Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = SrVO2H

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7610 KB  
Article
Interfacial Engineering of BiVO4 Immobilized on Sodium Alginate Aerogels Enable Synergistic Photocatalytic-Peroxymonosulfate Degradation of Rhodamine B
by Weidi Zhang, Tiantian Zhou and Jianhao Qiu
Polymers 2025, 17(16), 2204; https://doi.org/10.3390/polym17162204 - 12 Aug 2025
Viewed by 337
Abstract
The practical application of powdered photocatalysts is significantly hindered by challenges in recyclability and structural instability. This work proposes a sustainable immobilization strategy by integrating BiVO4 nanoparticles into a sodium alginate (SA) aerogel scaffold through a facile freeze-drying approach. The abundant hydroxyl/carboxyl [...] Read more.
The practical application of powdered photocatalysts is significantly hindered by challenges in recyclability and structural instability. This work proposes a sustainable immobilization strategy by integrating BiVO4 nanoparticles into a sodium alginate (SA) aerogel scaffold through a facile freeze-drying approach. The abundant hydroxyl/carboxyl groups of SA enable uniform dispersion of BiVO4 within the porous network, while the aerogel architecture enhances light-harvesting efficiency and mass transfer kinetics. Innovatively, peroxymonosulfate (PMS) was introduced to synergistically couple photocatalysis with sulfate radical-based advanced oxidation processes (SR-AOPs), where the photogenerated electrons from BiVO4 effectively activate PMS to yield high-activity ·SO4 radicals. The optimized BiVO4/SA aerogel achieves nearly complete removal of Rhodamine B within 2 h under visible light, which is competitive to pure BiVO4 powders. In addition, the mechanically robust aerogel exhibits exceptional reusability, retaining ~90% efficiency after five cycles without structural collapse. This work provides a paradigm for designing recyclable photocatalyst carriers with dual oxidation pathways, demonstrating significant potential for industrial wastewater treatment. Full article
Show Figures

Graphical abstract

13 pages, 1780 KB  
Article
The Use of Sound Recorders to Remotely Measure Grass Intake Behaviour in Horses
by Daisy E. F. Taylor, Bryony E. Lancaster and Andrea D. Ellis
Animals 2025, 15(15), 2273; https://doi.org/10.3390/ani15152273 - 4 Aug 2025
Viewed by 949
Abstract
Visual observation to record grass intake is time-consuming and labour-intensive. Technological methods, such as activity monitors, have been used but only record head position. This study aimed to evaluate sound recorders attached to headcollars to acoustically measure grass intake behaviour in horses as [...] Read more.
Visual observation to record grass intake is time-consuming and labour-intensive. Technological methods, such as activity monitors, have been used but only record head position. This study aimed to evaluate sound recorders attached to headcollars to acoustically measure grass intake behaviour in horses as a low-cost alternative method. Pilot Study 1 assessed 6 × 11 min periods comparing bites/min and chews/min between video footage (VD) and sound recorders (SR). Grazing was identified audibly (SRear) and visually through soundwave pattern software (SRwav). Chew rates (SRear: 47 ± 5 chews/min, VD: 43 ± 4 chews/min) were similar between methods. Pilot Study 2 compared hourly grass intake times between SRwav and visual observation (VO) for two horses during a 3 h period. Results showed significant correlation between methods (rho = 0.99, p < 0.01, Spearman). The main study measured intake behaviour using SRwav and VO methods for three free-ranging horses during 3 h observation periods over multiple days, adding up to 3 × 24 h in winter and in spring (n = 48). Mean differences per period between SRwav and VO were 1.8% ± 3 s.d. Foraging duration per period measured with SRwav closely matched VO (r2 = 0.99, p < 0.001). Sound recorders accurately recorded grass intake time and chews in grazing horses during moderate weather conditions. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

14 pages, 8247 KB  
Article
SrTiO3-SrVO3 Ceramics for Solid Oxide Fuel Cell Anodes: A Route from Oxidized Precursors
by Javier Macías, Jorge R. Frade and Aleksey A. Yaremchenko
Materials 2023, 16(24), 7638; https://doi.org/10.3390/ma16247638 - 14 Dec 2023
Cited by 4 | Viewed by 1933
Abstract
Perovskite-type Sr(Ti,V)O3-δ ceramics are promising anode materials for natural gas- and biogas-fueled solid oxide fuel cells, but the instability of these phases under oxidizing conditions complicates their practical application. The present work explores approaches to the fabrication of strontium titanate-vanadate electrodes from [...] Read more.
Perovskite-type Sr(Ti,V)O3-δ ceramics are promising anode materials for natural gas- and biogas-fueled solid oxide fuel cells, but the instability of these phases under oxidizing conditions complicates their practical application. The present work explores approaches to the fabrication of strontium titanate-vanadate electrodes from oxidized precursors. Porous ceramics with the nominal composition SrTi1−yVyOz (y = 0.1–0.3) were prepared in air via a solid state reaction route. Thermal processing at temperatures not exceeding 1100 °C yielded composite ceramics comprising perovskite-type SrTiO3, pyrovanadate Sr2V2O7 and orthovanadate Sr3(VO4)2 phases, while increasing firing temperatures to 1250–1440 °C enabled the formation of SrTi1−yVyO3 perovskites. Vanadium was found to substitute into the titanium sublattice predominantly as V4+, even under oxidizing conditions at elevated temperatures. Both perovskite and composite oxidized ceramics exhibit moderate thermal expansion coefficients in air, 11.1–12.1 ppm/K at 30–1000 °C, and insignificant dimensional changes induced by reduction in a 10%H2-N2 atmosphere. The electrical conductivity of reduced perovskite samples remains comparatively low, ~10−1 S/cm at 900 °C, whereas the transformation of oxidized vanadate phases into high-conducting SrVO3−δ perovskites upon reduction results in enhancement in conductivity, which reaches ~3 S/cm at 900 °C in porous composite ceramics with nominal composition SrTi0.7V0.3Oz. The electrical performance of the composite is expected to be further improved by optimization of the processing route and microstructure to facilitate the reduction of the oxidized precursor and attain better percolation of the SrVO3 phase. Full article
Show Figures

Figure 1

9 pages, 1406 KB  
Article
Using Predictive Modeling Technique to Assess Core Temperature Adaptations from Heart Rate, Sweat Rate, and Thermal Sensation in Heat Acclimatization and Heat Acclimation
by Yasuki Sekiguchi, Courteney L. Benjamin, Ciara N. Manning, Cody R. Butler, Michael R. Szymanski, Erica M. Filep, Rebecca L. Stearns, Lindsay J. Distefano, Elaine C. Lee and Douglas J. Casa
Int. J. Environ. Res. Public Health 2022, 19(20), 13009; https://doi.org/10.3390/ijerph192013009 - 11 Oct 2022
Cited by 4 | Viewed by 2824
Abstract
Assessing the adaptation of rectal temperature (Trec) is critical following heat acclimatization (HAz) and heat acclimation (HA) because it is associated with exercise performance and safety; however, more feasible and valid methods need to be identified. The purpose of this study [...] Read more.
Assessing the adaptation of rectal temperature (Trec) is critical following heat acclimatization (HAz) and heat acclimation (HA) because it is associated with exercise performance and safety; however, more feasible and valid methods need to be identified. The purpose of this study was to predict adaptations in Trec from heart rate (HR), sweat rate (SR), and thermal sensation (TS) using predictive modeling techniques. Twenty-five male endurance athletes (age, 36 ± 12 y; VO2max, 57.5 ± 7.0 mL⋅kg−1⋅min−1) completed three trials consisting of 60 min running at 59.3 ± 1.7% vVO2max in a hot environment. During trials, the highest HR and TS, SR, and Trec at the end of trials were recorded. Following a baseline trial, participants performed HAz followed by a post-HAz trial and then completed five days HA, followed by a post-HA trial. A decision tree indicated cut-points of HR (<−13 bpm), SR (>0.3 L·h−1), and TS (≤−0.5) to predict lower Trec. When two or three variables met cut-points, the probability of accuracy of showing lower Trec was 95.7%. Greater adaptations in Trec were observed when two or three variables met cut-points (−0.71 ± 0.50 °C) compared to one (−0.13 ± 0.36 °C, p < 0.001) or zero (0.0 3 ± 0.38 °C, p < 0.001). Specificity was 0.96 when two or three variables met cut-points to predict lower Trec. These results suggest using heart rate, sweat rate, and thermal sensation adaptations to indicate that the adaptations in Trec is beneficial following heat adaptations, especially in field settings, as a practical and noninvasive method. Full article
Show Figures

Figure 1

12 pages, 1260 KB  
Article
Heat Acclimation Following Heat Acclimatization Elicits Additional Physiological Improvements in Male Endurance Athletes
by Courteney L. Benjamin, Yasuki Sekiguchi, Jeb F. Struder, Michael R. Szymanski, Ciara N. Manning, Andrew J. Grundstein, Elaine C. Lee, Robert A. Huggins, Lawrence E. Armstrong and Douglas J. Casa
Int. J. Environ. Res. Public Health 2021, 18(8), 4366; https://doi.org/10.3390/ijerph18084366 - 20 Apr 2021
Cited by 16 | Viewed by 5325
Abstract
The purpose of this study was to assess the effectiveness of heat acclimatization (HAz) followed by heat acclimation (HA) on physiological adaptations. 25 male endurance athletes (age 36 ± 12 y, height 178.8 ± 6.39 cm, body mass 73.03 ± 8.97 kg, and [...] Read more.
The purpose of this study was to assess the effectiveness of heat acclimatization (HAz) followed by heat acclimation (HA) on physiological adaptations. 25 male endurance athletes (age 36 ± 12 y, height 178.8 ± 6.39 cm, body mass 73.03 ± 8.97 kg, and VO2peak 57.5 ± 7.0 mL·kg−1·min−1) completed HAz and HA. HAz was 3 months of self-directed summer training. In the laboratory, a 5-day HA prescribed exercise to target a hyperthermic zone (HZHA) of Trec between 38.50 and 39.75 °C for 60 min. Exercise trials were 60 min of running (59% ± 2% VO2peak) in an environmental chamber (wet bulb globe temperature 29.53 ± 0.63 °C) and administered at: baseline, post-HAz, and post-HAz+HA. Measured variables included internal body temperature (Trec), heart rate (HR), and sweat rate (SR). Repeated measure ANOVAs and post hoc comparisons were used to assess statistically significant (p < 0.05) differences. Trec was lower post-HAz+HA (38.03 ± 0.39 °C) than post-HAz (38.25 ± 0.42 °C, p = 0.009) and baseline (38.29 ± 0.37 °C, p = 0.005). There were no differences between baseline and post-HAz (p = 0.479) in Trec. HR was lower post-HAz (143 ± 12 bpm, p = 0.002) and post-HAz+HA (134 ± 11 bpm, p < 0.001) than baseline (138 ± 14 bpm). HR was lower post-HAz+HA than post-HAz (p = 0.013). SR was higher post-HAz+HA (1.93 ± 0.47 L·h−1) than post-HAz (1.76 ± 0.43 L·h−1, p = 0.027). Combination HAz and HA increased physiological outcomes above HAz. This method can be used to improve performance and safety in addition to HAz alone. Full article
(This article belongs to the Special Issue Exercise and Sport in Stressful Conditions and Environments)
Show Figures

Figure 1

8 pages, 1787 KB  
Article
A Partial Anion Disorder in SrVO2H Induced by Biaxial Tensile Strain
by Morito Namba, Hiroshi Takatsu, Wataru Yoshimune, Aurélien Daniel, Shoichi Itoh, Takahito Terashima and Hiroshi Kageyama
Inorganics 2020, 8(4), 26; https://doi.org/10.3390/inorganics8040026 - 8 Apr 2020
Cited by 13 | Viewed by 6157
Abstract
SrVO2H, obtained by a topochemical reaction of SrVO3 perovskite using CaH2, is an anion-ordered phase with hydride anions exclusively at the apical site. In this study, we conducted a CaH2 reduction of SrVO3 thin films epitaxially [...] Read more.
SrVO2H, obtained by a topochemical reaction of SrVO3 perovskite using CaH2, is an anion-ordered phase with hydride anions exclusively at the apical site. In this study, we conducted a CaH2 reduction of SrVO3 thin films epitaxially grown on KTaO3 (KTO) substrates. When reacted at 530 °C for 12 h, we observed an intermediate phase characterized by a smaller tetragonality of c/a = 0.96 (vs. c/a = 0.93 for SrVO2H), while a longer reaction of 24 h resulted in the known phase of SrVO2H. This fact suggests that the intermediate phase is a metastable state stabilized by applying tensile strain from the KTO substrate (1.4%). In addition, secondary ion mass spectrometry (SIMS) revealed that the intermediate phase has a hydrogen content close to that of SrVO2H, suggesting a partially disordered anion arrangement. Such kinetic trapping of an intermediate state by biaxial epitaxial strain not only helps to acquire a new state of matter but also advances our understanding of topochemical reaction processes in extended solids. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Graphical abstract

12 pages, 4276 KB  
Article
Microwave-Assisted Hydrothermal Synthesis of SrTiO3:Rh for Photocatalytic Z-scheme Overall Water Splitting
by Hsin-yu Lin and Lyu-Ting Cian
Appl. Sci. 2019, 9(1), 55; https://doi.org/10.3390/app9010055 - 24 Dec 2018
Cited by 13 | Viewed by 5151
Abstract
Developing a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, hydrogen production by a new Z-scheme photocatalysis water-splitting system was examined over Rh-doped SrTiO3 [...] Read more.
Developing a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, hydrogen production by a new Z-scheme photocatalysis water-splitting system was examined over Rh-doped SrTiO3 (denoted as Rh:SrTiO3) with Ru nanoparticle as cocatalyst for H2 evolution and BiVO4 photocatalyst for O2 evolution under visible light irradiation, where Co(bpy)32+/3+ was used as electron mediator. The catalysts were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and Ultraviolet–visible spectroscopy. We present a fast and efficient method to synthesize Rh-doped SrTiO3 photocatalyst via microwave-assisted hydrothermal method. Our results showed a significant effect of Ti precursor on morphology of Rh:SrTiO3 prepared by microwave-assisted hydrothermal synthesis. The Ru/Rh:SrTiO3 prepared by TiCl4 precursor showed a nanoporous structure and high photocatalytic activity. The combination of Ru/Rh:SrTiO3 with BiVO4 achieves a high H2 evolution rate (317 μmoL g−1 h−1) and O2 evolution rate (168 μmol g−1 h−1) in 0.5 mM Co(bpy)32+/3+ solution under visible light irradiation. Full article
(This article belongs to the Special Issue Nanomaterials for Solar Water Splitting)
Show Figures

Figure 1

Back to TopTop