals, such as haloxyfop-P, with a removal efficiency of 97.9% (vs. 72.4% by fungi alone) and a 27.6% reduction in activation energy. This is driven by a bioelectric field (0.2–0.5 V/cm), which enhances enzymatic activity and accelerates electron transfer. Second, it generates bioelectricity, up to 9.3 μW/cm2, demonstrating real-world applicability. In medicinal plant soils, xeno-fungusphere MFCs restore soil health by stabilizing the pH, enriching dehydrogenase activity, and promoting nutrient cycling, thereby mitigating agrochemical-induced inhibition of secondary metabolite synthesis (e.g., ginsenosides, taxol). Field trials show 97.9% herbicide removal in 60 days, outperforming conventional methods. Innovations, such as adaptive electrodes, engineered strains, and phytoremediation-integrated systems, have been used to address soil and fungal limitations. This technology bridges sustainable agriculture and bioenergy recovery, offering the dual benefits of soil detoxification and enhanced crop quality. Future IoT-enabled monitoring and circular economy integration promise scalable, precision-based applications for global agroecological resilience. Full article
Show Figures

Figure 1

13 pages, 1547 KiB  
Review
The Persistent Power of the Taxane/Platin Chemotherapy
by Lucy B. Xu, Elizabeth R. Smith, Vasili Koutouratsas, Zhe-Sheng Chen and Xiang-Xi Xu
Cancers 2025, 17(7), 1208; https://doi.org/10.3390/cancers17071208 - 2 Apr 2025
Viewed by 1044
Abstract
The cancer chemotherapy regimen of a taxane and platinum combination was developed more than forty years ago, yet remains the cornerstone of treatment for several major cancer types today. Although many new agents targeting cancer genes and pathways have been developed and evaluated, [...] Read more.
The cancer chemotherapy regimen of a taxane and platinum combination was developed more than forty years ago, yet remains the cornerstone of treatment for several major cancer types today. Although many new agents targeting cancer genes and pathways have been developed and evaluated, none have been sufficient to replace the long-established taxane/platinum combination. This leads us to ponder why, after four decades of colossal efforts, multiple discoveries, and tremendous advances in understanding gene mutations and biology, the development of conceptually superior targeted therapies has not yet achieved overwhelming success in replacing cytotoxic chemotherapy. The concept of targeted therapy is based on the idea that blocking the altered pathway(s) crucial for cancer development (and maintenance), the disturbance in cellular signaling, metabolism, and functions will make the targeted cancer cells unfit and trigger programmed cell death in cancer cells, but without the significant side effects that limit chemotherapy. We propose that the lack of anticipated triumphs of targeted therapy stems from the desensitization of programmed cell death pathways during neoplastic transformation and malignant progression of cancer cells. This renders the targeting drugs largely ineffective at killing cancer cells and mostly insufficient in clinical implements. Recent advances in understanding suggest that, in contrast to targeted therapies, taxanes and platinum agents kill cancer cells by physical rupturing nuclear membranes rather than triggering apoptosis, making their effect independent of the intrinsic cellular programmed cell death mechanism. This new recognition of the non-programmed cell death mechanism in the success of chemotherapeutic agents, such as taxanes and platinum, may inspire oncologists and cancer researchers to focus their efforts more productively on developing effective non-programmed cell death cancer therapies to replace or significantly improve the application of the current standard taxane/platinum regimens. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

12 pages, 2184 KiB  
Article
Microtubule Integrity Is Associated with Mitochondrial Function and Quality of Murine Preimplantation Embryos
by Yu-Ha Shim, Min-Jeong Cho, Min-Hee Kang, Yu-Jin Kim, Seung-A Oh, Ji-Soo Ryu, Byeong-Jun Mun, Jin-Young An and Jae-Ho Lee
Int. J. Mol. Sci. 2025, 26(7), 3268; https://doi.org/10.3390/ijms26073268 - 1 Apr 2025
Viewed by 579
Abstract
Poor embryo quality is a major cause of poor clinical outcomes in assisted reproductive medicine, and there are no currently available interventions that can improve embryo quality. Mitochondria dysfunction is linked to low-quality female gametes and zygotes. Previously, microtubule integrity was also associated [...] Read more.
Poor embryo quality is a major cause of poor clinical outcomes in assisted reproductive medicine, and there are no currently available interventions that can improve embryo quality. Mitochondria dysfunction is linked to low-quality female gametes and zygotes. Previously, microtubule integrity was also associated with mitochondrial function in oocytes. In the present study, we investigated the effects of the microtubule stabilizers (MTS) Taxol and Epothilone D (EpD) and the microtubule disturber (MTD) vinorelbine on mouse preimplantation embryo quality and pregnancy outcome compared with non-treatment controls. We prepared young BDF1 mice (7~9 weeks old) and cultured preimplantation embryos with MTS or MTD. Mitochondrial functional activity and embryo development ratios including pregnancy ratios were then assessed. MTS-treated embryos showed significantly increased mitochondrial membrane potentials and motility. Blastocyst formation was significantly higher in MTS-treated embryos than in MTD-treated embryos. Especially, MTS-treated embryos exhibited higher hatched blastocyte formation than untreated embryos. The number of offspring was significantly higher in surrogate mice transplanted with MTS-treated embryos. These findings demonstrated that the treatment of mouse preimplantation embryos with Taxol or EpD increased embryo development competence, which was associated with increased mitochondrial functional activity. Consistently, delivery ratios were significantly higher after transplantation with MTS-treated embryos than after transplantation with untreated embryos. These findings suggest that MTS could be used to supplement in vitro culture media to promote the recovery of poor-quality embryos. Full article
(This article belongs to the Special Issue Latest Advances in Reproduction Biology)
Show Figures

Figure 1

16 pages, 11052 KiB  
Article
Genome-Wide Characterization and Expression Profiling of YTH Domain-Containing RNA-Binding Protein Family in Taxus chinensis
by Jingjing Zhang, Yuan Xiang, Kongshu Ji and Qiong Yu
Forests 2025, 16(2), 236; https://doi.org/10.3390/f16020236 - 26 Jan 2025
Viewed by 1003
Abstract
N6-methyladenosine (m6A), the most common internal RNA modification in eukaryotes, plays a vital role in post-transcriptional regulation. The YT521-B homology (YTH) domain plays a pivotal role in the methylation-dependent recognition of m6A. In this study, we performed [...] Read more.
N6-methyladenosine (m6A), the most common internal RNA modification in eukaryotes, plays a vital role in post-transcriptional regulation. The YT521-B homology (YTH) domain plays a pivotal role in the methylation-dependent recognition of m6A. In this study, we performed an in-depth analysis of the YTH domain-containing RNA-binding protein family in Taxus chinensis (T. chinensis), a species renowned for its rich content of taxol, a significant compound in cancer therapy. We identified and analyzed six YTH domain-containing proteins in T. chinensis, elucidating their phylogenetic relationships, conserved domain, gene structures, conserved motifs, and chromosomal locations. The prion-like domain analyses provided insights into their potential functions in liquid–liquid phase separation and mRNA metabolism. Quantitative tissue analysis revealed TcYTH1 as the most highly expressed gene among the six TcYTH members. Additionally, we investigated the expression profiles of TcYTH genes under various stress conditions, such as high light, ABA, and PEG treatments. The expression levels of all TcYTH genes changed significantly under stress, revealing their involvement in stress response mechanisms. Our research provides novel insights into the YTH genes family in T. chinensis, emphasizing their potential roles in growth regulation and stress tolerance. The identification and analysis of these genes lay the groundwork for future studies on their functional roles in plant biology. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

21 pages, 7426 KiB  
Article
Structure-Based Discovery of MolPort-137: A Novel Autotaxin Inhibitor That Improves Paclitaxel Efficacy
by Prateek Rai, Christopher J. Clark, Vandana Kardam, Carl B. Womack, Joshua Thammathong, Derek D. Norman, Gábor J. Tigyi, Kevin Bicker, April M. Weissmiller, Kshatresh Dutta Dubey and Souvik Banerjee
Int. J. Mol. Sci. 2025, 26(2), 597; https://doi.org/10.3390/ijms26020597 - 12 Jan 2025
Viewed by 1777
Abstract
The autotaxin–lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies [...] Read more.
The autotaxin–lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy. In the current study, we employed structure-based virtual screening, integrating pharmacophore modeling and molecular docking, to identify MolPort-137 as a novel ATX inhibitor with an IC50 value of 1.6 ± 0.2 μM in an autotaxin enzyme inhibition assay. Molecular dynamics simulations and binding free energy calculations elucidated the binding mode of MolPort-137 and its critical amino acid interactions. Remarkably, MolPort-137 exhibited no cytotoxicity as a single agent but enhanced the effectiveness of paclitaxel in 4T1 murine breast carcinoma cells and resensitized taxol-resistant cells to paclitaxel treatment, which highlights its potential in combination therapy. Full article
Show Figures

Graphical abstract

18 pages, 5813 KiB  
Article
Lipid Profile of Larix cajanderi Mayr in Adaptation to Natural Conditions in the Cryolithozone
by Vasiliy V. Nokhsorov, Tatiana D. Tatarinova, Lyubov V. Dudareva, Natalia V. Semenova and Trofim C. Maximov
Int. J. Mol. Sci. 2025, 26(1), 164; https://doi.org/10.3390/ijms26010164 - 28 Dec 2024
Viewed by 810
Abstract
The prevalence of coniferous trees in the forest landscapes of northeastern Siberia is conditioned by their high frost resistance. The Kajander larch (Larix cajanderi Mayr), which can survive under natural conditions (down to −60 °C) in the cryolithozone of Yakutia, is the [...] Read more.
The prevalence of coniferous trees in the forest landscapes of northeastern Siberia is conditioned by their high frost resistance. The Kajander larch (Larix cajanderi Mayr), which can survive under natural conditions (down to −60 °C) in the cryolithozone of Yakutia, is the dominant forest-forming species. We hypothesise that our study using HPTLC–UV/Vis/FLD, TLC–GC/FID, and GC–MS methods of seasonal features of the lipid profile of Kajander larch tissues will bring us closer to understanding the mechanisms of participation of lipid components in the adaptation of this valuable tree species to the cold climate of the cryolithozone. Rare delta5-unsaturated polymethylene-interrupted fatty acids (∆5-UPIFA) were identified in the fatty acids (FAs) of L. cajanderi shoots, including 18:2(Δ5.9) (taxoleic), 18:3(Δ5.9.12) (pinolenic), and 18:4(Δ5.9.12.15) (coniferonic). It was found that the content of ∆5-UPIFA in L. cajanderi shoots markedly increased (1.5-fold, representing up to 23.9% of sum FAs) during the autumnal transition of trees to dormancy. It was observed that the ranges of low temperatures experienced during the prolonged winter period primarily determined the structural diversity of membrane lipids and their constituent FAs during the cold adaptation of L. cajanderi. The results obtained can be used for the selection of molecular markers of cold tolerance in woody plants, including fruit trees. Full article
Show Figures

Figure 1

16 pages, 4295 KiB  
Review
Molecular Evolution and Adaptation Strategies in Marine Ciliates: An Inspiration for Cold-Adapted Enzyme Engineering and Drug Binding Analysis
by Sandra Pucciarelli, Matteo Mozzicafreddo, Alberto Vassallo, Angela Piersanti and Cristina Miceli
Mar. Drugs 2024, 22(11), 497; https://doi.org/10.3390/md22110497 - 4 Nov 2024
Viewed by 1874
Abstract
In the present review, we summarize genome mining of genomic data obtained from the psychrophilic Antarctic marine ciliate Euplotes focardii and its evolutionary-close mesophilic cosmopolitan counterpart E. crassus. This analysis highlights adaptation strategies that are unique to the Antarctic ciliate, including antioxidant [...] Read more.
In the present review, we summarize genome mining of genomic data obtained from the psychrophilic Antarctic marine ciliate Euplotes focardii and its evolutionary-close mesophilic cosmopolitan counterpart E. crassus. This analysis highlights adaptation strategies that are unique to the Antarctic ciliate, including antioxidant gene duplication and distinctive substitutions that may play roles in increased drug binding affinity and enzyme reaction rate in cold environments. Enzymes from psychrophiles are usually characterized by high activities and reaction rates at low temperatures compared with their counterparts from mesophiles and thermophiles. As a rule, catalyst cold activity derives from an increased structural flexibility that may lead to protein denaturation in response to temperature fluctuation. Molecular thermolability has been a major drawback of using macromolecules from psychrophiles in industrial applications. Here, we report a case study in which the role of peculiar amino acid substitution in cold adaptation is demonstrated by site-directed mutagenesis. Combined with a rational design approach, these substitutions can be used for site-directed mutagenesis to obtain cold-active catalysts that are structurally stable. Furthermore, molecular docking analysis of β-tubulin isotypes extrapolated from E. focardii and E. crassus genomes allowed us to obtain additional insight on the taxol binding site and drug affinity. E. focardii genome mining and the comparison with the mesophilic sibling counterpart can be used as an inspiration for molecular engineering for medical and industrial applications. Full article
(This article belongs to the Special Issue Bioactive Molecules from Extreme Environments III)
Show Figures

Figure 1

20 pages, 3785 KiB  
Article
Impact of Nordihydroguaiaretic Acid on Proliferation, Energy Metabolism, and Chemosensitization in Non-Small-Cell Lung Cancer (NSCLC) Cell Lines
by Carina Chipón, Paula Riffo, Loreto Ojeda, Mónica Salas, Rafael A. Burgos, Pamela Ehrenfeld, Rodrigo López-Muñoz and Angara Zambrano
Int. J. Mol. Sci. 2024, 25(21), 11601; https://doi.org/10.3390/ijms252111601 - 29 Oct 2024
Cited by 1 | Viewed by 1423
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. LC can be classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), with the last subtype accounting for approximately 85% of all diagnosed lung cancer cases. Despite the existence of [...] Read more.
Lung cancer (LC) is the leading cause of cancer death worldwide. LC can be classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), with the last subtype accounting for approximately 85% of all diagnosed lung cancer cases. Despite the existence of different types of treatment for this disease, the development of resistance to therapies and tumor recurrence in patients have maintained the need to find new therapeutic options to combat this pathology, where natural products stand out as an attractive source for this search. Nordihydroguaiaretic acid (NDGA) is the main metabolite extracted from the Larrea tridentata plant and has been shown to have different biological activities, including anticancer activity. In this study, H1975, H1299, and A549 cell lines were treated with NDGA, and its effect on cell viability, proliferation, and metabolism was evaluated using a resazurin reduction assay, incorporation of BrdU, and ki-67 gene expression and glucose uptake measurement, respectively. In addition, the combination of NDGA with clinical chemotherapeutics was investigated using an MTT assay and Combenefit software (version 2.02). The results showed that NDGA decreases the viability and proliferation of NSCLC cells and differentially modulates the expression of genes associated with different metabolic pathways. For example, the LDH gene expression decreased in all cell lines analyzed. However, GLUT3 gene expression increased after 24 h of treatment. The expression of the HIF-1 gene decreased early in the H1299 and A549 cell lines. In addition, the combination of NDGA with three chemotherapeutics (carboplatin, gemcitabine, and taxol) shows a synergic pattern in the decrease of cell viability on the H1299 cell line. In summary, this research provides new evidence about the role of NDGA in lung cancer. Interestingly, using NDGA to enhance the anticancer activity of antitumoral drugs could be an improved therapeutic resource against lung cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 4124 KiB  
Article
Oncogene Downregulation by Mahanine Suppresses Drug-Sensitive and Drug-Resistant Lung Cancer and Inhibits Orthotopic Tumor Progression
by Raghuram Kandimalla, Disha N. Moholkar, Suman Kumar Samanta, Neha Tyagi, Farrukh Aqil and Ramesh Gupta
Cancers 2024, 16(21), 3572; https://doi.org/10.3390/cancers16213572 - 23 Oct 2024
Viewed by 1505
Abstract
Background/Objectives: Lung cancer is one of the deadliest cancers, and drug resistance complicates its treatment. Mahanine (MH), an alkaloid from Murraya koenigii has been known for its anti-cancer properties. However, its effectiveness and mechanisms in treating non-small cell lung cancer (NSCLC) remain [...] Read more.
Background/Objectives: Lung cancer is one of the deadliest cancers, and drug resistance complicates its treatment. Mahanine (MH), an alkaloid from Murraya koenigii has been known for its anti-cancer properties. However, its effectiveness and mechanisms in treating non-small cell lung cancer (NSCLC) remain largely unexplored. The present study aimed to investigate MH’s effect on drug-sensitive and drug-resistant NSCLC and its potential mechanism of action. Methods: We isolated MH from M. koenigii leaves and the purity (99%) was confirmed by HPLC, LC-MS and NMR. The antiproliferative activity of MH was determined using MTT and colony formation assays against drug-sensitive (A549 and H1299) and Taxol-resistant lung cancer cells (A549-TR). Western blot analysis was performed to determine MH’s effects on various molecular targets. Anti-tumor activity of MH was determined against lung tumors developed in female NOD Scid mice injected with A549-Fluc bioluminescent cells (1.5 × 106) intrathoracically. Results: MH dose-dependently reduced the proliferation of all lung cancer cells (A549, H1299 and A549-TR), with IC50 values of 7.5, 5, and 10 µM, respectively. Mechanistically, MH arrested cell growth in the G0/G1 and G2/M phases of the cell cycle by inhibiting cyclin-dependent kinase 4/6 (CDK4/6) and cell division control 2 (CDC2) and induced apoptosis through the downregulation of B-cell leukemia/lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL). The apoptotic induction capacity of MH can also be attributed to its ability to inhibit pro-oncogenic markers, including mesenchymal–epithelial transition factor receptor (MET), phosphorylated protein kinase B (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), survivin, rat sarcoma viral oncogene (RAS), myelocytomatosis oncogene (cMYC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) levels. In vivo, MH (25 mg/kg b. wt.) significantly (p < 0.001) inhibited the growth of A549 lung cancer orthotopic xenografts in NOD Scid mice by 70%. Conclusions: Our study provides new mechanistic insights into MH’s therapeutic potential against NSCLC. Full article
(This article belongs to the Special Issue Natural Compounds in Cancers)
Show Figures

Figure 1

16 pages, 5250 KiB  
Article
Endangered Taxus wallichiana var. wallichiana—Its Forest Characteristics, Population Structure, and Regeneration Status in Yunnan, Southwestern China
by Cindy Q. Tang, Qing Chen, You-Cai Shi, Qiao Li, Kang-Di Pei, Shuaifeng Li, Peng-Bin Han, Shu-Li Xiao, Min-Rui Du, Ming-Chun Peng and Chong-Yun Wang
Diversity 2024, 16(10), 642; https://doi.org/10.3390/d16100642 - 16 Oct 2024
Viewed by 1796
Abstract
The survival of relict Taxus wallichiana var. wallichiana (Yunnan yew) is threatened by overexploitation for its quality wood and medicinal properties, particularly for taxol extraction. Understanding the current status of its communities and populations is crucial for protecting existing natural forest resources. We [...] Read more.
The survival of relict Taxus wallichiana var. wallichiana (Yunnan yew) is threatened by overexploitation for its quality wood and medicinal properties, particularly for taxol extraction. Understanding the current status of its communities and populations is crucial for protecting existing natural forest resources. We established 53 vegetation plots in Yunnan, southwestern China, where T. wallichiana var. wallichiana is the primary dominant species. These plots were classified into four forest types. The forests were multi-stratified, with T. wallichiana var. wallichiana frequently dominating the subcanopy and shrub layer. Species diversity indices did not significantly differ among the four forest types. The age structure of T. wallichiana var. wallichiana exhibited a multi-modal pattern, with a maximum age of 1165 years. Growth was slow, with an average radial growth rate of 0.78 mm/year. Despite its strong sprouting ability, the species had a poor seedling/sapling bank and suffered from inadequate regeneration. Its seedlings/saplings are shade-intolerant. This study provides a scientific basis for effective conservation strategies, emphasizing the need for in situ regeneration to ensure the survival of T. wallichiana var. wallichiana and its contributions to biodiversity and ecosystem services. Full article
(This article belongs to the Special Issue Rare and Endemic Plant Conservation in the Context of Global Changes)
Show Figures

Figure 1

22 pages, 6913 KiB  
Article
Novel Autotaxin Inhibitor ATX-1d Significantly Enhances Potency of Paclitaxel—An In Silico and In Vitro Study
by Prateek Rai, Christopher J. Clark, Carl B. Womack, Curtis Dearing, Joshua Thammathong, Derek D. Norman, Gábor J. Tigyi, Subhabrata Sen, Kevin Bicker, April M. Weissmiller and Souvik Banerjee
Molecules 2024, 29(18), 4285; https://doi.org/10.3390/molecules29184285 - 10 Sep 2024
Viewed by 2555
Abstract
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30–40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous [...] Read more.
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30–40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)–lysophosphatidic acid (LPA)–lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 μM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent. Full article
Show Figures

Figure 1

13 pages, 944 KiB  
Article
Solubilization of Paclitaxel with Natural Compound Rubusoside toward Improving Oral Bioavailability in a Rodent Model
by Jian Zhang, Jicheng Shu, Rhett W. Stout, Paul S. Russo and Zhijun Liu
Pharmaceutics 2024, 16(8), 1104; https://doi.org/10.3390/pharmaceutics16081104 - 22 Aug 2024
Cited by 1 | Viewed by 1348
Abstract
Paclitaxel, which features low water solubility and permeability, is an efflux pump substrate. The current paclitaxel drugs are given intravenously after resolving the solubility issue. Yet, oral delivery to achieve therapeutic bioavailability is not effective due to low absorption. This study evaluated a [...] Read more.
Paclitaxel, which features low water solubility and permeability, is an efflux pump substrate. The current paclitaxel drugs are given intravenously after resolving the solubility issue. Yet, oral delivery to achieve therapeutic bioavailability is not effective due to low absorption. This study evaluated a natural compound, rubusoside, to improve oral bioavailability in an animal model. Free paclitaxel molecules were processed into nano-micelles formed in water with rubusoside. The particle size of the nano-micelles in water was determined using dynamic light scattering. The oral bioavailability of paclitaxel in nano-micelles was determined against Cremophor/alcohol-solubilized Taxol after oral and intravenous administration to pre-cannulated Sprague Dawley rats. When loaded into the rubusoside-formed nano-micelles, paclitaxel reached a supersaturated concentration of 6 mg/mL, 60,000-fold over its intrinsic saturation of 0.1 µg/mL. The mean particle size was 4.7 ± 0.7 nm in diameter. Compared with Taxol®, maximum blood concentration was increased by 1.5-fold; the time to reach maximum concentration shortened to 0.8 h from 1.7 h; and, relative oral bioavailability increased by 88%. Absolute oral bioavailability was 1.7% and 1.3% for the paclitaxel nano-micelles and Taxol®, respectively. Solubilizing paclitaxel with rubusoside was successful, but oral bioavailability remained low. Further inhibition of the efflux pump and/or first metabolism may allow more oral paclitaxel to enter systemic circulation. Full article
Show Figures

Figure 1

Back to TopTop