Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (127)

Search Parameters:
Keywords = Solar water heater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14676 KB  
Article
Optimal and Model Predictive Control of Single Phase Natural Circulation in a Rectangular Closed Loop
by Aitazaz Hassan, Guilherme Ozorio Cassol, Syed Abuzar Bacha and Stevan Dubljevic
Sustainability 2025, 17(19), 8807; https://doi.org/10.3390/su17198807 - 1 Oct 2025
Viewed by 528
Abstract
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors [...] Read more.
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors such as process engineering, oil and gas, geothermal energy, solar water heaters, fertilizers, etc. Natural Circulation Loops eliminate the need for mechanical pumps. While this passive mechanism reduces energy consumption and maintenance costs, maintaining stability and efficiency under varying operating conditions remains a challenge. This study investigates thermo-syphoning in a rectangular closed-loop system and develops optimal control strategies like using a Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) to ensure stable and efficient heat removal while explicitly addressing physical constraints. The results demonstrate that MPC improves system stability and reduces energy usage through optimized control actions by nearly one-third in the initial energy requirement. Compared to the LQR and unconstrained MPC, MPC with active constraints effectively manages input limitations, ensuring safer and more practical operation. With its predictive capability and adaptability, the proposed MPC framework offers a robust, scalable solution for real-time industrial applications, supporting the development of sustainable and adaptive natural circulation pipeline systems. Full article
Show Figures

Figure 1

17 pages, 4795 KB  
Article
Operating a Positive Temperature Coefficient Water Heater Powered by Photovoltaic Panels
by Cameron Dolan, Ryan M. Smith, Henry Toal and Michelle Wilber
Solar 2025, 5(3), 42; https://doi.org/10.3390/solar5030042 - 3 Sep 2025
Viewed by 885
Abstract
Domestic water heaters traditionally use natural gas or electric resistance to heat stored water. A gas water heater relies on a non-renewable resource, while an electric water heater might rely on electricity generated by a non-renewable resource. This study analyzes the performance of [...] Read more.
Domestic water heaters traditionally use natural gas or electric resistance to heat stored water. A gas water heater relies on a non-renewable resource, while an electric water heater might rely on electricity generated by a non-renewable resource. This study analyzes the performance of an electric water heater featuring a novel heating element design based on a positive temperature coefficient (PTC) material powered directly by solar photovoltaic (PV) modules in a northern latitude installation. The project analyzes the operation of two different design temperatures of the PTC heating elements (50 °C, and 70 °C) when fed by three solar PV panels during the spring in the high-latitude location of Anchorage, Alaska (61.2° N). Our results show that both design temperatures of the PTC heating elements are able to achieve self-regulation at a sufficient and safe operating temperature for a domestic use case. Analysis of water heater performance directly connected to PV power showed that the PTC-equipped water heater had a limited period of heating when sufficient solar irradiance is available. Because of this, restrictive use of the water heater might be necessary during periods of non-daylight hours to preserve hot water in an insulated tank. However, this PV-to-PTC setup could be effectively used in industrial, commercial, and research settings. Full article
(This article belongs to the Topic Advances in Solar Heating and Cooling)
Show Figures

Figure 1

17 pages, 483 KB  
Article
A New Model to Investigate Effect of Heat Conduction Between Tubes on Overall Performance of a Coil Absorber for Flat-Plate Solar Collectors
by Elena G. Martínez-Morales, Ricardo Romero-Méndez, Francisco G. Pérez-Gutiérrez and Pedro García-Zugasti
Energies 2025, 18(16), 4360; https://doi.org/10.3390/en18164360 - 15 Aug 2025
Viewed by 550
Abstract
Solar heaters are a sustainable solution to lower operating heating costs for diverse applications. Improving the design of these devices promotes the adoption of this technology to reduce the environmental impact of traditional gas water heaters. The present paper studies heat transfer along [...] Read more.
Solar heaters are a sustainable solution to lower operating heating costs for diverse applications. Improving the design of these devices promotes the adoption of this technology to reduce the environmental impact of traditional gas water heaters. The present paper studies heat transfer along the plate-fins of serpentine-type flat-plate solar collectors. The focus of this investigation is the analysis of tube-to-tube thermal conduction through the absorbent plate and its effect on the heat gain of the circulating fluid. The model used here does not consider the adiabatic boundary condition in the plate mid-distance between tubes but applies the prescribed temperatures of the tubes as a boundary condition for the plate-fins. This type of boundary condition allows for heat conduction between rows of tubes. The analysis demonstrates that tube-to-tube heat conduction along the absorber plate has a detrimental effect on the heat gain of the circulating fluid. This effect is responsible for a decrease of up to 10% of the circulating fluid heat gain. This investigation defines the set of parameters that affect the performance of plate solar heaters because of tube-to-tube thermal conduction along the plates, and it helps to choose operation and designs parameters, leading to better design of these devices. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 1583 KB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Cited by 2 | Viewed by 673
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

16 pages, 720 KB  
Article
Augmenting Residential AC Electric Water Heating with Dedicated Direct-to-Element DC Solar Photovoltaic
by Daniel Pfister, Arnold Johan Rix and Marthinus Johannes Booysen
Energies 2025, 18(4), 792; https://doi.org/10.3390/en18040792 - 8 Feb 2025
Cited by 1 | Viewed by 910
Abstract
Residential water heating represents one of the most energy-intensive household applications, particularly in South Africa, where immersed resistive element heating dominates. Solar photovoltaic systems provide a promising solution for augmenting grid-based electrical water heaters, offering energy cost savings and environmental benefits. This study [...] Read more.
Residential water heating represents one of the most energy-intensive household applications, particularly in South Africa, where immersed resistive element heating dominates. Solar photovoltaic systems provide a promising solution for augmenting grid-based electrical water heaters, offering energy cost savings and environmental benefits. This study evaluates a novel approach to integrate solar photovoltaic directly into electrical water heater systems without using inverters. Using a combination of field experiments and simulation, four heating strategies were assessed, namely: “grid only”, “solar medium”, “solar heavy”, and “solar timer”. Metrics such as solar augmentation ratio, solar utilization, and cold event frequency were analyzed for different seasons using real-world and simulated water usage profiles. Results demonstrate significant grid energy reductions through solar augmentation, particularly in warmer seasons. However, the effectiveness of the strategies varies, with increased solar utilization often correlated with a higher frequency of cold events. A hybrid seasonal strategy is proposed to optimize energy savings while maintaining user comfort. This work highlights the potential of direct DC solar photovoltaic integration as a cost-effective and sustainable enhancement for residential water heating. Full article
(This article belongs to the Special Issue Smart Cities and the Need for Green Energy)
Show Figures

Figure 1

17 pages, 4160 KB  
Article
Experimental Investigation on Thermo-Economic Analysis of Direct Contact Membrane Distillation for Sustainable Freshwater Production
by Saleh M. Shalaby, Farid A. Hammad, Hamdy A. Ebeid, Asaad M. Armanuos, Iqbal M. Mujtaba and Tamer A. Gado
Processes 2025, 13(1), 240; https://doi.org/10.3390/pr13010240 - 15 Jan 2025
Cited by 1 | Viewed by 1732
Abstract
Treatment of extremely saline water such as the brine rejected from reverse osmosis water desalination plants, and produced water from shale oil and non-conventional gas extraction, is considered a global problem. Consequently, in this work, hollow fiber membrane distillation (HFMD) is experimentally evaluated [...] Read more.
Treatment of extremely saline water such as the brine rejected from reverse osmosis water desalination plants, and produced water from shale oil and non-conventional gas extraction, is considered a global problem. Consequently, in this work, hollow fiber membrane distillation (HFMD) is experimentally evaluated for desalinating extremely saline water of a salinity ranging from 40,000 to 130,000 ppm. For the purpose of comparison, the HFMD is also tested for desalinating brackish (3000–12,000 ppm) and sea (25,000–40,000 ppm) water. Firstly, the HFMD is tested at two values of feed water temperature (65 and 76 °C) and flow rate (600 and 850 L/h). The experimental results showed that the HFMD productivity significantly increases when the temperature of feed water increases. Increasing the feed water flow rate also has a positive effect on the productivity of HFMD. It is also concluded that the productivity of the HFMD is not significantly affected by increasing the salt concentration when brackish and sea water are used. The productivity also slightly decreases with increasing the salt concentration when extremely saline water is used. The decrement in the productivity reaches 27%, when the salt concentration increases from 40,000 to 130,000 ppm. Based on the conducted economic analysis, the HFMD shows a good potential for desalinating extremely saline water especially when the solar collector is used as a heat source. In this case, the cost per liter of freshwater is reduced by 21.7–23.1% when the evacuated tube solar collectors are used compared to the system using electrical heaters. More reduction in the cost per liter of freshwater is expected when a high capacity solar-powered HFMD plant is installed. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

11 pages, 3987 KB  
Article
A Rectangular Spiral Inward–Outward Alternating-Flow Polymer Thermal Collector for a Solar Water Heating System—A Preliminary Investigation in the Climate of Seri Iskandar, Malaysia
by Taib Iskandar Mohamad and Mohammad Danish Shareeman Mohd Shaifudeen
Appl. Sci. 2024, 14(23), 11045; https://doi.org/10.3390/app142311045 - 27 Nov 2024
Cited by 1 | Viewed by 1571
Abstract
A flat-plate unglazed solar water heater (SWH) with a polymer thermal absorber was developed and experimented with. Polymer thermal absorbers could be a viable alternative to metal thermal absorbers for SWH systems. The performance of this polymer SWH system was measured based on [...] Read more.
A flat-plate unglazed solar water heater (SWH) with a polymer thermal absorber was developed and experimented with. Polymer thermal absorbers could be a viable alternative to metal thermal absorbers for SWH systems. The performance of this polymer SWH system was measured based on inlet and outlet water temperature, water flow rate, ambient air temperature and solar irradiance. The polymer thermal absorbers were hollow Polyvinyl Chloride (PVC) tubes with a 20 mm external diameter and 3 mm thickness and were painted black to enhance radiation absorption. The pipes are arranged in a rectangular spiral inward–outward alternating-flow (RSioaf) pattern. The collector pipes were placed in a 1 m × 1 m enclosure with bottom insulation and a reflective surface for maximized radiation absorption. Water circulated through a closed loop with an uninsulated 16 L storage tank, driven by a pump and controlled by two valves to maintain a mass flow rate of 0.0031 to 0.0034 kg·s−1. The test was conducted under a partially clouded sky from 9 a.m. to 5 p.m., with solar irradiance between 105 and 1003 W·m−2 and an ambient air temperature of 27–36 °C. This SWH system produced outlet hot water at 65 °C by midday and maintained the storage temperature at 63 °C until the end of the test period. Photothermal energy conversion was recorded, showing a maximum value of 23%. Results indicate that a flat-plate solar water heater with a polymer thermal absorber in an RSioaf design can be an effective alternative to an SWH with a metal thermal absorber. Its performance can be improved with glazing and optimized tube sizing. Full article
(This article belongs to the Special Issue Advanced Solar Energy Materials: Methods and Applications)
Show Figures

Figure 1

17 pages, 2460 KB  
Article
Associated Gas Recovery Integrated with Solar Power for Produced Water Treatment: Techno-Economic and Environmental Impact Analyses
by Daniel H. Chen, Fuad Samier Aziz and Gevorg Sargsyan
Energies 2024, 17(22), 5794; https://doi.org/10.3390/en17225794 - 20 Nov 2024
Viewed by 1250
Abstract
Excess associated gas from unconventional wells is typically flared while excess produced water is injected underground. In this work, flare gas recovery is integrated with produced water desalination and a solar pre-heater. The solar module with a beam splitter preheats the produced water. [...] Read more.
Excess associated gas from unconventional wells is typically flared while excess produced water is injected underground. In this work, flare gas recovery is integrated with produced water desalination and a solar pre-heater. The solar module with a beam splitter preheats the produced water. Aspen Plus process modeling, economic analysis, and greenhouse gas analysis were performed. The solar flare gas recovery desalination (Solar-FGRD) process can conserve water resources and reduce the brine injection by 77%. The accompanying solar farm results in excess solar electricity for exporting to the grid. The process burner combustion efficiency (CE) is 99.8%, with a destruction and removal efficiency (DRE) of 99.99% for methane as opposed to a flare CE of 80–98% (and a methane DRE of 91–98%). The greenhouse gas (GHG) emissions for CO2 and methane, in terms of CO2 equivalent (CO2e), can be reduced by 45% for US North Dakota and Texas flaring and 13% for North Sea flaring by employing the Solar-FGRD process. Comprehensive financial analysis demonstrates the financial–economic feasibility of the investment project with or without tax credits. Best-case and worst-case scenarios provide a realistic range that investors can consider before making investment decisions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

24 pages, 5691 KB  
Article
Three-Dimensional CFD Analysis of a Hot Water Storage Tank with Various Inlet/Outlet Configurations
by Alina Abdidin, Abzal Seitov, Amankeldy Toleukhanov, Yerzhan Belyayev, Olivier Botella, Abdelhamid Kheiri and Mohammed Khalij
Energies 2024, 17(22), 5716; https://doi.org/10.3390/en17225716 - 15 Nov 2024
Cited by 2 | Viewed by 2772
Abstract
This study presents a comprehensive 3D numerical analysis of thermal stratification, fluid dynamics, and heat transfer efficiency across six hot water storage tank configurations, identified as Tank-1 through Tank-6. The objective is to determine the most effective design for achieving uniform temperature distribution, [...] Read more.
This study presents a comprehensive 3D numerical analysis of thermal stratification, fluid dynamics, and heat transfer efficiency across six hot water storage tank configurations, identified as Tank-1 through Tank-6. The objective is to determine the most effective design for achieving uniform temperature distribution, stable stratification, and efficient heat retention in sensible heat storage systems, with potential for integration with phase change materials (PCMs). Using COMSOL Multiphysics 5.6, simulations were conducted to evaluate key performance indicators, including the Richardson number, capacity ratio, and exergy efficiency. Among the tanks, Tank-1 demonstrated the highest efficiency, with a capacity ratio of 84.6% and an exergy efficiency of 72.5%, while Tank-3, which achieved a capacity ratio of 70.2% and exergy efficiency of 50.5%, was identified as the most practical for real-world applications due to its balanced heat distribution and feasibility for PCM integration. Calculated dimensionless numbers (Reynolds number: 635, Prandtl number: 4.5, and Peclet number: 2858) indicated laminar flow and dominant convective heat transfer across all the configurations. These findings provide valuable insights into the design of efficient thermal storage systems, with Tank-3’s configuration offering a practical balance of thermal performance and operational feasibility. Future work will explore the inclusion of PCM containers within Tank-3, as well as applications for heat pump and solar water heaters, and high-temperature heat storage with various working fluids. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 9332 KB  
Article
Improvement of Latent Heat Thermal Energy Storage Rate for Domestic Solar Water Heater Systems Using Anisotropic Layers of Metal Foam
by Obai Younis, Masoud Mozaffari, Awadallah Ahmed and Mehdi Ghalambaz
Buildings 2024, 14(8), 2322; https://doi.org/10.3390/buildings14082322 - 26 Jul 2024
Cited by 4 | Viewed by 2381
Abstract
Latent Heat Transfer Thermal Energy Storage (LHTES) units are crucial in managing the variability of solar energy in solar thermal storage systems. This study explores the effectiveness of strategically placing layers of anisotropic and uniform metal foam (MF) within an LHTES to optimize [...] Read more.
Latent Heat Transfer Thermal Energy Storage (LHTES) units are crucial in managing the variability of solar energy in solar thermal storage systems. This study explores the effectiveness of strategically placing layers of anisotropic and uniform metal foam (MF) within an LHTES to optimize the melting times of phase-change materials (PCMs) in three different setups. Using the enthalpy–porosity approach and finite element method simulations for fluid dynamics in MF, this research evaluates the impact of the metal foam’s anisotropy parameter (Kn) and orientation angle (ω) on thermal performance. The results indicate that the configuration placing the anisotropic MF layer to channel heat towards the lower right corner shortens the phase transition time by 2.72% compared to other setups. Conversely, the middle setup experiences extended melting periods, particularly when ω is at 90°—an increase in Kn from 0.1 to 0.2 cuts the melting time by 4.14%, although it remains the least efficient option. The findings highlight the critical influence of MF anisotropy and the pivotal role of ω = 45°. Angles greater than this significantly increase the liquefaction time, especially at higher Kn values, due to altered thermal conductivity directions. Furthermore, the tactical placement of the anisotropic MF layer significantly boosts thermal efficiency, as evidenced by a 13.12% reduction in the PCM liquefaction time, most notably in configurations with a lower angle orientation. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 1994 KB  
Article
Evaluation of Efficiency of a Finned Corrugation Basin in Inclined Basin-Type Solar Stills in Regulating the Water Supply of the CaspiCement Plant
by Ivan Kirvel, Ainur Zhidebayeva, Lyailim Taizhanova, Ainazhan Aitimova, Samal Syrlybekkyzy, Akmaral Serikbayeva, Kamshat Jumasheva and Symbat Koibakova
Limnol. Rev. 2024, 24(2), 150-163; https://doi.org/10.3390/limnolrev24020008 - 23 May 2024
Cited by 2 | Viewed by 1402 | Correction
Abstract
The need for fresh water production is especially high in hot dry climates without any sources of drinking water but with an abundance of sea and underground water. The solution is water desalination with efficient solar-powered water treatment plants. This article proposes a [...] Read more.
The need for fresh water production is especially high in hot dry climates without any sources of drinking water but with an abundance of sea and underground water. The solution is water desalination with efficient solar-powered water treatment plants. This article proposes a new modification of a basin made of thin-finned corrugation with 43°-angle-inclined sides, equal to the region’s latitude, which provide strong heating. The experiments were carried out in the hot climate of Aktau city (43°49′ N, 51°1′ E). The study’s outcomes can be useful for regions with drinking water scarcity. To define the level of the corrugated basin’s efficiency, two versions (SS-1, SS-2) of experiments were carried out on a two-slope distiller, complete with two basins. In SS-1, basin-2 was heated by air. By 15:00, basin-2 had heated up to 98.5 °C, and the acrylic cover above had heated up to 101.6 °C, which led to its “deformation”. By 12.00 p.m., the temperature differentials between the glass (40.7 °C), the air–water mixture (57.3 °C), and basin-1 (61.1 °C) were 16.6 °C and 20.4 °C. This resulted from the wind speed increasing up to 5.9 m/s. The large temperature differential contributed to the condensate yield increasing from 0.128 kg at 11 o’clock to 0.293 kg at 12 o’clock. The throughput capability of basin-1 per day was equal to 2.094 kg. Basin-2’s input to the performance in SS-1 was only the thermal effect. In SS-2, basin-2 was used as a regular basin. The plexiglass temperature was lower than the temperatures of the water and basin-2. The temperature differential between the glass and air–water mixture at 10:00 a.m. was 20 °C; at 12:00 p.m. it was 30.6 °C; and a value of 30.6 °C was recorded at 3:00 p.m. The thermal differential between the glass and the air-water mixture provided the highest condensate yield of 1.114 kg at 3.00 p.m. The condensate yield from the basins in SS-2 was 8.72 kg, including 3.5 kg from basin-1, which is 1.7 times more than from basin-1 in SS-1. The experimental results are consistent with the equations coming from the models of Clark J.A. and Dunkle R.V. Tcondensation ≠ Tevaporation is an irreversible process. When the basins are heated, the heat is consumed; when the glass cools down, the heat is given off. Heat losses are minimized due to the “gap” and positive energy is provided. The still’s throughput capability can be made larger by increasing the basin’s area, reducing the water layer thickness, and regulating the flowrate of the desalinated water. Full article
Show Figures

Figure 1

19 pages, 2795 KB  
Article
Design of a Solar Dish Receiver and Life Cycle Assessment of a Hot Water System
by Ibrahim Tursunović and Davide Papurello
Clean Technol. 2024, 6(1), 379-396; https://doi.org/10.3390/cleantechnol6010019 - 19 Mar 2024
Cited by 1 | Viewed by 2560
Abstract
The energy sector is the main source of greenhouse gases, so it has the highest potential for improvement. The improvements can be achieved by generating energy from renewable sources. It is necessary to combine production from renewable sources with storage systems. Thermal energy [...] Read more.
The energy sector is the main source of greenhouse gases, so it has the highest potential for improvement. The improvements can be achieved by generating energy from renewable sources. It is necessary to combine production from renewable sources with storage systems. Thermal energy storage using concentrated solar power systems is a promising technology for dispatchable renewable energy that can guarantee a stable energy supply even in remote areas without contributing to greenhouse gas emissions during operation. However, it must be emphasised that greenhouse gases and other impacts can occur during the production process of concentrating solar system components. This paper analyses the receiver design to produce thermal energy for the existing CSP dish plant at the Energy Center of the Politecnico di Torino. The plant is designed to produce electrical energy in the spring and summer periods. In addition to this energy production, the CSP can be adopted to produce thermal energy, through hot water, during the less favourable periods of the year in terms of global solar radiation. The surface heat flux is calculated in the first part of the analysis to obtain the maximum internal temperature in the receiver, which is 873.7 °C. This value is a constraint for the choice of material for the solar receiver. A life cycle assessment is performed to compare the emissions generated during the production of the main components of the CSP system with the emissions generated by the methane-fuelled water heater to produce the same amount of thermal energy. It can be concluded that the production of the main components of the CSP system results in lower greenhouse gas emissions than the operational phase of a conventional system. Given the assumptions made, the utilization of methane leads to the emission of approximately 12,240 kg of CO2, whereas the production of the CSP system results in emissions totalling 5332.8 kg of CO2 equivalent Full article
(This article belongs to the Collection Brilliant Young Researchers in Clean Technologies)
Show Figures

Figure 1

21 pages, 5755 KB  
Article
Solar Photovoltaic Cooker with No Electronics or Battery
by Antonio Lecuona-Neumann, José I. Nogueira-Goriba, Antonio Famiglietti, María del Carmen Rodríguez-Hidalgo and Jean Boubour
Energies 2024, 17(5), 1192; https://doi.org/10.3390/en17051192 - 2 Mar 2024
Cited by 7 | Viewed by 3200
Abstract
The paper offers innovative cooking utensil designs for remote, isolated, and even peri-urban communities at a low price, with high reliability and simple construction. It can alleviate energy poverty and improve food security. This utensil uses only local solar energy directly and allows [...] Read more.
The paper offers innovative cooking utensil designs for remote, isolated, and even peri-urban communities at a low price, with high reliability and simple construction. It can alleviate energy poverty and improve food security. This utensil uses only local solar energy directly and allows comfortable indoor cooking. This paper provides the design principles of a solar cooker/frying pan or generic heater, based on a PV panel or a plurality of them, which are directly connected to a plurality of Positive Thermal Coefficient (PTC) resistors to match the power. PTCs are nowadays produced in massive quantities and are widely available at low cost. The proposed device does not require an electronic controller or a battery for its operation. The aim is for family use, although the design can be easily scaled to a larger size or power, maintaining its simplicity. Electric heating inside or attached to the cooking pot, plus the temperature self-limiting effect of PTCs, allows for thermally insulating the cooking pot from its outside using ordinary materials. Insulation enhances energy efficiency during cooking and keeps cooked food warm for a long time. Clean development would receive a significant impulse with its application. A simple mathematical model describes its functioning and states guidelines for adequate design. Its results indicate a successful proof of concept and high efficiency both for water and oil as representatives of cooking. Full article
Show Figures

Figure 1

16 pages, 2035 KB  
Article
An Application of Quality Function Deployment to Explore a Product Design Concept—A Case Study of a Triple-Effect Green Energy Generator for the Taiwan Environment
by Shuo-Fang Liu, Yu-Shan Wei, Hong-Kai Guo and An-Yu Su
Sustainability 2023, 15(24), 16830; https://doi.org/10.3390/su152416830 - 14 Dec 2023
Viewed by 2659
Abstract
Taiwan has been actively promoting renewable energy technologies and applications to achieve sustainable development goals, aiming to increase the share of renewable energy in the domestic electricity structure. Among them, solar energy and wind energy have been developed and matured, especially solar water [...] Read more.
Taiwan has been actively promoting renewable energy technologies and applications to achieve sustainable development goals, aiming to increase the share of renewable energy in the domestic electricity structure. Among them, solar energy and wind energy have been developed and matured, especially solar water heaters, which have been popularized in people’s homes. This study proposes a triple-effect green energy generator, which is an innovative concept of combining a solar water heater with a wind turbine and thermoelectric devices, which have been gradually emphasized in recent years. Therefore, quality function deployment (QFD) was used to investigate the customer requirements and engineering measures of the product, and the results show that the product has leakage protection, is waterproof and rustproof, and does not affect health; furthermore, the product is resistant to high temperature and heavy rain, has a stable base, is suitable for most residential conditions, has 24 h operation, and has a remarkable power generation effect. Electricity can be used for general household appliances, which are the most important customer needs, and small wind turbines, energy management systems, and exterior materials are the three most important engineering initiatives to be emphasized. Although this study only analyzes preliminary design concepts, the results can provide references for related or similar product development strategies and contribute to the progress of Taiwan’s sustainable development goals. Full article
Show Figures

Figure 1

34 pages, 19907 KB  
Article
Solar Energy Utilization Potential in Urban Residential Blocks: A Case Study of Wuhan, China
by Shiyu Jin, Hui Zhang, Xiaoxi Huang, Junle Yan, Haibo Yu, Ningcheng Gao, Xueying Jia and Zhengwei Wang
Sustainability 2023, 15(22), 15988; https://doi.org/10.3390/su152215988 - 15 Nov 2023
Cited by 12 | Viewed by 3705
Abstract
In dense, energy-demanding urban areas, the effective utilization of solar energy resources, encompassing building-integrated photovoltaic (BIPV) systems and solar water heating (SWH) systems inside buildings, holds paramount importance for addressing concerns related to carbon emission reduction and the balance of energy supply and [...] Read more.
In dense, energy-demanding urban areas, the effective utilization of solar energy resources, encompassing building-integrated photovoltaic (BIPV) systems and solar water heating (SWH) systems inside buildings, holds paramount importance for addressing concerns related to carbon emission reduction and the balance of energy supply and demand. This study aimed to examine the interplay between urban residential blocks and their solar energy potential, with the objective of promoting environmentally sustainable development within urban residential areas. The primary focus of this study was the hot summer and cold winter zone of China, which serves as a representative case study. Methodologically, we employed Rhinoceros and Grasshopper (GH) software version GH6.0 tools to simulate the solar radiation potential within residential blocks and translated this information into the potential utilization of BIPV and SWH systems. Subsequently, our focus was directed towards identifying optimal locations for mounting BIPV modules and water heaters on roofs and building façades. The study results revealed the following: (1) The floor area ratio (FAR), building density (BD), average building height (ABH), and space layout (SL) exerted substantial influences on the solar potential of a residential block, with correlations of up to 75%, 71%, 78%, and 50%, respectively, concerning the overall solar potential of the entire plot. (2) It is essential to emphasize that, with regard to the BIPV installation potential, façades account for 80% of the overall residential block potential, whereas rooftops contribute only 20%. Both south- and west-facing façades exhibited a BIPV installation ratio of approximately 34%. (3) In the realm of solar water heating, the potential for installations on building façades accounted for 77% of the total living area of the residential blocks, 23% on the rooftops, and 35% on the south-facing façades. This study furnishes practical guidelines for harnessing the potential of BIPV and SWH systems within residential blocks, thereby contributing to the advancement of sustainable urban development practices. Full article
Show Figures

Figure 1

Back to TopTop