Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = SUCLG1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6367 KB  
Article
Gene Expression-Based Colorectal Cancer Prediction Using Machine Learning and SHAP Analysis
by Yulai Yin, Zhen Yang, Xueqing Li, Shuo Gong and Chen Xu
Genes 2026, 17(1), 114; https://doi.org/10.3390/genes17010114 - 20 Jan 2026
Abstract
Objective: To develop and validate a genetic diagnostic model for colorectal cancer (CRC). Methods: First, differential expression genes (DEGs) between colorectal cancer and normal groups were screened using the TCGA database. Subsequently, a two-sample Mendelian randomization analysis was performed using the eQTL genomic [...] Read more.
Objective: To develop and validate a genetic diagnostic model for colorectal cancer (CRC). Methods: First, differential expression genes (DEGs) between colorectal cancer and normal groups were screened using the TCGA database. Subsequently, a two-sample Mendelian randomization analysis was performed using the eQTL genomic data from the IEU OpenGWAS database and colorectal cancer outcomes from the R12 Finnish database to identify associated genes. The intersecting genes from both methods were selected for the development and validation of the CRC genetic diagnostic model using nine machine learning algorithms: Lasso Regression, XGBoost, Gradient Boosting Machine (GBM), Generalized Linear Model (GLM), Neural Network (NN), Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Random Forest (RF), and Decision Tree (DT). Results: A total of 3716 DEGs were identified from the TCGA database, while 121 genes were associated with CRC based on the eQTL Mendelian randomization analysis. The intersection of these two methods yielded 27 genes. Among the nine machine learning methods, XGBoost achieved the highest AUC value of 0.990. The top five genes predicted by the XGBoost method—RIF1, GDPD5, DBNDD1, RCCD1, and CLDN5—along with the five most significantly differentially expressed genes (ASCL2, IFITM3, IFITM1, SMPDL3A, and SUCLG2) in the GSE87211 dataset, were selected for the construction of the final colorectal cancer (CRC) genetic diagnostic model. The ROC curve analysis revealed an AUC (95% CI) of 0.9875 (0.9737–0.9875) for the training set, and 0.9601 (0.9145–0.9601) for the validation set, indicating strong predictive performance of the model. SHAP model interpretation further identified IFITM1 and DBNDD1 as the most influential genes in the XGBoost model, with both making positive contributions to the model’s predictions. Conclusions: The gene expression profile in colorectal cancer is characterized by enhanced cell proliferation, elevated metabolic activity, and immune evasion. A genetic diagnostic model constructed based on ten genes (RIF1, GDPD5, DBNDD1, RCCD1, CLDN5, ASCL2, IFITM3, IFITM1, SMPDL3A, and SUCLG2) demonstrates strong predictive performance. This model holds significant potential for the early diagnosis and intervention of colorectal cancer, contributing to the implementation of third-tier prevention strategies. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

21 pages, 2878 KB  
Article
Genomic Analysis of Adaptability and Genetic Structure of Jabal Akhdar Goats: Evidence of Positive Selection in an Indigenous Omani Breed
by Zainab Mohammad, Hussain Bahbahani, Ahmad Alfoudari, Kaadhia Al Kharousi, Al Abeer Al Hamrashdi, Al Ghalya Al Toobi and Mohammad Al Abri
Biology 2025, 14(7), 761; https://doi.org/10.3390/biology14070761 - 25 Jun 2025
Viewed by 1390
Abstract
Jabal Akhdar goats, native to Oman’s high-altitude Jabal Akhdar mountain range, are recognized for their high growth rate, remarkable twinning rate, and adaptability to harsh environmental conditions. This study assesses the genetic structure, inbreeding levels, effective population size (Ne), and [...] Read more.
Jabal Akhdar goats, native to Oman’s high-altitude Jabal Akhdar mountain range, are recognized for their high growth rate, remarkable twinning rate, and adaptability to harsh environmental conditions. This study assesses the genetic structure, inbreeding levels, effective population size (Ne), and linkage disequilibrium (LD) of Jabal Akhdar goats while identifying genomic regions under positive selection that may contribute to their environmental adaptation. The SNP genotypes from 72 Jabal Akhdar goats and two desert breeds from Egypt (153 Barki and 60 Saidi) revealed a clear genetic distinction between both groups. Within the Jabal Akhdar goats, genetic differentiation was also identified among the three sampled villages, indicating a village-specific genetic structure. The Jabal Akhdar breed exhibited a moderate level of inbreeding (FROH = 0.16), greater than that of the Barki and Saidi breeds. Additionally, Jabal Akhdar goats displayed greater LD and lower Ne levels compared to the Egyptian breeds. Analysis of runs of homozygosity (ROH) and extended haplotype homozygosity-based statistics (iHS and Rsb) identified 93 genomic regions exhibiting signatures of positive selection (80 from ROH, 5 from iHS, and 8 from Rsb). These regions harbor genes associated with traits essential for environmental adaptability, including hypoxia tolerance (SUCNR1, ANGPTL1, MITF, MTUS2), muscle development and function (MBNL1, ACTC1, CAPN5), fertility (GNRHR, CCNA1, SPAG1), UV radiation resistance (UVRAG, BRCA1), bone development (SOST, MEOX1), and lipid metabolism for energy utilization (DGAT2, G6PC, SUCLG2). The results of this study provide valuable insights for identifying causative variants and haplotypes underlying the Jabal Akhdar goat’s superior adaptability. These findings can guide breeders in designing conservation strategies and improving the productivity of this unique indigenous breed. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

24 pages, 8367 KB  
Article
Metabolism-Related Genes SMOX and SUCLG2 as Immunological and Prognostic Biomarkers in Colorectal Cancer: A Pan-Cancer Analysis
by Zuming Xiong, Yirong Lin, Yongjun Yang, Wenxin Li, Wei Huang and Sen Zhang
Curr. Issues Mol. Biol. 2025, 47(6), 465; https://doi.org/10.3390/cimb47060465 - 17 Jun 2025
Cited by 1 | Viewed by 1137
Abstract
Expression patterns and underlying mechanisms of metabolism-related genes SMOX and SUCLG2 in pan-cancer remain unclear. We conducted a comprehensive pan-cancer analysis of SMOX and SUCLG2, to explore their potential roles and mechanisms of action. Comprehensive analysis of SMOX and SUCLG2 was performed through [...] Read more.
Expression patterns and underlying mechanisms of metabolism-related genes SMOX and SUCLG2 in pan-cancer remain unclear. We conducted a comprehensive pan-cancer analysis of SMOX and SUCLG2, to explore their potential roles and mechanisms of action. Comprehensive analysis of SMOX and SUCLG2 was performed through UCSC, TCGA, GEO, and other databases. We validated the expression levels, diagnostic value, and prognostic significance of SMOX and SUCLG2 in CRC using external databases and qPCR. Then, CCK-8 is used to detect proliferation of RKO and HCT116 after silencing or overexpressing of SUCLG2. The expression of SMOX was upregulated and that of SUCLG2 was downregulated in most cancers. Both SMOX and SUCLG2 exhibited significant correlations with cancer prognosis, tumor microenvironment, immune infiltration, stemness scores, tumor mutational burden, and microsatellite instability. The diagnostic and prognostic value of SMOX and SUCLG2 in CRC was confirmed through TCGA, GEO, and HPA, as well as qPCR. SUCLG2 overexpression inhibited the proliferation of RKO and HCT116, whereas SUCLG2 silence promoted their proliferation. Our data provide insights into the role of SMOX and SUCLG2 in pan-cancer, highlighting their association with prognosis, cancer immunity, and other cancer characteristics and also revealing their significance in cancer progression. SUCLG2 may inhibit the proliferation of CRC. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
Show Figures

Figure 1

15 pages, 5685 KB  
Article
Integrative Proteome and Transcriptome Analyses Reveal the Metabolic Disturbance of the Articular Cartilage in Kashin–Beck Disease, an Endemic Arthritis
by Lixin Han, Bolun Cheng, Jinyu Xia, Shiqiang Cheng, Xuena Yang and Feng Zhang
Int. J. Mol. Sci. 2025, 26(11), 5146; https://doi.org/10.3390/ijms26115146 - 27 May 2025
Cited by 1 | Viewed by 1336
Abstract
The objective of this study was to elucidate the proteomic and transcriptomic alterations within the cartilage in Kashin–Beck disease (KBD) compared to a normal control. We conducted a comparison of the expression profiles of proteins, mRNAs, and lncRNAs via data-independent acquisition (DIA) proteomics [...] Read more.
The objective of this study was to elucidate the proteomic and transcriptomic alterations within the cartilage in Kashin–Beck disease (KBD) compared to a normal control. We conducted a comparison of the expression profiles of proteins, mRNAs, and lncRNAs via data-independent acquisition (DIA) proteomics and transcriptome sequencing in six KBD individuals and six normal individuals. To facilitate the functional annotation enrichment analysis of the differentially expressed (DE) proteins, DE mRNAs, and DE lncRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, we conducted integration analysis of multi-omics datasets using mixOmics. We revealed a distinct proteomic signature, highlighting 53 DE proteins, with notable alterations in the pathways related to tryptophan metabolism and microbial metabolism. Additionally, we identified 160 DE mRNAs, with the functional enrichment analysis uncovering pathways related to RNA metabolism and protein splicing. Furthermore, our analysis of the lncRNAs demonstrated biological processes involved in protein metabolism and cellular nitrogen compound metabolic processes. The integrative analysis uncovered significant correlations, including the positive correlation between superoxide dismutase 1 (SOD1) and mitochondrial import receptor subunit TOM6 homolog (TOMM6), and the negative correlation between C-X9-C motif-containing 1 (CMC1) and succinate–CoA ligase [GDP-forming] subunit beta, mitochondrial (SUCLG2). Our results provide novel insights into the molecular mechanisms underlying KBD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 2094 KB  
Article
Downregulation of Aging-Associated Gene SUCLG1 Marks the Aggressiveness of Liver Disease
by Desislava K. Tsoneva, Alessandro Napoli, Mariya Teneva, Tommaso Mazza and Manlio Vinciguerra
Cancers 2025, 17(3), 339; https://doi.org/10.3390/cancers17030339 - 21 Jan 2025
Cited by 2 | Viewed by 2341
Abstract
Introduction: The most common liver disease is nonalcoholic fatty liver disease, characterized by an intrahepatic accumulation of lipids that most often accompanies obesity. Fatty liver can evolve, in the presence of oxidative stress and inflammation, into disabling and deadly liver diseases such as [...] Read more.
Introduction: The most common liver disease is nonalcoholic fatty liver disease, characterized by an intrahepatic accumulation of lipids that most often accompanies obesity. Fatty liver can evolve, in the presence of oxidative stress and inflammation, into disabling and deadly liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocarcinoma (CC). Old age seems to favor HCC and CC, in agreement with the inflammaging theory, according to which aging accrues inflammation. Cancer, in general, is an age-related disease, as incidence and mortality for most types of cancer increase with age. However, how molecular drivers in tumors differ or are mutated more frequently among patients of different ages remains scarcely investigated. A recent integrative analysis of the age-associated multi-omic landscape across cancers and healthy tissues demonstrated that age-related gene expression changes are linked to numerous biological processes. HCC and CC have among the lowest five-year survival estimates due to their aggressive progression. Materials and methods: In this study, we extracted top gene candidates from the above-mentioned pan-analyses (i.e., B2M, C1qA, SUCLG1) and tested by qPCR their expression and their correlation with disease progression in 48 tissue samples covering liver disease stages (fatty liver, hepatitis, cirrhosis, HCC and CC) and normal tissues. Results: Here, we report a significant downregulation in the expression of the age-associated gene SUCLG1 during the progression of liver disease toward HCC and CC, which also associates with poor patient survival. Conclusion: SUCGL1, a mitochondrial enzyme gene that catalyzes the conversion of succinyl CoA to succinate, might be therapeutically targeted for the development and progression of age-associated liver cancers with low survival rates. Full article
(This article belongs to the Special Issue Aging and Cancers)
Show Figures

Figure 1

28 pages, 21218 KB  
Article
Exploitation of Key Regulatory Modules and Genes for High-Salt Adaptation in Schizothoracine by Weighted Gene Co-Expression Network Analysis
by Luo Lei, Xingxing Deng, Fei Liu, He Gao, Yuting Duan, Junting Li, Suxing Fu, Hejiao Li, Yinhua Zhou, Rongrong Liao, Haiping Liu and Chaowei Zhou
Animals 2025, 15(1), 56; https://doi.org/10.3390/ani15010056 - 29 Dec 2024
Viewed by 1695
Abstract
Schizothoracine fishes in saltwater lakes of the Tibetan Plateau are important models for studying the evolution and uplift of the Tibetan Plateau. Examining their adaptation to the high-salt environment is interesting. In this study, we first assembled the RNA-Seq data of each tissue [...] Read more.
Schizothoracine fishes in saltwater lakes of the Tibetan Plateau are important models for studying the evolution and uplift of the Tibetan Plateau. Examining their adaptation to the high-salt environment is interesting. In this study, we first assembled the RNA-Seq data of each tissue of G. przewalskii, G. selincuoensis, and G. namensis from Qinghai Lake, Selincuo Lake, and Namtso Lake, respectively, obtained by the group previously. After obtaining reliable results, the adaptation of the gills, kidneys, and livers of the three species to the high-salinity environment was assessed by weighted gene co-expression network analysis (WGCNA). Using module eigengenes (ME), 21, 22, and 22 gene modules were identified for G. przewalskii, G. selincuoensis, and G. nemesis, respectively. Functional clustering analysis of genes in the significant association module identified several genes associated with osmolarity-regulated potential KEGG pathways in the gills of three species of Schizothoracine fish. Th17 cell differentiation pathway was up-regulated in the gills of all three species; histocompatibility class 2 II antigen and E alpha (h2-ea) were up-regulated genes in this pathway. Functional clustering analysis of genes in apparently related modules in the kidney unveiled several differential KEGG pathways. The pentose phosphate pathway was up-regulated in the three Schizothoracine fishes, and glucose-6-phosphate dehydrogenase (g6pd) was an up-regulated gene in this pathway. In the livers of the three Schizothorax species, the propanoate metabolism pathway was up-regulated, and succinate-CoA ligase GDP-forming subunit beta (suclg2) was an up-regulated gene in this pathway. The above analyses provide reference data for the adaptation of Schizothorax to high-salt environments and lay the foundation for future studies on the adaptive mechanism of Schizothorax in the plateau. These results partly fill the void in the knowledge gap in the survival adaptations of Schizothoracine fishes to highland saline lakes. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 9694 KB  
Article
Comparative Whole-Genome Analysis of Production Traits and Genetic Structure in Baiyu and Chuanzhong Black Goats
by Jing Luo, Qi Min, Xueliang Sun, Xinyu Guo, Meijun Song, Xuehui Zeng, Jiazhong Guo, Hongping Zhang, Yanguo Han and Li Li
Animals 2024, 14(24), 3616; https://doi.org/10.3390/ani14243616 - 15 Dec 2024
Cited by 3 | Viewed by 1703
Abstract
Natural selection and artificial breeding are crucial methods for developing new animal groups. The Baiyu black goats and Chuanzhong black goats are indigenous goat breeds from distinct ecological regions in Sichuan Province, with dramatically different growth and reproductivity. This study aimed to systematically [...] Read more.
Natural selection and artificial breeding are crucial methods for developing new animal groups. The Baiyu black goats and Chuanzhong black goats are indigenous goat breeds from distinct ecological regions in Sichuan Province, with dramatically different growth and reproductivity. This study aimed to systematically elucidate the differences in production performance and genetic traits between Baiyu black goats and Chuanzhong black goats. We quantified growth and reproductive attributes for both breeds. Furthermore, we conducted a comprehensive analysis of genetic diversity, population structure, and selection signatures using whole-genome resequencing data. This dataset included 30 individuals from the Baiyu black goat breed, 41 from the Chuanzhong black goat breed, and an additional 59 individuals representing Chengdu grey goats, Tibetan cashmere goats, and Jianchang black goats, totaling 130 individuals across five goat breeds. The comparative analysis of production performance revealed that the weight and body size of Chuanzhong black goats were significantly higher than those of Baiyu black goats (p < 0.01). At the same time, the average kidding rate and kid-weaning survival rate of Chuanzhong black goats were also notably superior to those of Baiyu black goats (p < 0.01). The Baiyu black goats exhibited a more abundant genetic diversity and distinct genetic differences compared to the Chuanzhong black goat, according to an analysis grounded on genomic variation. The Baiyu black goats are more closely related to Tibetan cashmere goats, whereas Chuanzhong black goats share a closer genetic relationship with Chengdu grey goats. Additionally, we employed the π, Fst, and XP-EHH methodologies to identify genes related to immunity (TRIM10, TRIM15, TRIM26, and TRIM5), neurodevelopment (FOXD4L1, PCDHB14, PCDHB4, PCDHB5, PCDHB6, and PCDHB7), reproduction (BTNL2 and GABBR1), body size (NCAPG, IBSP, and MKNK1), and meat quality traits (SUCLG2 and PGM5). These results provide a theoretical basis for further resource conservation and breeding improvement of the Baiyu black goat and Chuanzhong black goat. Full article
(This article belongs to the Special Issue Genetics and Breeding in Ruminants)
Show Figures

Figure 1

18 pages, 2532 KB  
Article
Leigh Syndrome: Spectrum of Molecular Defects and Clinical Features in Russia
by Denis Kistol, Polina Tsygankova, Tatiana Krylova, Igor Bychkov, Yulia Itkis, Ekaterina Nikolaeva, Svetlana Mikhailova, Maria Sumina, Natalia Pechatnikova, Sergey Kurbatov, Fatima Bostanova, Ochir Migiaev and Ekaterina Zakharova
Int. J. Mol. Sci. 2023, 24(2), 1597; https://doi.org/10.3390/ijms24021597 - 13 Jan 2023
Cited by 17 | Viewed by 5797
Abstract
Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of [...] Read more.
Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes—MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Genetics and Genomics in Russia)
Show Figures

Figure 1

11 pages, 2404 KB  
Case Report
Rare Gene Mutations in Romanian Hypoacusis Patients: Case Series and a Review of the Literature
by Alexandra-Cristina Neagu, Magdalena Budișteanu, Dan-Cristian Gheorghe, Adela-Ioana Mocanu and Horia Mocanu
Medicina 2022, 58(9), 1252; https://doi.org/10.3390/medicina58091252 - 9 Sep 2022
Cited by 4 | Viewed by 2799
Abstract
(1) Background: In this paper, we report on three cases of hypoacusis as part of a complex phenotype and some rare gene variants. An extensive review of literature completes the newly reported clinical and genetic information. (2) Methods: The cases range from 2- [...] Read more.
(1) Background: In this paper, we report on three cases of hypoacusis as part of a complex phenotype and some rare gene variants. An extensive review of literature completes the newly reported clinical and genetic information. (2) Methods: The cases range from 2- to 11-year-old boys, all with a complex clinical picture and hearing impairment. In all cases, whole exome sequencing (WES) was performed, in the first case in association with mitochondrial DNA study. (3) Results: The detected variants were: two heterozygous variants in the TWNK gene, one likely pathogenic and another of uncertain clinical significance (autosomal recessive mitochondrial DNA depletion syndrome type 7—hepatocerebral type); heterozygous variants of uncertain significance PACS2 and SYT2 genes (autosomal dominant early infantile epileptic encephalopathy) and a homozygous variant of uncertain significance in SUCLG1 gene (mitochondrial DNA depletion syndrome 9). Some of these genes have never been previously reported as associated with hearing problems. (4) Conclusions: Our cases bring new insights into some rare genetic syndromes. Although the role of TWNK gene in hearing impairment is clear and accordingly reflected in published literature as well as in the present article, for the presented gene variants, a correlation to hearing problems could not yet be established and requires more scientific data. We consider that further studies are necessary for a better understanding of the role of these variants. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Figure 1

14 pages, 3837 KB  
Article
Betaine Supplementation Causes an Increase in Fatty Acid Oxidation and Carbohydrate Metabolism in Livers of Mice Fed a High-Fat Diet: A Proteomic Analysis
by Caiyun Fan, Haitao Hu, Xiaoyun Huang, Di Su, Feng Huang, Zhao Zhuo, Lun Tan, Yinying Xu, Qingfeng Wang, Kun Hou and Jianbo Cheng
Foods 2022, 11(6), 881; https://doi.org/10.3390/foods11060881 - 19 Mar 2022
Cited by 21 | Viewed by 6371
Abstract
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a [...] Read more.
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a high fat (HF) diet to investigate the mechanism by which betaine affects hepatic metabolism. Although betaine supplementation had no significant effect on body weight, a total of 103 differentially expressed proteins were identified between HF diet + 1% betaine group (HFB) and HF diet group by LC-MS (fold change > 2, p < 0.05). The addition of 1% betaine had a significant enhancement of the expression of enzymes related to fatty acid oxidation metabolism, such as hydroxyacyl-Coenzyme A dehydrogenase (HADHA), enoyl Coenzyme A hydratase 1 (ECHS1) (p < 0.05) etc., and the expression of apolipoprotein A-II (APOA2) protein was significantly reduced (p < 0.01). Meanwhile, the protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and succinate-CoA ligase (SUCLG1) were highly significant (p < 0.01). Pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the functions of differential proteins involved fatty acid catabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA) and peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway. Protein–protein interaction (PPI) analysis discovered that acetyl-Coenzyme A acetyltransferase 1 (ACAT1), HADHA and ECHS1 were central hubs of hepatic proteomic changes in the HFB group of mice. Betaine alleviates hepatic lipid accumulation by enhancing fatty acid oxidation and accelerating the TCA cycle and glycolytic process in the liver of mice on an HF diet. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

22 pages, 537 KB  
Article
Effect of Citric Acid Cycle Genetic Variants and Their Interactions with Obesity, Physical Activity and Energy Intake on the Risk of Colorectal Cancer: Results from a Nested Case-Control Study in the UK Biobank
by Sooyoung Cho, Nan Song, Ji-Yeob Choi and Aesun Shin
Cancers 2020, 12(10), 2939; https://doi.org/10.3390/cancers12102939 - 12 Oct 2020
Cited by 12 | Viewed by 4613
Abstract
Colorectal cancer is a common malignancy worldwide. Physical activity and a healthy diet contribute to energy balance and have been recommended for the prevention of colorectal cancer. We suggest that the individual differences in energy balance can be explained by genetic polymorphisms involved [...] Read more.
Colorectal cancer is a common malignancy worldwide. Physical activity and a healthy diet contribute to energy balance and have been recommended for the prevention of colorectal cancer. We suggest that the individual differences in energy balance can be explained by genetic polymorphisms involved in mitochondria, which play a central role in energy metabolism at the cellular level. This study aimed to evaluate the association between genetic variants of the mitochondrial citric acid cycle and colorectal cancer. Study participants comprised 3523 colorectal cancer cases and 10,522 matched controls from the UK Biobank study. Odds ratios (ORs) and 95% confidence intervals (CIs) for colorectal cancer were estimated using a conditional logistic regression model. We found a significant association between the SUCLG2 gene rs35494829 and colon cancer (ORs [95% CIs] per increment of the minor allele, 0.82 [0.74–0.92]). Statistical significance was observed in the interactions of the citric acid cycle variants with obesity, energy intake, and vigorous physical activity in colorectal cancer. We also identified significant SNP-SNP interactions among citric acid cycle SNPs in colorectal cancer. The results of this study may provide evidence for bioenergetics in the development of colorectal cancer and for establishing a precise prevention strategy. Full article
(This article belongs to the Collection Cancer Biomarkers)
Show Figures

Figure 1

21 pages, 6529 KB  
Article
MicroRNA-Mediated Metabolic Reprograming in Renal Cancer
by Joanna Bogusławska, Piotr Popławski, Saleh Alseekh, Marta Koblowska, Roksana Iwanicka-Nowicka, Beata Rybicka, Hanna Kędzierska, Katarzyna Głuchowska, Karolina Hanusek, Zbigniew Tański, Alisdair R. Fernie and Agnieszka Piekiełko-Witkowska
Cancers 2019, 11(12), 1825; https://doi.org/10.3390/cancers11121825 - 20 Nov 2019
Cited by 34 | Viewed by 6132
Abstract
Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue samples revealed a group [...] Read more.
Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue samples revealed a group of microRNAs that contribute to metabolic reprogramming in RCC. miRNAs expressions correlated with their predicted target genes and with gas chromatography-mass spectrometry (GC-MS) metabolome profiles of RCC tumors. Assays performed in RCC-derived cell lines showed that miR-146a-5p and miR-155-5p targeted genes of PPP (the pentose phosphate pathway) (G6PD and TKT), the TCA (tricarboxylic acid cycle) cycle (SUCLG2), and arginine metabolism (GATM), respectively. miR-106b-5p and miR-122-5p regulated the NFAT5 osmoregulatory transcription factor. Altered expressions of G6PD, TKT, SUCLG2, GATM, miR-106b-5p, miR-155-5p, and miR-342-3p correlated with poor survival of RCC patients. miR-106b-5p, miR-146a-5p, and miR-342-3p stimulated proliferation of RCC cells. The analysis involving >6000 patients revealed that miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p are PanCancer metabomiRs possibly involved in global regulation of cancer metabolism. In conclusion, we found that microRNAs upregulated in renal cancer contribute to disturbed expression of key genes involved in the regulation of RCC metabolome. miR-146a-5p and miR-155-5p emerge as a key “metabomiRs” that target genes of crucial metabolic pathways (PPP (the pentose phosphate pathway), TCA cycle, and arginine metabolism). Full article
(This article belongs to the Special Issue Renal Cell Carcinoma)
Show Figures

Graphical abstract

22 pages, 8065 KB  
Article
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement
by Giacomo Lazzarino, Angela Maria Amorini, Stefano Signoretti, Giuseppe Musumeci, Giuseppe Lazzarino, Giuseppe Caruso, Francesco Saverio Pastore, Valentina Di Pietro, Barbara Tavazzi and Antonio Belli
Int. J. Mol. Sci. 2019, 20(22), 5774; https://doi.org/10.3390/ijms20225774 - 16 Nov 2019
Cited by 48 | Viewed by 5815
Abstract
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of [...] Read more.
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance. Full article
Show Figures

Figure 1

13 pages, 3100 KB  
Article
Synergistic Effects of Sanghuang–Danshen Bioactives on Arterial Stiffness in a Randomized Clinical Trial of Healthy Smokers: An Integrative Approach to in silico Network Analysis
by Yeni Lim, Tae-Jin Song, Woochang Hwang, Ji Yeon Kim, Doheon Lee, Yong-Jae Kim and Oran Kwon
Nutrients 2019, 11(1), 108; https://doi.org/10.3390/nu11010108 - 7 Jan 2019
Cited by 16 | Viewed by 6070
Abstract
The vascular endothelium is a favorite early target of cardiovascular risk factors, including cigarette smoking. Here, we investigated the synergistic effects of Sanghuang–Danshen (SD) bioactives on vascular stiffness in a controlled clinical trial of healthy chronic smokers (n = 72). Relative to [...] Read more.
The vascular endothelium is a favorite early target of cardiovascular risk factors, including cigarette smoking. Here, we investigated the synergistic effects of Sanghuang–Danshen (SD) bioactives on vascular stiffness in a controlled clinical trial of healthy chronic smokers (n = 72). Relative to placebo, 4-week SD consumption at 900 mg/day improves pulse wave velocity (p = 0.0497), reduces systolic blood pressure (peripheral, p = 0.0008; brachial, p = 0.0046; and ankle, p = 0.0066), and increases endothelial nitric oxide synthase activation (p < 0.0001). We then mapped all differential markers obtained from the clinical data, Affymetrix microarray, and 1H NMR metabolomics, together with 12 SD bioactives, onto the network platform termed the context-oriented directed associations. The resulting vascular subnetwork demonstrates that ellagic acid, caffeic acid, protocatechuic acid, cryptotanshinone, tanshinone I, and tanshinone IIA are linked to NOS3, ARG2, and EDN1 for vascular dilation, implicated with arginine/proline metabolism. They are also linked to SUCLG1, CYP1A1, and succinate related to the mitochondrial metabolism and detoxification, implicated with various metabolic pathways. These results could explain the synergistic action mechanisms of SD bioactives in the regulation of vascular endothelial dilation and metabolism, confirming the potential of SD in improving vascular stiffness and blood pressure in healthy smokers. Full article
(This article belongs to the Special Issue Dietary Bioactive Compounds and Human Health and Disease)
Show Figures

Figure 1

Back to TopTop