Interfacial Engineering of BiVO4 Immobilized on Sodium Alginate Aerogels Enable Synergistic Photocatalytic-Peroxymonosulfate Degradation of Rhodamine B
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Photocatalysts
2.3. Characterizations
2.4. Photocatalytic Degradation Tests
3. Results and Discussion
3.1. Aerogel Characterizations
3.2. Photocatalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, H.; Zou, J.; Liu, H.; Ma, A.; Xu, S.; Li, T.; Ren, S. Construction of direct-Z-scheme heterojunction photocatalyst of g-C3N4/Ti3C2/TiO2 composite and its degradation behavior for dyes of Rhodamine B. Chin. J. Chem. Eng. 2024, 73, 222–234. [Google Scholar] [CrossRef]
- Fu, B.; Sun, H.; Liu, J.; Zhou, T.; Chen, M.; Cai, Z.; Hao, D.; Zhu, X. Construction of MIL-125-NH2@BiVO4 composites for efficient photocatalytic dye degradation. ACS Omega 2022, 7, 26201–26210. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, H.; Wang, P.; Chen, M.; Zhu, X.; Han, J.; Fu, B. Assembling BiOBr nanoplates on MIL-125(Ti)–NH2 via group linkage towards effective dye-contaminated water purification. J. Solid State Chem. 2024, 329, 124408. [Google Scholar] [CrossRef]
- Sun, H.; Dai, Q.; Liu, J.; Zhou, T.; Chen, M.; Cai, Z.; Zhu, X.; Fu, B. BiVO4-deposited MIL-101-NH2 for efficient photocatalytic elimination of Cr(VI). Molecules 2023, 28, 1218. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, A.; Dhiman, P.; Thakur, M.; Aloui, Z.; Selvaraj, M.; Kumar, A. Strategic synthesis of biowaste-derived magnetic hydrochar for adsorption and photocatalytic removal of Chlorpyrifos herbicides from simulated wastewater. Mat. Sci. Eng. B 2025, 314, 118009. [Google Scholar] [CrossRef]
- Devi, S.; Dhiman, P.; Sharma, A.; Gautam, S.; Kumar, A. Green synthesized AgNPs embellished on crumpled surface of thiazole modified g-C3N4: A heterocatalyst for the photodegradation of pharmaceutical effluent Itraconazole. Next Mater. 2025, 7, 100348. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Ma, W.; Han, R.; Zhang, W.; Zhang, H.; Zhao, L.; Chen, L.; Zhu, L. Advanced oxidation process/coagulation coupled with membrane distillation (AOP/Coag-MD) for efficient ammonia recovery: Elucidating biofouling control performance and mechanism. J. Hazard. Mater. 2024, 469, 134093. [Google Scholar] [CrossRef] [PubMed]
- Babu Ponnusami, A.; Sinha, S.; Ashokan, H.; Paul, M.V.; Hariharan, S.P.; Arun, J.; Gopinath, K.P.; Hoang Le, Q.; Pugazhendhi, A. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. Environ. Res. 2023, 237, 116944. [Google Scholar] [CrossRef] [PubMed]
- Ramadhan Ikreedeegh, R.; Arif Hossen, M.; Sherryna, A.; Tahir, M. Recent advances on synthesis and photocatalytic applications of MOF-derived carbon materials: A review. Coord. Chem. Rev. 2024, 510, 215834. [Google Scholar] [CrossRef]
- Tayebi, M.; Lee, B.-K. Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sust. Energ. Rev. 2019, 111, 332–343. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Amor, C.; Silva, T.; Dionysiou, D.D.; Li Puma, G.; Lucas, M.S.; Peres, J.A. Treatment of winery wastewater by sulphate radicals: HSO5−/transition metal/UV-A LEDs. Chem. Eng. J. 2017, 310, 473–483. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Y.; Li, W.; Zhang, Z.; Su, T.; Mu, M.; Gong, Y.; Dang, R.; Bai, R.; Zheng, E.; et al. A Z-scheme LaFeO3-CuFe2O4 composite for sulfate radical-based photocatalytic process: Synergistic effect and mechanism. Chin. J. Chem. Eng. 2024, 73, 256–269. [Google Scholar] [CrossRef]
- Hasija, V.; Nguyen, V.-H.; Kumar, A.; Raizada, P.; Krishnan, V.; Khan, A.A.P.; Singh, P.; Lichtfouse, E.; Wang, C.; Thi Huong, P. Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. J. Hazard. Mater. 2021, 413, 125324. [Google Scholar] [CrossRef]
- Wang, Y.; Hui, S.; Zhan, S.; Djellabi, R.; Li, J.; Zhao, X. Activation of peroxymonosulfate by novel Pt/Al2O3 membranes via a nonradical mechanism for efficient degradation of electron-rich aromatic pollutants. Chem. Eng. J. 2020, 381, 122563. [Google Scholar] [CrossRef]
- Ye, P.; Wu, D.; Wang, M.; Wei, Y.; Xu, A.; Li, X. Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation. Appl. Surf. Sci. 2018, 428, 131–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Chen, J.; Feng, X.; Cai, W. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. J. Hazard. Mater. 2020, 392, 122315. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, T.; Yuan, S.; Zhu, C.; Yang, L.; Chen, Y.; Wang, X.; Yin, Y.; Chen, C.; Tang, L.; et al. Ultrathin TiO2(B) nanosheets-decorated hollow CoFeP cube as PMS activator for enhanced photocatalytic activity. Appl. Surf. Sci. 2024, 643, 158667. [Google Scholar] [CrossRef]
- Zhang, S.; Rohloff, M.; Kasian, O.; Mingers, A.M.; Mayrhofer, K.J.J.; Fischer, A.; Scheu, C.; Cherevko, S. Dissolution of BiVO4 photoanodes revealed by time-resolved measurements under photoelectrochemical conditions. J. Phys. Chem. C 2019, 123, 23410–23418. [Google Scholar] [CrossRef]
- Malathi, A.; Madhavan, J. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A-Gen. 2018, 555, 47–74. [Google Scholar] [CrossRef]
- Kamble, G.S.; Natarajan, T.S.; Patil, S.S.; Thomas, M.; Chougale, R.K.; Sanadi, P.D.; Siddharth, U.S.; Ling, Y.-C. BiVO4 as a sustainable and emerging photocatalyst: Synthesis methodologies, engineering properties, and its volatile organic compounds degradation efficiency. Nanomaterials 2023, 13, 1528. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, J.; Zhan, H.; Wang, P.; Chao, K.; Chen, M.; Zheng, J.; Fu, B. Facile preparation of BiVO4/Bi-MOF composites for photocatalytic dye removal. J. Phys. Chem. Solids 2024, 188, 111917. [Google Scholar] [CrossRef]
- Rather, R.A.; Mehta, A.; Lu, Y.; Valant, M.; Fang, M.; Liu, W. Influence of exposed facets, morphology and hetero-interfaces of BiVO4 on photocatalytic water oxidation: A review. Int. J. Hydrogen Energy 2021, 46, 21866–21888. [Google Scholar] [CrossRef]
- Lee, J.M.; Baek, J.H.; Gill, T.M.; Shi, X.; Lee, S.; Cho, I.S.; Jung, H.S.; Zheng, X. A Zn:BiVO4/Mo:BiVO4 homojunction as an efficient photoanode for photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 9019–9024. [Google Scholar] [CrossRef]
- Yi, L.; Jiang, H.; Ma, Y.; Zhu, R.; Zhang, G.; Ren, Z. Highly efficient visible-light driven dye degradation via 0D BiVO4 nanoparticles/2D BiOCl nanosheets p-n heterojunctions. Chemosphere 2024, 354, 141658. [Google Scholar] [CrossRef]
- Srikanth, B.; Goutham, R.; Badri Narayan, R.; Ramprasath, A.; Gopinath, K.P.; Sankaranarayanan, A.R. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Appunni, S.; Chinthala, M.; Vo, D.-V.N. Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: A review. Environ. Chem. Lett. 2022, 20, 3071–3098. [Google Scholar] [CrossRef]
- Liu, J.; Dai, Q.; Xiao, R.; Zhou, T.; Han, J.; Fu, B. Immobilization of ZnIn2S4 on sodium alginate foam for efficient hexavalent chromium removal. Int. J. Biol. Macromol. 2023, 236, 123848. [Google Scholar] [CrossRef]
- Sohouli, E.; Irannejad, N.; Ziarati, A.; Ehrlich, H.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Luque, R. Application of polysaccharide-based biopolymers as supports in photocatalytic treatment of water and wastewater: A review. Environ. Chem. Lett. 2022, 20, 3789–3809. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Kandel, D.R.; Kim, J.T.; Siengchin, S.; Lee, J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohyd. Polym. 2024, 323, 121339. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y. Sodium alginate-based functional materials toward sustainable applications: Water treatment and energy storage. Ind. Eng. Chem. Res. 2023, 62, 11279–11304. [Google Scholar] [CrossRef]
- Adamski, J.; Lopes, A.A.; Lopez, A.B.; Marques, T.A.B.; Lansarin, M.A. Development of composite films of bismuthates immobilized in alginate biopolymers for application in photocatalysis under visible light. J. Photoch. Photobio. A 2024, 452, 115575. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Chinthala, M.; Polagani, R.K. 3D kaolinite/g-C3N4-alginate beads as an affordable and sustainable photocatalyst for wastewater remediation. Carbohyd. Polym. 2024, 323, 121420. [Google Scholar] [CrossRef]
- Xi, G.; Ye, J. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chem. Commun. 2010, 46, 1893–1895. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, Z.; Jing, X.; Yi, X.; Zou, J.; Feng, P.; Zhang, H.; Liu, Y. Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy. Carbohyd. Polym. 2024, 335, 122048. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, C.; Lin, H.; Xu, B.; Chen, S. Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity. Appl. Surf. Sci. 2013, 284, 263–269. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yu, F.; Chen, H.; Zheng, J.; Ma, J.; Chen, J. Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J. Mater. Chem. A 2016, 4, 10885–10892. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, Z.; Lin, J.; Xu, J.; Wang, X.; Hong, B.; Xia, Y.; Zeng, Y. Surface atom rearrangement enabling graphitic carbon nitride/sodium alginate gel monolith for ultrafast completely photodegrading ciprofloxacin under visible light. Chem. Eng. J. 2024, 489, 151218. [Google Scholar] [CrossRef]
- Chen, S.; Huang, D.; Zeng, G.; Xue, W.; Lei, L.; Xu, P.; Deng, R.; Li, J.; Cheng, M. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer. Chem. Eng. J. 2020, 382, 122840. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Zhao, S.; Ma, R.; Guo, J.; Li, Z.; Wang, D.; Xuan, Y.; Wang, L. Enhanced peroxymonosulfate activation by S-scheme AgI/Cu-BiVO4 heterojunction for efficient photocatalytic organics degradation and Microcystis aeruginosa inactivation: Performance, interfacial engineering and mechanism insight. Appl. Catal. B Environ. 2024, 351, 124007. [Google Scholar] [CrossRef]
- Rokesh, K.; Sakar, M.; Do, T.-O. Integration of aminosilicate functionalized-fullerene (C60) QDs on bismuth vanadate (BiVO4) nanolayers for the photocatalytic degradation of pharmaceutical pollutant. Catal. Today 2023, 407, 252–259. [Google Scholar] [CrossRef]
- Wu, M.; Liu, H.; Zhang, X.-F.; Li, M.; Yao, J. Highly conductive and mechanically robust cellulose hydrogels enabled by attapulgite-derived titanium silicate. Langmuir 2025, 41, 18903–18910. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, J.; Xia, G.; Tang, Y.; Wu, Z.; Yao, J. Competitive coordination initiated one-pot synthesis of core-shell Bi-MOF@BiOX (X = I, Br and Cl) heterostructures for photocatalytic elimination of mixed pollutants. Sep. Purif. Technol. 2023, 316, 123819. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Zhang, Y.; Tang, W.; Cheng, X.; Liu, H. Activation of peroxymonosulfate by BiVO4 under visible light for degradation of Rhodamine B. Chem. Phys. Lett. 2016, 653, 101–107. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Wang, Y.; Gong, Y.; Cao, D.; Qiao, M. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4. Appl. Catal. B Environ. 2018, 237, 976–985. [Google Scholar] [CrossRef]
- Pakzad, K.; Alinezhad, H.; Nasrollahzadeh, M. Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation. Ceram. Int. 2019, 45, 17173–17182. [Google Scholar] [CrossRef]
- Merka, O.; Yarovyi, V.; Bahnemann, D.W.; Wark, M. pH-control of the photocatalytic degradation mechanism of rhodamine B over Pb3Nb4O13. J. Phys. Chem. C 2011, 115, 8014–8023. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Yang, F.; Wu, L.; Li, W.; Ren, R.; Lv, Y. Uniform flower-like BiOBr/BiOI prepared by a new method: Visible-light photocatalytic degradation, influencing factors and degradation mechanism. New J. Chem. 2019, 43, 14829–14840. [Google Scholar] [CrossRef]
- Li, Z.; Tang, X.; Huang, G.; Luo, X.; He, D.; Peng, Q.; Huang, J.; Ao, M.; Liu, K. Bismuth MOFs based hierarchical Co3O4-Bi2O3 composite: An efficient heterogeneous peroxymonosulfate activator for azo dyes degradation. Sep. Purif. Technol. 2020, 242, 116825. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Liu, S.; Yang, C.; Yang, Q.; Dang, Z. Probing the activation mechanism of nitrogen-doped carbonaceous materials for persulfates: Based on the differences between peroxymonosulfate and peroxydisulfate. Environ. Pollut. 2023, 329, 121685. [Google Scholar] [CrossRef] [PubMed]
- Dangwang Dikdim, J.M.; Gong, Y.; Noumi, G.B.; Sieliechi, J.M.; Zhao, X.; Ma, N.; Yang, M.; Tchatchueng, J.B. Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation. Chemosphere 2019, 217, 833–842. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhou, T.; Qiu, J. Interfacial Engineering of BiVO4 Immobilized on Sodium Alginate Aerogels Enable Synergistic Photocatalytic-Peroxymonosulfate Degradation of Rhodamine B. Polymers 2025, 17, 2204. https://doi.org/10.3390/polym17162204
Zhang W, Zhou T, Qiu J. Interfacial Engineering of BiVO4 Immobilized on Sodium Alginate Aerogels Enable Synergistic Photocatalytic-Peroxymonosulfate Degradation of Rhodamine B. Polymers. 2025; 17(16):2204. https://doi.org/10.3390/polym17162204
Chicago/Turabian StyleZhang, Weidi, Tiantian Zhou, and Jianhao Qiu. 2025. "Interfacial Engineering of BiVO4 Immobilized on Sodium Alginate Aerogels Enable Synergistic Photocatalytic-Peroxymonosulfate Degradation of Rhodamine B" Polymers 17, no. 16: 2204. https://doi.org/10.3390/polym17162204
APA StyleZhang, W., Zhou, T., & Qiu, J. (2025). Interfacial Engineering of BiVO4 Immobilized on Sodium Alginate Aerogels Enable Synergistic Photocatalytic-Peroxymonosulfate Degradation of Rhodamine B. Polymers, 17(16), 2204. https://doi.org/10.3390/polym17162204