Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = SPD manifolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 7150 KiB  
Article
A Riemannian Dichotomizer Approach on Symmetric Positive Definite Manifolds for Offline, Writer-Independent Signature Verification
by Nikolaos Vasilakis, Christos Chorianopoulos and Elias N. Zois
Appl. Sci. 2025, 15(13), 7015; https://doi.org/10.3390/app15137015 - 21 Jun 2025
Viewed by 319
Abstract
Automated handwritten signature verification continues to pose significant challenges. A common approach for developing writer-independent signature verifiers involves the use of a dichotomizer, a function that generates a dissimilarity vector with the differences between similar and dissimilar pairs of signature descriptors as components. [...] Read more.
Automated handwritten signature verification continues to pose significant challenges. A common approach for developing writer-independent signature verifiers involves the use of a dichotomizer, a function that generates a dissimilarity vector with the differences between similar and dissimilar pairs of signature descriptors as components. The Dichotomy Transform was applied within a Euclidean or vector space context, where vectored representations of handwritten signatures were embedded in and conformed to Euclidean geometry. Recent advances in computer vision indicate that image representations to the Riemannian Symmetric Positive Definite (SPD) manifolds outperform vector space representations. In offline signature verification, both writer-dependent and writer-independent systems have recently begun leveraging Riemannian frameworks in the space of SPD matrices, demonstrating notable success. This work introduces, for the first time in the signature verification literature, a Riemannian dichotomizer employing Riemannian dissimilarity vectors (RDVs). The proposed framework explores a number of local and global (or common pole) topologies, as well as simple serial and parallel fusion strategies for RDVs for constructing robust models. Experiments were conducted on five popular signature datasets of Western and Asian origin, using blind intra- and cross-lingual experimental protocols. The results indicate the discriminative capabilities of the proposed Riemannian dichotomizer framework, which can be compared to other state-of-the-art and computationally demanding architectures. Full article
Show Figures

Figure 1

25 pages, 3168 KiB  
Article
Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification
by Zigang Liu, Fayez F. M. El-Sousy, Nauman Ali Larik, Huan Quan and Tianyao Ji
Mathematics 2024, 12(14), 2164; https://doi.org/10.3390/math12142164 - 10 Jul 2024
Cited by 1 | Viewed by 1691
Abstract
This study introduces a novel method for classifying sets of images, called Riemannian geodesic discriminant analysis–minimum Riemannian mean distance (RGDA-MRMD). This method first converts image data into symmetric positive definite (SPD) matrices, which capture important features related to the variability within the data. [...] Read more.
This study introduces a novel method for classifying sets of images, called Riemannian geodesic discriminant analysis–minimum Riemannian mean distance (RGDA-MRMD). This method first converts image data into symmetric positive definite (SPD) matrices, which capture important features related to the variability within the data. These SPD matrices are then mapped onto simpler, flat spaces (tangent spaces) using a mathematical tool called the logarithm operator, which helps to reduce their complexity and dimensionality. Subsequently, regularized local Fisher discriminant analysis (RLFDA) is employed to refine these simplified data points on the tangent plane, focusing on local data structures to optimize the distances between the points and prevent overfitting. The optimized points are then transformed back into a complex, curved space (SPD manifold) using the exponential operator to enhance robustness. Finally, classification is performed using the minimum Riemannian mean distance (MRMD) algorithm, which assigns each data point to the class with the closest mean in the Riemannian space. Through experiments on the ETH-80 (Eidgenössische Technische Hochschule Zürich-80 object category), AFEW (acted facial expressions in the wild), and FPHA (first-person hand action) datasets, the proposed method demonstrates superior performance, with accuracy scores of 97.50%, 37.27%, and 88.47%, respectively. It outperforms all the comparison methods, effectively preserving the unique topological structure of the SPD matrices and significantly boosting image set classification accuracy. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

21 pages, 612 KiB  
Article
Measure of Similarity between GMMs Based on Autoencoder-Generated Gaussian Component Representations
by Vladimir Kalušev, Branislav Popović, Marko Janev, Branko Brkljač and Nebojša Ralević
Axioms 2023, 12(6), 535; https://doi.org/10.3390/axioms12060535 - 30 May 2023
Viewed by 1851
Abstract
A novel similarity measure between Gaussian mixture models (GMMs), based on similarities between the low-dimensional representations of individual GMM components and obtained using deep autoencoder architectures, is proposed in this paper. Two different approaches built upon these architectures are explored and utilized to [...] Read more.
A novel similarity measure between Gaussian mixture models (GMMs), based on similarities between the low-dimensional representations of individual GMM components and obtained using deep autoencoder architectures, is proposed in this paper. Two different approaches built upon these architectures are explored and utilized to obtain low-dimensional representations of Gaussian components in GMMs. The first approach relies on a classical autoencoder, utilizing the Euclidean norm cost function. Vectorized upper-diagonal symmetric positive definite (SPD) matrices corresponding to Gaussian components in particular GMMs are used as inputs to the autoencoder. Low-dimensional Euclidean vectors obtained from the autoencoder’s middle layer are then used to calculate distances among the original GMMs. The second approach relies on a deep convolutional neural network (CNN) autoencoder, using SPD representatives to generate embeddings corresponding to multivariate GMM components given as inputs. As the autoencoder training cost function, the Frobenious norm between the input and output layers of such network is used and combined with regularizer terms in the form of various pieces of information, as well as the Riemannian manifold-based distances between SPD representatives corresponding to the computed autoencoder feature maps. This is performed assuming that the underlying probability density functions (PDFs) of feature-map observations are multivariate Gaussians. By employing the proposed method, a significantly better trade-off between the recognition accuracy and the computational complexity is achieved when compared with other measures calculating distances among the SPD representatives of the original Gaussian components. The proposed method is much more efficient in machine learning tasks employing GMMs and operating on large datasets that require a large overall number of Gaussian components. Full article
(This article belongs to the Special Issue Advances in Numerical Algorithms for Machine Learning)
Show Figures

Figure 1

18 pages, 579 KiB  
Article
Reducing the Dimensionality of SPD Matrices with Neural Networks in BCI
by Zhen Peng, Hongyi Li, Di Zhao and Chengwei Pan
Mathematics 2023, 11(7), 1570; https://doi.org/10.3390/math11071570 - 23 Mar 2023
Cited by 8 | Viewed by 2591
Abstract
In brain–computer interface (BCI)-based motor imagery, the symmetric positive definite (SPD) covariance matrices of electroencephalogram (EEG) signals with discriminative information features lie on a Riemannian manifold, which is currently attracting increasing attention. Under a Riemannian manifold perspective, we propose a non-linear dimensionality reduction [...] Read more.
In brain–computer interface (BCI)-based motor imagery, the symmetric positive definite (SPD) covariance matrices of electroencephalogram (EEG) signals with discriminative information features lie on a Riemannian manifold, which is currently attracting increasing attention. Under a Riemannian manifold perspective, we propose a non-linear dimensionality reduction algorithm based on neural networks to construct a more discriminative low-dimensional SPD manifold. To this end, we design a novel non-linear shrinkage layer to modify the extreme eigenvalues of the SPD matrix properly, then combine the traditional bilinear mapping to non-linearly reduce the dimensionality of SPD matrices from manifold to manifold. Further, we build the SPD manifold network on a Siamese architecture which can learn the similarity metric from the data. Subsequently, the effective signal classification method named minimum distance to Riemannian mean (MDRM) can be implemented directly on the low-dimensional manifold. Finally, a regularization layer is proposed to perform subject-to-subject transfer by exploiting the geometric relationships of multi-subject. Numerical experiments for synthetic data and EEG signal datasets indicate the effectiveness of the proposed manifold network. Full article
(This article belongs to the Special Issue Artificial Intelligence and Mathematical Methods)
Show Figures

Figure 1

22 pages, 905 KiB  
Article
Measure of Similarity between GMMs Based on Geometry-Aware Dimensionality Reduction
by Branislav Popović, Marko Janev, Lidija Krstanović, Nikola Simić and Vlado Delić
Mathematics 2023, 11(1), 175; https://doi.org/10.3390/math11010175 - 29 Dec 2022
Cited by 4 | Viewed by 2185
Abstract
Gaussian Mixture Models (GMMs) are used in many traditional expert systems and modern artificial intelligence tasks such as automatic speech recognition, image recognition and retrieval, pattern recognition, speaker recognition and verification, financial forecasting applications and others, as simple statistical representations of underlying data. [...] Read more.
Gaussian Mixture Models (GMMs) are used in many traditional expert systems and modern artificial intelligence tasks such as automatic speech recognition, image recognition and retrieval, pattern recognition, speaker recognition and verification, financial forecasting applications and others, as simple statistical representations of underlying data. Those representations typically require many high-dimensional GMM components that consume large computing resources and increase computation time. On the other hand, real-time applications require computationally efficient algorithms and for that reason, various GMM similarity measures and dimensionality reduction techniques have been examined to reduce the computational complexity. In this paper, a novel GMM similarity measure is proposed. The measure is based on a recently presented nonlinear geometry-aware dimensionality reduction algorithm for the manifold of Symmetric Positive Definite (SPD) matrices. The algorithm is applied over SPD representations of the original data. The local neighborhood information from the original high-dimensional parameter space is preserved by preserving distance to the local mean. Instead of dealing with high-dimensional parameter space, the method operates on much lower-dimensional space of transformed parameters. Resolving the distance between such representations is reduced to calculating the distance among lower-dimensional matrices. The method was tested within a texture recognition task where superior state-of-the-art performance in terms of the trade-off between recognition accuracy and computational complexity has been achieved in comparison with all baseline GMM similarity measures. Full article
(This article belongs to the Special Issue Artificial Intelligence and Mathematical Methods)
Show Figures

Figure 1

22 pages, 2510 KiB  
Article
Motor Imagery Classification via Kernel-Based Domain Adaptation on an SPD Manifold
by Qin Jiang, Yi Zhang and Kai Zheng
Brain Sci. 2022, 12(5), 659; https://doi.org/10.3390/brainsci12050659 - 18 May 2022
Cited by 13 | Viewed by 3133
Abstract
Background: Recording the calibration data of a brain–computer interface is a laborious process and is an unpleasant experience for the subjects. Domain adaptation is an effective technology to remedy the shortage of target data by leveraging rich labeled data from the sources. However, [...] Read more.
Background: Recording the calibration data of a brain–computer interface is a laborious process and is an unpleasant experience for the subjects. Domain adaptation is an effective technology to remedy the shortage of target data by leveraging rich labeled data from the sources. However, most prior methods have needed to extract the features of the EEG signal first, which triggers another challenge in BCI classification, due to small sample sets or a lack of labels for the target. Methods: In this paper, we propose a novel domain adaptation framework, referred to as kernel-based Riemannian manifold domain adaptation (KMDA). KMDA circumvents the tedious feature extraction process by analyzing the covariance matrices of electroencephalogram (EEG) signals. Covariance matrices define a symmetric positive definite space (SPD) that can be described by Riemannian metrics. In KMDA, the covariance matrices are aligned in the Riemannian manifold, and then are mapped to a high dimensional space by a log-Euclidean metric Gaussian kernel, where subspace learning is performed by minimizing the conditional distribution distance between the sources and the target while preserving the target discriminative information. We also present an approach to convert the EEG trials into 2D frames (E-frames) to further lower the dimension of covariance descriptors. Results: Experiments on three EEG datasets demonstrated that KMDA outperforms several state-of-the-art domain adaptation methods in classification accuracy, with an average Kappa of 0.56 for BCI competition IV dataset IIa, 0.75 for BCI competition IV dataset IIIa, and an average accuracy of 81.56% for BCI competition III dataset IVa. Additionally, the overall accuracy was further improved by 5.28% with the E-frames. KMDA showed potential in addressing subject dependence and shortening the calibration time of motor imagery-based brain–computer interfaces. Full article
(This article belongs to the Topic Human–Machine Interaction)
Show Figures

Figure 1

22 pages, 4508 KiB  
Article
A Framework for Short Video Recognition Based on Motion Estimation and Feature Curves on SPD Manifolds
by Xiaohe Liu, Shuyu Liu and Zhengming Ma
Appl. Sci. 2022, 12(9), 4669; https://doi.org/10.3390/app12094669 - 6 May 2022
Cited by 4 | Viewed by 2216
Abstract
Given the prosperity of video media such as TikTok and YouTube, the requirement of short video recognition is becoming more and more urgent. A significant feature of short video is that there are few switches of scenes in short video, and the target [...] Read more.
Given the prosperity of video media such as TikTok and YouTube, the requirement of short video recognition is becoming more and more urgent. A significant feature of short video is that there are few switches of scenes in short video, and the target (e.g., the face of the key person in the short video) often runs through the short video. This paper presents a new short video recognition algorithm framework that transforms a short video into a family of feature curves on symmetric positive definite (SPD) manifold as the basis of recognition. Thus far, no similar algorithm has been reported. The results of experiments suggest that our method performs better on three changeling databases than seven other related algorithms published in the top issues. Full article
(This article belongs to the Topic Applied Computer Vision and Pattern Recognition)
Show Figures

Figure 1

27 pages, 7573 KiB  
Article
Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry
by Wenxu Gao, Zhengming Ma, Weichao Gan and Shuyu Liu
Entropy 2021, 23(9), 1117; https://doi.org/10.3390/e23091117 - 27 Aug 2021
Cited by 6 | Viewed by 3328
Abstract
Symmetric positive definite (SPD) data have become a hot topic in machine learning. Instead of a linear Euclidean space, SPD data generally lie on a nonlinear Riemannian manifold. To get over the problems caused by the high data dimensionality, dimensionality reduction (DR) is [...] Read more.
Symmetric positive definite (SPD) data have become a hot topic in machine learning. Instead of a linear Euclidean space, SPD data generally lie on a nonlinear Riemannian manifold. To get over the problems caused by the high data dimensionality, dimensionality reduction (DR) is a key subject for SPD data, where bilinear transformation plays a vital role. Because linear operations are not supported in nonlinear spaces such as Riemannian manifolds, directly performing Euclidean DR methods on SPD matrices is inadequate and difficult in complex models and optimization. An SPD data DR method based on Riemannian manifold tangent spaces and global isometry (RMTSISOM-SPDDR) is proposed in this research. The main contributions are listed: (1) Any Riemannian manifold tangent space is a Hilbert space isomorphic to a Euclidean space. Particularly for SPD manifolds, tangent spaces consist of symmetric matrices, which can greatly preserve the form and attributes of original SPD data. For this reason, RMTSISOM-SPDDR transfers the bilinear transformation from manifolds to tangent spaces. (2) By log transformation, original SPD data are mapped to the tangent space at the identity matrix under the affine invariant Riemannian metric (AIRM). In this way, the geodesic distance between original data and the identity matrix is equal to the Euclidean distance between corresponding tangent vector and the origin. (3) The bilinear transformation is further determined by the isometric criterion guaranteeing the geodesic distance on high-dimensional SPD manifold as close as possible to the Euclidean distance in the tangent space of low-dimensional SPD manifold. Then, we use it for the DR of original SPD data. Experiments on five commonly used datasets show that RMTSISOM-SPDDR is superior to five advanced SPD data DR algorithms. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

13 pages, 1697 KiB  
Article
Matrix Information Geometry for Spectral-Based SPD Matrix Signal Detection with Dimensionality Reduction
by Sheng Feng, Xiaoqiang Hua and Xiaoqian Zhu
Entropy 2020, 22(9), 914; https://doi.org/10.3390/e22090914 - 20 Aug 2020
Cited by 9 | Viewed by 3062
Abstract
In this paper, a novel signal detector based on matrix information geometric dimensionality reduction (DR) is proposed, which is inspired from spectrogram processing. By short time Fourier transform (STFT), the received data are represented as a 2-D high-precision spectrogram, from which we can [...] Read more.
In this paper, a novel signal detector based on matrix information geometric dimensionality reduction (DR) is proposed, which is inspired from spectrogram processing. By short time Fourier transform (STFT), the received data are represented as a 2-D high-precision spectrogram, from which we can well judge whether the signal exists. Previous similar studies extracted insufficient information from these spectrograms, resulting in unsatisfactory detection performance especially for complex signal detection task at low signal-noise-ratio (SNR). To this end, we use a global descriptor to extract abundant features, then exploit the advantages of matrix information geometry technique by constructing the high-dimensional features as symmetric positive definite (SPD) matrices. In this case, our task for signal detection becomes a binary classification problem lying on an SPD manifold. Promoting the discrimination of heterogeneous samples through information geometric DR technique that is dedicated to SPD manifold, our proposed detector achieves satisfactory signal detection performance in low SNR cases using the K distribution simulation and the real-life sea clutter data, which can be widely used in the field of signal detection. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

16 pages, 2444 KiB  
Article
Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network
by Jiangyi Wang, Xiaoqiang Hua and Xinwu Zeng
Entropy 2020, 22(5), 585; https://doi.org/10.3390/e22050585 - 22 May 2020
Cited by 7 | Viewed by 3661
Abstract
The symmetric positive definite (SPD) matrix has attracted much attention in classification problems because of its remarkable performance, which is due to the underlying structure of the Riemannian manifold with non-negative curvature as well as the use of non-linear geometric metrics, which have [...] Read more.
The symmetric positive definite (SPD) matrix has attracted much attention in classification problems because of its remarkable performance, which is due to the underlying structure of the Riemannian manifold with non-negative curvature as well as the use of non-linear geometric metrics, which have a stronger ability to distinguish SPD matrices and reduce information loss compared to the Euclidean metric. In this paper, we propose a spectral-based SPD matrix signal detection method with deep learning that uses time-frequency spectra to construct SPD matrices and then exploits a deep SPD matrix learning network to detect the target signal. Using this approach, the signal detection problem is transformed into a binary classification problem on a manifold to judge whether the input sample has target signal or not. Two matrix models are applied, namely, an SPD matrix based on spectral covariance and an SPD matrix based on spectral transformation. A simulated-signal dataset and a semi-physical simulated-signal dataset are used to demonstrate that the spectral-based SPD matrix signal detection method with deep learning has a gain of 1.7–3.3 dB under appropriate conditions. The results show that our proposed method achieves better detection performances than its state-of-the-art spectral counterparts that use convolutional neural networks. Full article
Show Figures

Figure 1

Back to TopTop