Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Streptomyces rimosus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1362 KB  
Article
Actinobacteria as Promising Biocontrol Agents for In Vitro and In Planta Degradation and Detoxification of Zearalenone
by Larissa De Troyer, Noémie De Zutter, Sarah De Saeger, Frédéric Dumoulin, Siska Croubels, Siegrid De Baere, Leen De Gelder and Kris Audenaert
Toxins 2024, 16(6), 253; https://doi.org/10.3390/toxins16060253 - 28 May 2024
Cited by 6 | Viewed by 2381
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. [...] Read more.
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

17 pages, 3927 KB  
Article
Evaluation of the Structure–Function Relationship of SGNH Lipase from Streptomyces rimosus by Site-Directed Mutagenesis and Computational Approach
by Želimira Filić, Ana Bielen, Ela Šarić, Mirsada Ćehić, Ivo Crnolatac, Sanja Tomić, Dušica Vujaklija and Marija Abramić
Int. J. Mol. Sci. 2024, 25(1), 595; https://doi.org/10.3390/ijms25010595 - 2 Jan 2024
Cited by 3 | Viewed by 2444
Abstract
Streptomyces rimosus extracellular lipase (SrL) is a multifunctional hydrolase belonging to the SGNH family. Here site-directed mutagenesis (SDM) was used for the first time to investigate the functional significance of the conserved amino acid residues Ser10, Gly54, Asn82, Asn213, and His216 in the [...] Read more.
Streptomyces rimosus extracellular lipase (SrL) is a multifunctional hydrolase belonging to the SGNH family. Here site-directed mutagenesis (SDM) was used for the first time to investigate the functional significance of the conserved amino acid residues Ser10, Gly54, Asn82, Asn213, and His216 in the active site of SrL. The hydrolytic activity of SrL variants was determined using para-nitrophenyl (pNP) esters with C4, C8, and C16 fatty acid chains. Mutation of Ser10, Asn82, or His216, but not Gly54, to Ala abolished lipase activity for all substrates. In contrast, the Asn213Ala variant showed increased enzymatic activity for C8 and C16 pNP esters. Molecular dynamics (MD) simulations showed that the interactions between the long alkyl chain substrate (C16) and Ser10 and Asn82 were strongest in Asn213Ala SrL. In addition to Asn82, Gly54, and Ser10, several new constituents of the substrate binding site were recognized (Lys28, Ser53, Thr89, and Glu212), as well as strong electrostatic interactions between Lys28 and Glu212. In addition to the H bonds Ser10–His216 and His216–Ser214, Tyr11 interacted strongly with Ser10 and His216 in all complexes with an active enzyme form. A previously unknown strong H bond between the catalytically important Asn82 and Gly54 was uncovered, which stabilizes the substrate in an orientation suitable for the enzyme reaction. Full article
(This article belongs to the Special Issue Biomolecular Structure, Function and Interactions)
Show Figures

Figure 1

13 pages, 4677 KB  
Article
Bacterial Metal Accumulation as a Strategy for Waste Recycling Management
by Denise Kölbi, Alma Memic, Holger Schnideritsch, Dominik Wohlmuth, Gerald Klösch, Mihaela Albu and Tetyana Milojevic
Resources 2023, 12(12), 144; https://doi.org/10.3390/resources12120144 - 8 Dec 2023
Cited by 4 | Viewed by 3482
Abstract
Sustainable mechanisms for efficient and circular metal recycling have yet to be uncovered. In this study, the metal recycling potential of seven metal-resistant bacterial species (Deinococcus radiodurans, Deinococcus aerius, Bacillus coagulans, Pseudomonas putida, Staphylococcus rimosus, Streptomyces xylosus [...] Read more.
Sustainable mechanisms for efficient and circular metal recycling have yet to be uncovered. In this study, the metal recycling potential of seven metal-resistant bacterial species (Deinococcus radiodurans, Deinococcus aerius, Bacillus coagulans, Pseudomonas putida, Staphylococcus rimosus, Streptomyces xylosus and Acidocella aluminiidurans) was investigated in a multi-step strategy, which comprises bioleaching of industrial waste products and subsequent biosorption/bioaccumulation studies. Each species was subjected to an acidic, multi-metal bioleachate solution and screened for potential experimental implementation. Bacterial growth and metal acquisition were examined using scanning transmission electron microscopy coupled to electron dispersive X-ray spectroscopy (STEM-EDS). Two of the seven screened species, D. aerius and A. aluminiidurans, propagated in a highly acidic and metal-laden environment. Both accumulated iron and copper compounds during cultivation on a multi-metallic bioleachate. Our findings suggest that extremotolerant bacteria should be considered for waste recycling operations due to their inherent polyextremophily. Furthermore, STEM-EDS is a promising tool to investigate microbial–metal interactions in the frames of native industrial waste products. To develop further experimental steps, detailed analyses of adsorption/accumulation mechanisms in D. aerius and A. aluminiidurans are required to design a circular metal recycling procedure. Full article
Show Figures

Figure 1

23 pages, 12126 KB  
Article
Effects of the Coculture Initiation Method on the Production of Secondary Metabolites in Bioreactor Cocultures of Penicillium rubens and Streptomyces rimosus
by Tomasz Boruta, Anna Ścigaczewska, Agnieszka Ruda and Marcin Bizukojć
Molecules 2023, 28(16), 6044; https://doi.org/10.3390/molecules28166044 - 13 Aug 2023
Cited by 12 | Viewed by 2857
Abstract
Bioreactor cocultures involving Penicillium rubens and Streptomyces rimosus were investigated with regard to secondary metabolite production, morphological development, dissolved oxygen levels, and carbon substrate utilization. The production profiles of 22 secondary metabolites were analyzed, including penicillin G and oxytetracycline. Three inoculation approaches were [...] Read more.
Bioreactor cocultures involving Penicillium rubens and Streptomyces rimosus were investigated with regard to secondary metabolite production, morphological development, dissolved oxygen levels, and carbon substrate utilization. The production profiles of 22 secondary metabolites were analyzed, including penicillin G and oxytetracycline. Three inoculation approaches were tested, i.e., the simultaneous inoculation of P. rubens with S. rimosus and the inoculation of S. rimosus delayed by 24 or 48 h relative to P. rubens. The delayed inoculation of S. rimosus into the P. rubens culture did not prevent the actinomycete from proliferating and displaying its biosynthetic repertoire. Although a period of prolonged adaptation was needed, S. rimosus exhibited growth and the production of secondary metabolites regardless of the chosen delay period (24 or 48 h). This promising method of coculture initiation resulted in increased levels of metabolites tentatively identified as rimocidin B, 2-methylthio-cis-zeatin, chrysogine, benzylpenicilloic acid, and preaustinoid D relative to the values recorded for the monocultures. This study demonstrates the usefulness of the delayed inoculation approach in uncovering the metabolic landscape of filamentous microorganisms and altering the levels of secondary metabolites. Full article
(This article belongs to the Special Issue Natural Secondary Metabolites III)
Show Figures

Graphical abstract

14 pages, 1972 KB  
Article
Psychophysiological Responses of Humans during Seed-Sowing Activity Using Soil Inoculated with Streptomyces rimosus
by Na-Yoon Choi, Sin-Ae Park, Ye-Rim Lee and Choong Hwan Lee
Int. J. Environ. Res. Public Health 2022, 19(23), 16275; https://doi.org/10.3390/ijerph192316275 - 5 Dec 2022
Cited by 1 | Viewed by 2622
Abstract
Electroencephalogram (EEG) responses and serum metabolite levels were used to investigate the effects of horticultural activities (seed-sowing) on the psychophysiological aspects of adults based on the presence or absence of the soil microorganism Streptomyces rimosus. In this case, 31 adults were subjected [...] Read more.
Electroencephalogram (EEG) responses and serum metabolite levels were used to investigate the effects of horticultural activities (seed-sowing) on the psychophysiological aspects of adults based on the presence or absence of the soil microorganism Streptomyces rimosus. In this case, 31 adults were subjected to seed-sowing activities using S. rimosus inoculated (experimental group) and medium (control group) soils. EEG was measured to analyze the resulting psychophysiological response, and blood samples (5 mL) were collected. The relative gamma power (RG), relative high beta (RHB), and SEF 50 and SEF 90 were significantly higher in the right than in the left occipital lobe (p < 0.05). In both occipital lobes, ratios of SMR to theta (RST), mid beta to theta (RMT), and SMR-mid beta to theta (RSMT) were high (p < 0.05). GC-TOF-MS-based serum metabolite analysis detected 33 metabolites. Compared to the control group, the experimental group showed a lower content of amino acids (except aspartic acid), lipids, and C6 sugar monomers after the activity (p < 0.05). Aminomalonic acid was decreased, and aspartic acid was increased (p < 0.05). This study confirmed a positive effect on improving the concentration and attention of adults when seed-sowing activity was performed using S. rimosus-inoculated soil. Full article
(This article belongs to the Special Issue 2nd Edition: Evidence-Based Nature for Human Health)
Show Figures

Figure 1

15 pages, 3227 KB  
Article
Psychophysiological and Metabolomics Responses of Adults during Horticultural Activities Using Soil Inoculated with Streptomyces rimosus: A Pilot Study
by Seon-Ok Kim, Min Ji Kim, Na-Yoon Choi, Jin Hee Kim, Myung Sook Oh, Choong Hwan Lee and Sin-Ae Park
Int. J. Environ. Res. Public Health 2022, 19(19), 12901; https://doi.org/10.3390/ijerph191912901 - 8 Oct 2022
Cited by 4 | Viewed by 4090
Abstract
This study compared the physiological effects at a metabolomics level with autonomic nervous system responses in adults during soil mixing activities, based on the presence or absence of Streptomyces rimosus in the soil. Thirty adult participants performed soil mixing activities for 5 min [...] Read more.
This study compared the physiological effects at a metabolomics level with autonomic nervous system responses in adults during soil mixing activities, based on the presence or absence of Streptomyces rimosus in the soil. Thirty adult participants performed soil mixing activities for 5 min using sterilized soil with culture media and Streptomyces rimosus, respectively. Blood samples were drawn twice from each participant after each activity. Electroencephalograms were measured during the activity. Serum metabolites underwent metabolite profiling by gas chromatography, followed by multivariate analyses. Serum brain-derived neurotrophic factor and C-reactive protein levels were measured by Enzyme-Linked Immunosorbent Assay. Soil-emitted volatile organic compounds were identified via solid-phase microextraction and gas chromatography–mass spectroscopy, followed by multivariate analyses. The volatile compound analysis revealed that the terpenoid and benzoid compounds, geosmin, and 2-methylisoborneol were greater in soil with Streptomyces rimosus. Serum metabolomics revealed that the treatment group (soil inoculated with Streptomyces rimosus) possessed relatively higher levels of serotonin compared to the control group (soil mixed with culture media), and serum C-reactive protein levels were significantly lower in the treatment group. In the treatment group, the electroencephalogram revealed that alpha band activity of the occipital lobe increased. This study concludes that Streptomyces rimosus soil contact can positively affect human metabolic and autonomic reactions. Therefore, this pilot study confirmed the possible role of soil microorganisms in horticultural activities for psychophysiological effects in humans. Full article
(This article belongs to the Special Issue 2nd Edition: Evidence-Based Nature for Human Health)
Show Figures

Figure 1

22 pages, 4983 KB  
Article
Quantitative Morphological Analysis of Filamentous Microorganisms in Cocultures and Monocultures: Aspergillus terreus and Streptomyces rimosus Warfare in Bioreactors
by Anna Ścigaczewska, Tomasz Boruta and Marcin Bizukojć
Biomolecules 2021, 11(11), 1740; https://doi.org/10.3390/biom11111740 - 22 Nov 2021
Cited by 8 | Viewed by 2682
Abstract
The aim of this study was to quantitatively characterize the morphology of the filamentous microorganisms Aspergillus terreus ATCC 20542 and Streptomyces rimosus ATCC 10970, cocultivated in stirred tank bioreactors, and to characterize their mutual influence with the use of quantitative image analysis. Three [...] Read more.
The aim of this study was to quantitatively characterize the morphology of the filamentous microorganisms Aspergillus terreus ATCC 20542 and Streptomyces rimosus ATCC 10970, cocultivated in stirred tank bioreactors, and to characterize their mutual influence with the use of quantitative image analysis. Three distinct coculture initiation strategies were applied: preculture versus preculture, spores versus spores and preculture versus preculture with time delay for one of the species. Bioreactor cocultures were accompanied by parallel monoculture controls. The results recorded for the mono- and cocultures were compared in order to investigate the effect of cocultivation on the morphological evolution of A. terreus and S. rimosus. Morphology-related observations were also confronted with the analysis of secondary metabolism. The morphology of the two studied filamentous species strictly depended on the applied coculture initiation strategy. In the cocultures initiated by the simultaneous inoculation, S. rimosus gained domination or advance over A. terreus. The latter microorganism dominated only in these experiments in which S. rimosus was introduced with a delay. Full article
(This article belongs to the Collection Feature Papers in Synthetic Biology and Bioengineering)
Show Figures

Figure 1

11 pages, 1782 KB  
Communication
Enhanced Oxytetracycline Production by Streptomyces rimosus in Submerged Co-Cultures with Streptomyces noursei
by Tomasz Boruta and Anna Ścigaczewska
Molecules 2021, 26(19), 6036; https://doi.org/10.3390/molecules26196036 - 5 Oct 2021
Cited by 5 | Viewed by 3762
Abstract
In the present study, Streptomyces rimosus was confronted with Streptomyces noursei, Penicillium rubens, Aspergillus niger, Chaetomium globosum, or Mucor racemosus in two-species submerged co-cultures in shake flasks with the goal of evaluating the oxytetracycline production and morphological development. The co-culture [...] Read more.
In the present study, Streptomyces rimosus was confronted with Streptomyces noursei, Penicillium rubens, Aspergillus niger, Chaetomium globosum, or Mucor racemosus in two-species submerged co-cultures in shake flasks with the goal of evaluating the oxytetracycline production and morphological development. The co-culture of S. rimosus with S. noursei exhibited stimulation in oxytetracycline biosynthesis compared with the S. rimosus monoculture, whereas the presence of M. racemosus resulted in a delay in antibiotic production. Different strategies of initiating the “S. rimosus + S. noursei” co-cultures were tested. The improvement in terms of oxytetracycline titers was recorded in the cases where S. noursei was co-inoculated with S. rimosus in the form of spores. As the observed morphological changes were not unique to the co-culture involving S. noursei, there was no evidence that the improvement of oxytetracycline levels could be attributed mainly to morphology-related characteristics. Full article
Show Figures

Figure 1

14 pages, 2688 KB  
Article
Validation of a New Multicistronic Plasmid for the Efficient and Stable Expression of Transgenes in Microalgae
by Ana Molina-Márquez, Marta Vila, Rocío Rengel, Emilio Fernández, Federico García-Maroto, Javier Vigara and Rosa León
Int. J. Mol. Sci. 2020, 21(3), 718; https://doi.org/10.3390/ijms21030718 - 22 Jan 2020
Cited by 8 | Viewed by 4030
Abstract
Low stability of transgenes and high variability of their expression levels among the obtained transformants are still pending challenges in the nuclear genetic transformation of microalgae. We have generated a new multicistronic microalgal expression plasmid, called Phyco69, to make easier the large phenotypic [...] Read more.
Low stability of transgenes and high variability of their expression levels among the obtained transformants are still pending challenges in the nuclear genetic transformation of microalgae. We have generated a new multicistronic microalgal expression plasmid, called Phyco69, to make easier the large phenotypic screening usually necessary for the selection of high-expression stable clones. This plasmid contains a polylinker region (PLK) where any gene of interest (GOI) can be inserted and get linked, through a short viral self-cleaving peptide to the amino terminus of the aminoglycoside 3′-phosphotransferase (APHVIII) from Streptomyces rimosus, which confers resistance to the antibiotic paromomycin. The plasmid has been validated by expressing a second antibiotic resistance marker, the ShBLE gene, which confers resistance to phleomycin. It has been shown, by RT-PCR and by phenotypic studies, that the fusion of the GOI to the selective marker gene APHVIII provides a simple method to screen and select the transformants with the highest level of expression of both the APHVIII gene and the GOI among the obtained transformants. Immunodetection studies have shown that the multicistronic transcript generated from Phyco69 is correctly processed, producing independent gene products from a common promoter. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

17 pages, 711 KB  
Article
Promoter Trapping in Microalgae Using the Antibiotic Paromomycin as Selective Agent
by Marta Vila, Encarnación Díaz-Santos, Marta De la Vega, Herminia Rodríguez, Ángeles Vargas and Rosa León
Mar. Drugs 2012, 10(12), 2749-2765; https://doi.org/10.3390/md10122749 - 4 Dec 2012
Cited by 14 | Viewed by 9666
Abstract
The lack of highly active endogenous promoters to drive the expression of transgenes is one of the main drawbacks to achieving efficient transformation of many microalgal species. Using the model chlorophyte Chlamydomonas reinhardtii and the paromomycin resistance APHVIII gene from Streptomyces rimosus as [...] Read more.
The lack of highly active endogenous promoters to drive the expression of transgenes is one of the main drawbacks to achieving efficient transformation of many microalgal species. Using the model chlorophyte Chlamydomonas reinhardtii and the paromomycin resistance APHVIII gene from Streptomyces rimosus as a marker, we have demonstrated that random insertion of the promoterless marker gene and subsequent isolation of the most robust transformants allows for the identification of novel strong promoter sequences in microalgae. Digestion of the genomic DNA with an enzyme that has a unique restriction site inside the marker gene and a high number of target sites in the genome of the microalga, followed by inverse PCR, allows for easy determination of the genomic region, which precedes the APHVIII marker gene. In most of the transformants analyzed, the marker gene is inserted in intragenic regions and its expression relies on its adequate insertion in frame with native genes. As an example, one of the new promoters identified was used to direct the expression of the APHVIII marker gene in C. reinhardtii, showing high transformation efficiencies. Full article
(This article belongs to the Special Issue Marine Algae)
Show Figures

Figure 1

Back to TopTop