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Abstract: A novel similarity measure between Gaussian mixture models (GMMs), based on similar-
ities between the low-dimensional representations of individual GMM components and obtained
using deep autoencoder architectures, is proposed in this paper. Two different approaches built
upon these architectures are explored and utilized to obtain low-dimensional representations of
Gaussian components in GMMs. The first approach relies on a classical autoencoder, utilizing the
Euclidean norm cost function. Vectorized upper-diagonal symmetric positive definite (SPD) matrices
corresponding to Gaussian components in particular GMMs are used as inputs to the autoencoder.
Low-dimensional Euclidean vectors obtained from the autoencoder’s middle layer are then used to
calculate distances among the original GMMs. The second approach relies on a deep convolutional
neural network (CNN) autoencoder, using SPD representatives to generate embeddings correspond-
ing to multivariate GMM components given as inputs. As the autoencoder training cost function,
the Frobenious norm between the input and output layers of such network is used and combined
with regularizer terms in the form of various pieces of information, as well as the Riemannian
manifold-based distances between SPD representatives corresponding to the computed autoencoder
feature maps. This is performed assuming that the underlying probability density functions (PDFs)
of feature-map observations are multivariate Gaussians. By employing the proposed method, a
significantly better trade-off between the recognition accuracy and the computational complexity is
achieved when compared with other measures calculating distances among the SPD representatives
of the original Gaussian components. The proposed method is much more efficient in machine
learning tasks employing GMMs and operating on large datasets that require a large overall number
of Gaussian components.

Keywords: Gaussian mixture models; autoencoders; KL divergence; classification; machine learning
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1. Introduction

Gaussian mixture models have significant applications in various machine learning
(ML) tasks, including computer vision and pattern recognition [1–8], as well as context-
based image matching and texture recognition, since an arbitrary probability density func-
tion (PDF) could be successfully modeled by GMM, knowing the exact number of modes
of that particular PDF. They can also be applied in a broad class of artificial intelligence (AI)
tasks, such as automatic speech recognition [9], speaker verification and recognition [10],
age and gender recognition [11], or used as input and/or output data representations in
deep learning [12], and within an emerging field of variational autoencoders [4]. As many
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of those systems are complex, i.e., they involve large amounts of high-dimensional multi-
variate GMM data representatives, developing less computationally demanding and, at the
same time, reasonably accurate GMM similarity measures has become a crucial issue.

Current solutions can be divided into two main categories. The first and the main
direction is based on the utilization of information distances between PDFs, as charac-
teristics of information sources. This means that information distances can have various
levels of computational complexity and can capture different aspects of the underlying
PDFs that are driving the generation of observations from the considered information
sources. Thus, the choice of a particular information distance is a matter of the level of
computational complexity that is considered as acceptable, the availability and the amount
of collected data from information sources, and the desired level of information distance
effectiveness in solving a particular ML task. Early works are represented by [13–15],
which are based on Chernoff, Bhattacharyya, and Matusita information distances, and the
most effective Kullback–Leibler (KL) divergence [16,17], as given in [2], or [18,19]. The
Bhattacharyya distance [14] is a special case of a Chernoff α-divergence [20], while the
family of Chernoff-α divergences is related to the family of Rényi α-divergences by a simple
relation described in [20]. On the other hand, Rényi α-divergences come from the Rényi
entropy that generalizes the notion of the most commonly used Shannon entropy. Thus,
for α = 1, the Rényi entropy results in the Shannon entropy and consequently the Kull-
back–Leibler (KL) divergence, as the special case of a more general Rényi α-divergence,
i.e., the corresponding cross-entropy. The most commonly used and adopted solution
among the aforementioned solutions is the KL divergence, but the distance effectiveness in
measuring the similarity between the considered probability distributions always depends
on the specific task and conditions.

Although the KL divergence exists in the close (i.e., analytical) form as the information
distance for the case when PDFs are two multivariate Gaussian components, there is no
closed-form solution for the case of GMMs. Various methods approximating the KL diver-
gence between GMMs have been developed, approximating the KL divergence as the KL
divergence between their Gaussian components, while retaining acceptably low bounds on
the approximation error, as well as high recognition accuracy [2,19]. For example, in [7],
a straightforward, although unacceptably computationally expensive solution (especially
when dealing with huge amounts of data and the large dimensionality of the underlying
feature space) is proposed, based on the Monte-Carlo method calculation of the KL diver-
gence between two GMMs. In the same work, lower and upper approximation bounds
are delivered, including experiments conducted on synthetic data, as well as in speaker
verification tasks. In [2], another approximation of the KL divergence is proposed and
applied in an image retrieval task. In [1], the unscented transform is delivered and applied
within a speaker recognition task. Besides these, we also highlight the applications of the
KL divergence in the specific tasks of game design, where it can be utilized to establish
variational autoencoder (VAE) models that generate new game levels [21], or to compare
and analyze the game-levels [22], e.g., as the objective function of an evolutionary algorithm
to evolve new levels.

The second group of methods relying on Earth mover’s distance (EMD) also
emerged [19,23], all based on the baseline Euclidean EMD method proposed in [24], de-
signed to compare the cross bins of the histogram forms of one-dimensional PDFs. Either
the KL divergence or some other information distance between the Gaussian components
of GMMs is used as the actual ground or geometry-based distance between the symmetric
positive definite (SPD) representations of GMM Gaussians obtained along the geodesic of
Riemannian geometry of the SPD manifold, denoted as Sym++(d). Nevertheless, the com-
putational complexity of all those methods is of the order of O(d3), due to the computational
complexity of covariance matrix inversion, where d ∈ R is the dimension of underlying
feature space, i.e., it is computationally very expensive in the case of large GMMs, as well
as large feature space dimensionality d, which is inherent to real application scenarios.
The reduction in computational complexity is crucial in such systems, so various solu-
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tions are able to significantly reduce the computational complexity without significantly
decreasing the recognition accuracy and addressing the mentioned issue were proposed.
Some of these EMD-based measures, as can be seen in [25–27], use the graph Laplacian-
based procedures, modified to operate on the Sym++(d) cone instead of Rd, for example,
the LPP [28] and NPE [29] dimensionality reduction, i.e., manifold learning techniques.
Nevertheless, all mentioned embedding-based GMM similarity measures are based on
the shallow ML models, as well as linear projection operators, which transform features
from the original high-dimensional parameter space in which SPD representatives lie as
elements of the Sym++(d) cone, to a low-dimensional Euclidean space of the transformed
parameters, as used in the calculation formulas of GMM measures. Namely, in contrast
to PCA, neighborhood preserving embedding (NPE) performs dimensionality reduction
by preserving the local neighborhood structure on the data manifold by constructing an
adjacency graph, computing the neighborhood graph weights by solving an optimization
problem, and finally determining one “optimal” projection that best fits the manifold struc-
ture. In comparison to locality preserving projections (LPP), the objectives are different.
On the other hand, in [25], graph weights in the applied LPP procedure are calculated using
the KL information distance between the positive definite matrices, i.e., by using Lovric’s
positive definite embeddings of Gaussian components from all GMMs in a particular ML
task. Thus, it is an extension of LPP to the manifold of Sym++(d), utilized to compute
the low-dimensional Euclidean representatives (vectors). Similarly, in [26], the NPE-like
procedure, again involving Lovric’s positive definite embeddings, results in obtaining
the MAXDET optimization problem [30] that computes the neighborhood graph weights.
Finally, the dimensionality reduction projection operator proposed in [26] is obtained in the
same manner as in the LPP case. In both cases [25,26], the low-dimensional embeddings
are then used to construct the proposed similarity measure between GMMs.

In this paper, a novel GMM-DeepAutoenc similarity measure between GMMs is
proposed. It is based on similarities between the lower-dimensional representations (or
representatives) of GMM components, obtained by utilizing deep autoencoder architec-
tures, i.e., deep rather than shallow ML encoding approaches. Since nonlinear deep neural
networks (DNNs) are used in such autoencoding embedding procedures, these allow rep-
resentations of the original SPD matrices of GMM components in the low-dimensional
and nonlinear submanifolds embedded in a Sym++(d) cone. Actually, we construct the
low-dimensional Euclidean embeddings by the use of nonlinear autoencoder networks,
which enable us to better incorporate the nonlinear structure of the manifold (even non-
regular) into the feature vectors. In comparison to the previously discussed LPP, NPE, and
DPLM-based GMM similarity measures reported in [25–27], the low-dimensional represen-
tatives used in this paper are obtained by a nonlinear projective procedure performed by
the designed autoencoder, which can be broadly interpreted as the mapping to the tangent
space of each particular element or sample, instead of having one common projection
hyperplane for dimensionality reduction. Thus, at the roughly similar computational com-
plexity, the method proposed in this paper can be expected to achieve higher effectiveness,
i.e., a better trade-off between computational complexity and recognition accuracy.

Two different approaches regarding deep autoencoder architectures have been ex-
plored and utilized to obtain the low-dimensional representatives corresponding to the
individual Gaussian components of GMMs.

The first approach uses a classical deep autoencoder architecture, utilizing the Eu-
clidean norm between the input and output vectors as the model training cost function.
Initially, vectorized upper-diagonal SPD matrices corresponding to individual Gaussian
components in GMMs are obtained using the embedding procedure reported in [31] (as
can also be seen in [19,23]), and fed as the training inputs to the autoencoder. Afterwards,
during the encoder deployment, the low-dimensional Euclidean vectors obtained from
the middle layer of the autoencoder are exploited to calculate the ground distances in the
proposed similarity measure between GMMs in some particular machine learning tasks.



Axioms 2023, 12, 535 4 of 21

The second approach uses a deep CNN autoencoder (as can be seen in [32–34]),
to which the same type of embedded SPD representatives of GMM Gaussian components
are applied. However, the Frobenious matrix norm between the two-dimensional matrix
input and autoencoder matrix output is employed as the cost function used in the learning
procedure. Moreover, as a regularizer in the actual training, various pieces of information,
as well as Riemannian manifold-based distances between the SPD matrices belonging to
Sym++(d + 1) and corresponding to the statistics of the computed autoencoder feature
maps, are also used, where d ∈ R is the dimension of the underlying Euclidean feature space
(which is space of the original GMM components). Thus, the low-dimensional Euclidean
representatives of original GMM components can be obtained, where the autoencoder
embedding procedure is learned by the additional enforcing of similarities among the PDFs,
i.e., the statistics of the feature space observations (computed autoencoder feature maps)
corresponding to the encoder and the decoder network, respectively. Since the obtained
embedded representatives of the original GMM components are low-dimensional Euclidean
vectors, the computational complexity of calculating distances between them is of the order
of O(d), while the computational complexity of various measures utilizing ground distances
between the original SPD matrices (representatives denoting individual GMM components)
is of the order of O(d3). As a result, in the machine learning tasks utilizing the proposed
autoencoder-based GMM similarity measure (GMM-DeepAutoenc), a significantly better
trade-off between the achieved recognition accuracy and the computational complexity
can be obtained, when compared with the classical similarity measure methods. This
was experimentally confirmed on various texture recognition tasks, as well as image
matching datasets. In case of ML tasks that are characterized by the presence of GMMs
with a large overall number of Gaussian components, such an approach would be much
more efficient when compared with the existing ones. Moreover, when compared with
other methods utilizing the low-dimensional representations of Gaussian components,
i.e., when compared to shallow ML based embedding frameworks (see, e.g., [25–27]),
the proposed deep autoencoder-based measure (GMM-DeepAutoenc) obtains better results
in the mentioned tasks and for various datasets, especially in cases with a large number
of categories.

2. Materials and Methods
2.1. Baseline GMM Similarity Measures

KL divergence, defined as KL(p||q) =
∫
Rd p(x) ln p(x)

q(x) dx, is the most natural measure
between two probability distributions p and q. Unfortunately, it can be expressed in a
closed (analytical) form only for a limited number of distributions, and GMM is not one of
these. Let us denote two GMMs as f = ∑n

i=1 αi fi and g = ∑m
j=1 β jgj, with fi = N (Σi, µi)

and gj = N (Σj, µj) representing the Gaussian components of the corresponding mixtures.
Where αi > 0, β j > 0 are corresponding weights, satisfying ∑i αi = 1, ∑j β j = 1, while
µi, µj are the mean vectors of fi, gj, and Σi, Σj are their full covariance matrices. There are
various proposed measures between GMMs, almost all of which are based on some specific
approximation of the KL divergence. The straightforward and most computationally
expensive measure (especially in real-world applications where there are high feature space
dimensionalities) is based on using the standard Monte Carlo method (see [35]). The idea
is to sample the probability distribution f by using i.i.d. samples xi, i = 1, . . . , N, such that
E f

[
ln f (x)

g(x)

]
= KL( f ||g). This is given by:

KLMC( f ||g) ≈ 1
N

N

∑
i=1

ln
f (xi)

g(xi)
. (1)
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Many of the proposed measures are based on approximations utilizing KL divergence
between two Gaussian components KL( fi||gj), which exist in the closed form given by

KL( fi||gj) = ln
|Σ fi
|

|Σgj |
+ Tr

[
Σ−1

gj
Σ fi

]
+ (µ fi

− µgj)
TΣ−1

gj
(µ fi
− µgj)− d (2)

The roughest approximation (by an upper bound) is based on the convexity of the KL
divergence [36]. Thus, for two GMMs f = ∑n

i=1 αi fi and g = ∑m
j=1 β jgj, it holds that the

weighted average approximation is given by:

KL( f ||g) ≤ KLWA( f ||g) = ∑
i,j

αiβ jKL( fi||gj), (3)

where fi = N (Σi, µi) and gj = N (Σj, µj) are the Gaussian components of the correspond-
ing mixtures, while αi > 0, β j > 0 are the corresponding weights, satisfying ∑i αi = 1,
∑j β j = 1. We assume that the KL divergences KL( fi||gj) between the corresponding
Gaussian components exist in the closed-form, e.g., given by (2).

Matching-based (MB) approximation, proposed in [2] as:

KLMB( f ||g) ≈∑
i

αi

[
min

j
KL( fi||gj) + log

(
αi
β j

)]
(4)

was based on the assumption that the element gj in g that is the most proximal to fi
dominates the integral

∫
fi log g in KL( f ||g). Motivated by (4), the more efficient matching-

based approximation can be obtained by

KLMBS( f ||g) ≈∑
i

αi min
j

KL( fi||gj), (5)

which shows good performance in the case when components in f and g are far apart, but
is inappropriate when there is significant overlap between them.

In [37], the unscented transform-based approximation was proposed in order to
deal with the described overlapping situations. This is a method for calculating the
statistics of a random variable that undergoes a nonlinear transformation. As it holds
KL( f ||g) =

∫
Rd f ln f −

∫
Rd f ln g, the unscented transform approximates

∫
Rd fi ln g as:

∫
Rd

fi ln g ≈ 1
2d

2d

∑
k=1

ln g(xi,k) (6)

xi,k = µi +
(√

Σi

)
k
, k = 1, . . . , d

xi,d+k = µi −
(√

Σi

)
k
, k = 1, . . . , d,

where
(√

Σi
)

k is the k-th column of the matrix square root of Σi. In the case of
∫
Rd f ln g,

we obtain: ∫
Rd

f ln g ≈ 1
2d

n

∑
i=1

αi

2d

∑
k=1

ln g(xi,k),

thus acquiring KLUC( f ||g). In [35], the approximation based on variational bound is
proposed as:

KLVB( f ||g) = ∑
i

αi
∑î αîe

−KL( fi || f î)

∑j β je
−KL( fi ||gj)

. (7)
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In order to obtain an approximate KL divergence between two GMMs, all these
approximations utilize KL divergences between Gaussian components that are given in the
closed-form expression. On the other hand, Earth mover’s distance (EMD)-based GMM
distances stem from the Earth mover’s methodology, which emerges in various recognition
tasks, such as those reported in [3,24,38]. In [19], textures are classified using EMD to
measure the distributional similarity of sets of Gaussian components that represent the
categories, while in [23], the ground distances between Gaussian components given by (2)
are incorporated within a sparse EMD-based SR-EMD procedure [23]. The authors utilized
various ground distances based on the Riemannian geometry, as well as in combination
with the Gaussian component embedding reported in [31]. The best performance among
these methods was achieved by the Riemannian metric defined on the Riemannian manifold
representing the product of Lie groups Rd and Sym++(d). According to [23], such a ground
distance measure between the Gaussian component fi and gj can be motivated by the
product of the mentioned Lie groups and defined as:

d fi ,gj
(ξ) = (1− ξ)a fi ,gj

+ ξb fi ,gj
, (8)

where the individual components of measure d fi ,gj
(ξ) are defined by the following expres-

sions:

a fi ,gj
=
(
(µ fi
− µgj)

T(Σ−1
fi

+ Σ−1
gj

)(µ fi
− µgj)

) 1
2 ,

b fi ,gj
(Ω) = ‖Ω

(
ln(Σ fi

)− ln(Σgj)
)
‖F.

We note that the matrix Ω denotes the result of the decomposition of the matrix M
that represents the corresponding matrix Mahalanobis norm, i.e., M = ΩTΩ and:

b fi ,gj
(Ω) = tr

((
ln(Σ fi

)− ln(Σgj)
)T M

(
ln(Σ fi

)− ln(Σgj)
))

. (9)

Thus, when d fi ,gj
(ξ) is incorporated into a sparse representation EMD procedure (SR-

EMD), one obtains the similarity measure between GMMs as the minimum value of the
cost function of the optimization problem given by:

min
M,xpq

∑
m f
p=1 ∑mg

q=p+1αpq

(
‖ypq − ApqC−1

pq (M)xpq‖2
l2 + ρ‖xpq‖l1

)
. (10)

s.t. M � 0, ∀xpq � 0

The described SR-EMD problem involves the joint optimization of the ground distance
matrix Cpq(M) and vector xpq, which formulate an alternating dictionary learning and
sparse representation procedure. Thus, the optimal transport vector xpq is found under the

constraints vector ypq =
[
α1, . . . , αm f , β1, . . . , βmg

]
, defined by the weights of all (m f + mg)

GMM components, and some fixed ρ > 0. We note that the term Apq represents the
(m f + ng) × m f mg matrix with 0 and 1 entries. In (8)–(10), terms ‖ · ‖l1 , ‖ · ‖l2 , ‖ · ‖F,
represent l1, l2 vector norms, and matrix Frobenius norm F, respectively.

Recently, approaches for GMM similarity measurements based on dimensionality
reduction have been proposed, as can be seen in [25,26], where each embedded SPD repre-
sentative corresponding to some Gaussian component of GMMs (obtained by using [31]) is
replaced by its low-dimensional Euclidian representation (projection). These exploit the
shallow ML approach based on graph manifold learning (LPP in [25] or NPE in [26]), which
is used in order to obtain the linear projectors, but with kernels containing symmetrized KL
divergence between SPD representatives, instead of the Euclidian norm. Similarly, in [27],
the dimensionality reduction preceding GMMs’ similarity measurements was also applied
using the shallow ML approach proposed in [39] in order to obtain the low-dimensional
SPD representatives of the Gaussian components. Some standard KL divergence-based
methods (for example [1,2,7]) were then used in order to obtain the similarity measures
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between GMMs, but now with low-dimensional SPDs. We refer to this type of method
as DPLM, inspired by the title of [39], where the corresponding dimensionality reduc-
tion based on the distance preservation to the local mean (DPLM) was proposed. Finally,
the GMM similarity measure in all [25–27] is defined using a fuzzy aggregation of Euclid-
ian distances between low-dimensional representatives, or using an EMD-based distance
metric (see [38]) between the sets of the corresponding low-dimensional representatives.
Concerning the DPLM-based GMM similarity measures that we use as the baselines in
Section 3 with experimental results, and also discuss in Section 2.3 regarding computational
complexity, we will denote these by uDPLMMB, uDLPMWA, and uDLPMVB throughout
the paper. The prefix u indicates that these are unsupervised approaches, as can be seen
in [27], while the suffixes WA, MB, and VB denote that the similarity between newly ob-
tained GMMs with low-dimensional SPD matrices (Lovric embeddings) is measured using
the standard KL divergence approximation measures given by (3), (4), and (7), respectively.
From the results comparing CPU times and recognition accuracies in [27], it can be seen that,
by the dimensionality reduction applied in [27], a significantly better trade-off between the
recognition accuracy and the computational complexity is achieved when compared with
the baseline approaches [1,2,7].

2.2. GMM Similarity Measures Based on Autoencoder-Generated Representations

GMM similarity measures based on the dimensionality reduction, as reported in [25–27],
are all shallow ML methods utilizing linear approximations, i.e., projectors in order to
approximate the underlying sub-manifold of manifold Sym++(d + 1) on which the param-
eters of the SPD representatives (Gaussian components) lie, which is an assumption of
the underlying approximation problem. Moreover, all these methods, in their own way,
learn linear projectors, that fit the sub-manifold defined by the SPD representatives of the
Gaussian components of GMMs in some particular ML problem (i.e., the SPD represen-
tatives obtained using the Lovric’s embedding proposed in [31]). However, in this work,
we propose a novel approach whereby, using the deep autoencoder network architecture,
we learn to encode the mentioned SPD representatives of Gaussian components into the
middle layer of the autoencoder, and thus obtain the embedding of SPD matrices into the
low-dimensional Euclidean space. If provided with a sufficient amount of learning data, the
designed nonlinear embedding aims to obtain an even better trade-off between recognition
accuracy and computational complexity. As a result, by using a deep autoencoder network
architecture, we can model nonlinear, and even non-regular sub-manifold structures in
Sym++(d + 1).

2.2.1. Autoencoder Architectures

In this work, we use deep autoencoder network architectures to construct the novel
GMM similarity measure that is computationally efficient, and at the same time, retains
recognition accuracy. The idea is that, by using a deep autoencoder, we can more efficiently
“capture” and characterize the nonlinear sub-manifold that contains the parameters of
GMMs used in a particular ML application. Thus, the nonlinear dimensionality reduction
performed by the encoding process of the autoencoder network that implicitly performs
the mentioned sub-manifold characterization. Such a learning process and consequent di-
mensionality reduction lead to achieving a more computationally efficient GMM similarity
measurement at the same or better recognition accuracy, i.e., a better trade-off between
these requirements if a sufficient amount of training data are available.

The autoencoder network comprises nonlinear mappings for the encoder and the
decoder, learned on the set of input SPD matrices or their vectorized counterparts. After the
autoencoder training, we calculate the proposed GMM similarity measure between two
GMMs by aggregating the Euclidean distances between the obtained low-dimensional
representations of GMM components, i.e., the low-dimensional representatives of input SPD
matrices that correspond to Gaussian components. Described aggregation is performed by
various fuzzy aggregation measures, as in [25–27], or by using the EMD optimal transport
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problem described in [24]. We note that in the presented experiments, Gaussian components
are used to characterize both training and testing samples, which are instances of the
categories in the actual ML task.

We use two different types of deep autoencoders. The first one is the classical fully
connected, regularized deep autoencoder, Figure 1.

lh

( )ivect P

( 1)i SyP m d 

Figure 1. Illustration of the proposed fully connected autoencoder architecture for the low-
dimensional embedding of Gaussian components represented by vect(Pi) into h ∈ Rl . Colors
indicate symmetric architecture of the network and the goal of learning unique embedding of the
original Gaussian components (middle vector h shown in red).

This usually comprises two sections—an encoder that maps the input data into a lower-
dimensional representation, and a subsequent decoder that maps the output of the encoder
to the same space as the input data. Furthermore, it is usually built to have symmetrical
encoder and decoder layers. Namely, if we denote the encoder and the decoder networks
by F and G, respectively, where n = (d + 1)(d + 2)/2 is the size of the input layer, and we
supply the vectorized upper triangular vect(P) of SPD representative P ∈ Sym++(d + 1)

obtained by the Lovric embedding [31] of Gaussian component g = N (x; µ, Σ) ∈ { fi}
n f
1 of

some GMM f = ∑
n f
i=1 αi fi in Rd, which is given by:

g ↪→ P = |Σ|−
1

d+1

[
Σ + µµT µ

µT 1

]
, (11)

the autoencoder training procedure can be described by the following objective:

F̂, Ĝ = argminF,G EP∼p(P)
[
‖(G ◦ F)(vect(P))− vect(P)‖l2

]
+ λR(F, G), (12)

where E[·] stands for the mathematical expectation, ◦ for the composition of the functions,
‖ · ‖l2 denotes the Euclidean l2 norm, while P ∼ p(P) denotes that the SPD representatives
P given by the Lovric embedding (11), with PDF given by p, andR(F, G) is a regularization
term used for parameters of F and G. We recall that, for any matrix B ∈ Rm×n and its
vectorized version vect(B) ∈ Rmn, obtained by the serialization of the matrix B along
the vertical or horizontal dimensions, it holds that ‖B‖F = ∑m

i=1 ∑n
j=1b2

ij = ‖vect(B)‖l2 .
The term λ > 0 is a regularization parameter. Thus, we estimate the loss function in (12) as:

ÊP∼p(P)[‖(G ◦ F)(vect(P))− P‖F] =
1
M

M

∑
i=1

[
‖(G ◦ F)(vect(Pi))− vect(Pi)‖l2

]
, (13)

where M stands for the overall number of SPD matrices that are constructed as Lovric-
embedding matrices Pi, i = 1, . . . , M, i.e., the SPD representatives of the Gaussian compo-
nents of all GMMs that are available for the training of the autoencoder model (e.g., per each
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data training instance, there is one GMM with several GMM components). For R(F, G),
we use the l2 regularizer defined by:

R(F, G) =
L

∑
l=1

nl

∑
i=1

kl

∑
j=1

(
w(l)

ij

)2
, (14)

where L denotes the overall number of hidden layers (including F and G), nl and kl are
the output and the input size of layer l, respectively, while w(l)

ij denote all weights of the
autoencoder network, corresponding to the l-th layer. Term λ > 0 is considered as fixed in
the optimization problem (12).

For the second type of deep autoencoder architecture, we use a deep CNN autoencoder,
where we observe the model inputs, i.e., the entries of some particular Lovric embedding
representative Pi (2D SPD matrix), as “pixels” of some 2D image (as usual in vision-based
CNNs). This embedding framework consists of the encoder and the decoder CNN networks
F and G, respectively, as well as the middle layer h ∈ Rl , as shown in Figure 2.

( , )FMR F G

( ),enc x n m rF  
( ),dec x n m rF  

( ), ( ), ( ), ( ),

1,1 1,2 ,| | , { , }q x q x q x q x

m nF f f f q enc dec    

( 1)i SyP m d 

lh

Figure 2. Illustration of the proposed FMR regularized CNN autoencoder for the low-dimensional
embedding of Gaussian components represented by SPD matrices Pi ∈ Sym++(d + 1) into h ∈ Rl .

The training procedure can be given by the same optimization problem (12) where
we use the Frobenious matrix norm ‖ · ‖F instead of the Euclidean ‖ · ‖l2 in the objective,
as we deal with matrices at the input (as well as at the output) of the CNN autoencoder.
Nevertheless, it still requires the strong regularization provided by an additional cost term
that forces the similarity between the corresponding feature map tensors in the encoder
and the decoder, i.e., the outputs of the convolutional layers corresponding to the encoder
and the decoder (between the first feature map of the encoder and the last feature map
of the decoder, etc.). Namely, we add the feature map regularization (FMR) penalty term
RFMR in the form of a similarity measure between the PDFs that model statistics of the
computed feature maps in F and G. Thus, we obtain the CNN autoencoder learning
problem as follows:

F̂, Ĝ = argminF,G EP∼p(P)[‖(G ◦ F)(P)− P‖F] + λR(F, G),

+ λFMRRFMR(F, G) (15)

with some fixed λFMR > 0, where ‖ · ‖F is the Frobenius norm defined for A = [aij] ∈ Rm×n

as ‖A‖F = ∑m
i=1 ∑n

j=1 a2
ij.

For measuring the feature map PDFs, i.e., formulating theRFMR, we consider some
of the information-based, as well as the Riemannian manifold-based distances reported
in [19,23]. For the low-dimensional Euclidean representation of SPD instances Pi ∈
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Sym++(d + 1) obtained by the Lovric embedding of Gaussian components, we take the
vectors obtained from the middle layer of the deep autoencoder networks, i.e., bottle-
neck h ∈ Rl , as described herein. These nonlinear projection quantities are then used to
formulate the novel GMM-Autoenc similarity measures that we invoke.

2.2.2. Ground Distances Regularization

We present ground distances between multidimensional (k-dimensional) Gaussians,
that we use as similarity measures in order to regularize the training of an autoencoder
network, i.e., to form RFMR(F, G). Let us consider k-dimensional f = N (x; µ1, Σ1) and
g = N (x, µ2, Σ2), which are elements of Sym++(k), or k + 1-dimensional SPD Lovric
embedding representatives given by (11) as elements of Sym++(k + 1), which are both
Riemannian manifolds (see [19,23]), equipped with different Riemannian metrics, and
inducing geodesic distances. Out of such ground distances that do not take into account the
information geometric properties of multidimensional Gaussians, we consider the l2-based
distance:

dl2( f , g) = ‖Σ1 − Σ2‖F + η‖µ1 − µ2‖l2 , (16)

as well as the robust l1-based distance given by:

dl1( f , g) = ‖Σ1 − Σ2‖l1 + η‖µ1 − µ2‖l1 , (17)

where ‖ · ‖l1 is the robust l1 norm in Rk. We note that the distance functions involving the
‖ · ‖l2 and ‖ · ‖F norm in (16) emerge from the assumption that the prior function, i.e., PDF,
in the formulation of the regularization problem, is of the Gaussian type. These can be
considered as more appropriate ones when there is a large amount of training data, while
the ones based on the l1 norm in (17), which correspond to the prior distribution of Laplace
type, are usually used if we tend to obtain a more robust estimation.

Considering that there is a closed-form expression for the KL divergence between two
arbitrary Gaussians f and g, denoted by dKL( f , g) = KL( f ||g), with KL( f ||g) given by (2)
(where the symbols are replaced by: d 7→ k, fi 7→ f , gj 7→ g), for the information-based
ground distance, we use the symmetrized version of the KL divergence given by:

dKLsym( f , g) =
1
2
(dKL( f , g) + dKL(g, f )). (18)

Although the KL divergence is not symmetric, we note that it does not mean that it is
antisymmetric. Namely, we give the following counterexample: for two discrete Bernoulli
distributions Bα(x) and Bβ(x), parameterized by α = p and β = 1− p, respectively, it
holds that KL(Bα||Bβ) = KL(Bβ||Bα).

For the geometrical ground distance, we use Log-Euclidean metric as geodesic distance
(see [40]) on Sym++(k + 1), forming the efficient geodesic distance invariant to similarity
transformation, given by:

dle,nonsym(Pf , Pg) = ‖ ln(Pf )− ln(Pg)‖F,

for Lovric embedding SPD representatives Pf , Pg ∈ Sym++(k + 1) of f and g, respectively.
Actually, we use the symmetrized version:

dle(Pf , Pg) =
1
2

(
dle,nonsym(Pf , Pg) + dle,nonsym(Pg, Pf )

)
, (19)

2.2.3. Forming the Feature Map RegularizerRFMR(F, G)

Let us denote the first feature map tensor of the encoder and the last feature map
tensor of the decoder of the CNN autoencoder network, obtained for the input matrix
x ∈ R(d+1)×(d+1), as F(enc),x ∈ Rn×m×r, and F(dec),x ∈ Rn×m×r, respectively, (both tensors
are of the convolution layers type, and are of identical format, size m × n and depth r,
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since the encoder and the decoder are assumed to be symmetric). In a general case, for the
r-dimensional feature map or layer indexed by q, we will reshape or reformat the F(q),x 3D
tensor into the following 2D matrix: F̃(q),x =

[
f (q),x1,1 | f

(q),x
1,2 | . . . f (q),xm,n

]
, q ∈ {enc, dec}, where

f (q),xi,j ∈ Rr, i ∈ {1, . . . , n}, j ∈ {1, . . . , m} are r-dimensional observations (or values) of
the autoencoder feature maps in layer q (generated by the corresponding statistics of the
autoencoder layer q with depth r).

Next, under the assumption that the underlying PDFs are r-dimensional multivariate
Gaussians, i.e., that the unknown PDFs rendering the r-dimensional observations (values
in the described feature map tensors) are normally distributed, f (q),xi,j ∼ N (Σ(q),x, µ(q),x),
we obtain the maximum likelihood estimates (MLEs) of their covariances and centroids,
i.e., Σ̂(q),x, µ̂(q),x, q ∈ {enc, dec} from the columns of matrices F̃(q),x, q ∈ {enc, dec} as:

Σ̂(q),x =
1

mn

m

∑
i=1

n

∑
j=1

( f (q),xi,j − µ(q),x)( f (q),xi,j − µ(q),x)T ,

µ̂(q),x =
1

mn

m

∑
i=1

n

∑
j=1

f (q),xi,j , (20)

Finally, we form the feature map regularizerRFMR(F, G) in (15) as follows:

RFMR(F, G) = EP∼p(P)

[
dgd( f P, gP)

]
(21)

where f P = N (Σ(enc),P, µ(enc),P), gP = N (Σ(dec),P, µ(dec),P), and the ground distances
gd ∈ {l2, l1, KLsym, le} are all defined in the previous section. P ∈ Sym++(r + 1) stands
for the SPD matrices generated by p(P), i.e., by the distribution p of Lovric embedding
SPD matrices representing the feature map Gaussians described by statistics in (20). Note
that each of these Gaussians P, i.e., (r + 1)× (r + 1) SPD matrices made of Σ̂(q),x and mean
µ̂(q),x in (20), correspond to one of the original Gaussian components brought to the input
of the autoencoder, i.e., one input x. In other words, estimates in (20) correspond to the
autoencoder feature map observations in Rr, while the input Gaussian components are in
Rd. Since it is assumed that there are M such (d + 1)× (d + 1) SPD matrices corresponding
to the individual components of all GMMs present in the training phase of some particular
ML task, we estimate the expectation in (21) as:

EP∼p(P)

[
dgd( f P, gP)

]
=

1
M

M

∑
i=1

dgd( f Pi , gPi ), (22)

Thus, M is the overall number of Gaussians of GMMs used for the autoencoder train-
ing, and each of the M input Gaussians results in feature map tensors F(q),x, q ∈ {enc, dec},
i.e., their statistics in (20) are represent by the Lovric embedding P ∈ Sym++(r + 1) in (21).

2.2.4. Forming the GMM Similarity Measure Based on Autoencoder-Generated
Representations

We form the proposed novel GMM-Autoenc similarity measures by following the
approach similar to that described in [26]. Namely, the similarity measure between two
particular GMMs is formed by aggregating the non-negative real values that represent the
measure of similarity between corresponding components, i.e., their nonlinear embeddings.
Actually, we have to compare the transformed “clouds” of lower l-dimensional Euclidean
parameter vectors, with l � n, n = (d + 1)(d + 2)/2, which are computed from the
original Gaussian components of two GMMs. In all approaches that we utilize, for the
particular m f -component GMM f = ∑

m f
i=1 αi fi with fi = N (µi, Σi), we represent GMM

by the unique tupple F = (v1, . . . , vm f , α1, . . . , αm f ), which consists of the embedding
vectors vi corresponding to the low-dimensional outputs from the middle (bottleneck)
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layer of the trained embedding autoencoder described in Section 2.2.1. In this process,
the belonging mixture weights αi are also taken into account. We note that the autoencoder
inputs are the Lovric embeddings of fi, defined by (11), i.e., SPD matrices Pi or their
vectorized counterparts.

Thus, the similarity measure between two GMMs, denoted by f = ∑
m f
i=1 αi fi and

g = ∑
mg
j=1 β jgj, is introduced as the similarity between the corresponding representa-

tives F =
(

v1, . . . , vm f , α1, . . . , αm f

)
and G =

(
u1, . . . , umg , β1, . . . , βmg

)
, respectively. It

is measured in the autoencoder embedding space, as represented by the weighted low-
dimensional Euclidean vectors vi, ui ∈ Rl . By doing so, we utilize two different approaches.
The first one employs a form of fuzzy union or intersection operation (see, e.g., [41]).
Namely, we use the weighted max–min operator as follows:

pi = min{β j‖vi − uj‖2 |j = 1, . . . , m f } (23)

a = max{αi pi |i = 1, . . . , mg}
qj = min{αi‖vi − uj‖2 |i = 1, . . . , mg}
b = max{β jqj |j = 1, . . . , m f }

D1(F, G) =
1
2
(a + b),

as well as the maximum of the positive weighted sums

a = max{αi

n

∑
j=1

β j‖vi − uj‖2 |i = 1, . . . , mg}

b = max{β j

m

∑
i=1

αi‖vi − uj‖2 |j = 1, . . . , m f }

D2(F, G) =
1
2
(a + b). (24)

In the following, the invoked GMM measures induced by D1 will be denoted by GMM-
Autoenc1,AE, for the classical autoencoder architecture and GMM-Autoenc1,AECNN for the
CNN autoencoder. Similarly, the GMM measures induced by D2 will be denoted by GMM-
Autoenc2,AE and GMM-Autoenc2AECNN , respectively. Both types satisfy self-similarity,
positivity, and are symmetric; however, on the contrary to KL divergence, self-identity is
not satisfied.

The second aggregation approach utilizes the EMD distance on the F and G repre-
sentatives of two GMMs that are mutually compared. It is based on the work proposed
in [24] and the EMD transportation problem. Namely, the computed tuples F and G are
interpreted as the sets of low-dimensional Euclidean vectors equipped with the weights or
masses αi, i = 1 . . . m f , and β j, j = 1 . . . mg, respectively. Thus, we introduce the measure of
similarity between two GMMs f and g to be the measure between weighted “clouds” F and
G consisting of the Euclidean vectors in Rl (e.g., see [24]). Taking into account the distance
or cost between all pairs of Rl vectors from F and G, i.e., by computing the matrix [dij], it
follows that the optimal flow [ζij] (with the lowest overall cost) when moving Rl vectors
from F to G is obtained as the solution to the following LP type minimization problem:
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min
ζij

m f

∑
i=1

mg

∑
j=1

dijζij,

s.t.

ζij ≥ 0, i = 1, . . . , m f , j = 1, . . . , mg,
mg

∑
j=1

ζij ≤ αi, i = 1, . . . , m f , (25)

m f

∑
i=1

ζij ≤ β j, j = 1, . . . , mg,

m f

∑
i=1

mg

∑
j=1

ζij = 1.

Based on the optimal flow [ζij], it follows that the aggregate EMD distance between
the sets of the Euclidean vectors in F and G can be computed as:

DEMD(F, G) =
∑

m f
i=1 ∑

mg
j=1 dijζij

∑
m f
i=1 ∑

mg
j=1 ζij

. (26)

Regarding the LP in (25), [dij] is the matrix of Euclidean distances between vectors vi

and uj in Rl , i.e., dij = ‖vi − uj‖2. The first constraint imposed on the solution [ζij] defines
the direction of mass or “supplies” flow, i.e., it allows moving supplies from the cloud or
set F to the cloud or set G, but not vice versa. We also note that αi as well as β j sums up to
be one. The second constraint in (25) limits the amount of supplies that can be sent from
F to G, by imposing the restriction that the elements from F individually cannot supply
more goods in total to the elements of G than the amount corresponding to the value of their
weight in F; while the third constraint puts the same type of restrictions on the elements of
G (that they cannot receive more supplies in total than the value of their individual weight,
i.e., capacity). The fourth constraint in the form of equality serves the purpose to exploit
all available flow from the cloud F to the cloud G (i.e., to move the maximum amount of
supplies as possible). Once the transportation problem is solved, the optimal values of [ζij]
are determined, and the Earth mover’s distance DEMD(F, G) in (26) is defined as the total
work or cost (resulting value of the objective function) that is necessary in order to move,
by optimal flow [ζij], the maximum amount of supplies possible, from the “cloud” F to the
“cloud” G, which is normalized by the total flow (as in the optimal transportation problem).

Moreover, the fact that the EMD distance is a metric (see [24]), implies that the measure
of similarity between two GMMs defined by (26) is also a metric. We denote the GMM mea-
sures induced by DEMD as GMM-Autoenc3,AE and GMM-Autoenc3,AECNN , respectively.

2.3. Computational Complexity

In large-scale ML systems relying on GMMs as a way of modeling distributions of
interest, the number of high-dimensional Gaussian components is usually large, which can
induce a significant computational burden in cases when the similarity between the GMMs
is measured. Therefore, it is of interest to have low-computational complexity, and at the
same time, preserve the accuracy of performing the ML task, e.g., recognition, which can
be achieved by the baseline KL divergence-based GMM similarity measures. Reducing the
computational burden is of the utmost importance in providing efficient services based on
such GMM-based ML systems.

Let us assume that the full covariance GMMs f and g have the same number of
components m. We denote by d the dimension of the original feature space corresponding
to some recognition task. The computational complexity of the Monte Carlo approximation
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KLMC, defined by relation (1), is estimated as O(Nmd3), where N is the number of samples.
Namely, there are N observations for which two mixtures are calculated, each with m
Gaussian components, and the computational complexity for calculating each component
is of the order of O(d3), so the overall computational complexity is of the order of O(Nmd3).
However, to obtain an efficient KL divergence approximation, the number of i.i.d. samples
N must be large, making it inefficient. For the computational complexity of all KL-based
measures, KLWA, KLMB, and KLVB, defined in Section 2.1 by relations (3), (4) and (7),
respectively, the rationale is as follows. Their complexities are dominated by the term
KL( fi||gj), and there are m2 such terms, as it is assumed that both mixtures in the pair have
m d-variate Gaussian components, so i, j = 1, . . . , m. As KL( fi||gj) is defined by (2), it can
be seen that calculations of these are dominated by the inversion of d-dimensional SPD
matrices, which is of the order of O(d3). Thus, the overall computation is of the order of
O(m2d3). We use all these in the experiments as the baseline measures.

Concerning the complexity of similarity measures reported in [27], they are esti-
mated as O(ml̃d2) + O(mdl̃2) + O(m2 l̃3) where l̃ × l̃ is the dimension of low-dimensional
SPD representatives. We denote the mentioned similarity measures (unsupervised ver-
sions) by uDPLMWA, uDPLMMB, and uDPLMVB and use those in the experiments as
baseline measures.

The measures reported in [25,26] have complexity estimated by O(md2l) + O(m2l),
where l is the dimensionality of the corresponding low-dimensional embedding. This also
holds for GMM measures induced by D1 and D2, as given by (23) and (24), respectively,
while DEMD, given by (26), induces the GMM similarity measure with the complexity of
the order of O(md2l) + O(m2l) + O(m5) (as can be seen, e.g., in [25,26]).

Since the proposed GMM-Autoenci,AE, i = 1, 2 has a single layer encoder, its compu-
tational complexity is influenced by the described aggregation operators, and can be
estimated in the same way, i.e., as O(md2l) + O(m2l), where l is the size of the low-
dimensional autoencoder embedding (in the case of the architecture with the input layer,
hidden layer, and output layer which is used in the experiments). On the other hand,
for GMM-Autoenci,CNNAE, i = 1, 2, if we assume that there are two convolutional feature
map layers in the encoder as well as the decoder of the embedding CNN autoencoder,
in the case when using D1 and D2 given by (23) and (24), the computational complex-
ity of the CNN-based GMM similarity measure can be estimated as O(2mw1h1k1

2n1) +
O(2mw2h2k2

2n1n2) + O(2mw3h3k3
2n2n3) + O(m2l). Note that ni, wi, hi, ki < d are the di-

mensions of the corresponding convolutional layers in the encoder (depth, width, height,
and kernel spatial size).

For the proposed EMD-based similarity measure GMM-Autoenc3,AE induced by (26),
the computational complexity is estimated as O(md2l)+O(m2l)+O(m5). Namely, the term
O(m2l) corresponds to the computational complexity of calculating ‖vi − uj‖l2 between
all pairs of l-dimensional representatives of Gaussian components fi and gj, respectively,
i, j = 1, . . . , m. The term O(md2l) comes from the encoding process in the autoencoder
network. At the input, we have d(d + 1)/2)-dimensional vectors that are transformed
by matrix multiplication and nonlinearity into l-dimensional output vectors (from the
computational complexity perspective nonlinearity can be neglected if considered to be
a piecewise affine). The third term, O(m5), comes from the computational complexity of
the LP problem given by (25), where the number of iterations in the EMD computation
is O(2m), as described in [23]. Regarding the GMM-Autoenc3,CNNAE, which is based
on the CNN autoencoder architecture, the computational complexity can be estimated
as O(2mw1h1k1

2n1) +O(2mw2h2k2
2n1n2) +O(2mw3h3k3

2n2n3) +O(m2l) +O(m5), which
has the similar complexity as the previously described Autoenci,CNNAE, i = 1, 2, with only
one difference, namely that it has an additional term O(m5), originating from solving the
LP problem in (25).

It can be seen that the computational complexity of the proposed GMM-Autoenci,AE
for i = 1, 2, 3, i.e., when using D1 and D2 and DEMD, is similar to the corresponding GMM
similarity measures reported in [25,26], which is thus computationally significantly more
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efficient when compared with KLWA, KLMB, and KLVB. Depending on the relation between
l̃ and l, the proposed autoencoder-based measures are also potentially more efficient when
compared with unsupervised uDPLMWA, uDPLMMB, uDPLMVB, and the supervised
sDPLMWA, sDPLMMB, and sDPLMVB. The computational complexity of the proposed
GMM-Autoenci,CNNAE, i = 1, 2, 3 is also significantly more efficient when compared with
KLWA, KLMB, and KLVB, but less efficient than GMM-Autoenci,AE, i = 1, 2, 3.

3. Experimental Results

In this section, the network architecture used in the experiments, as well as the experi-
mental results of applications of the proposed novel GMM-Autoenc similarity measures
are presented. The comparisons include several baseline measures given in Section 2.1,
over various datasets within a texture recognition task.

3.1. Network Architectures

In the case of the fully connected autoencoder utilized in GMM-Autoenci,AE, i = {1, 2},
we used a simple fully connected architecture consisting of input and output layers with
one hidden representation layer between them and the logistic sigmoid transfer function.
The training consisting of scaled conjugate gradient descent optimization was driven by
the MSE loss function defined in (13), accompanied by the l2 weight regularization term
R(F ,G) defined in (14), and the regularization penalty λ = 10. The number of nodes in
the input and output layers was determined by the dimensionality of the input and output
feature space. The CNN encoder utilized in GMM-Autoenci,CNNAE, i = {1, 2} consists
of three convolutional layers narrowing down the higher-dimensional input (matrices of
size d × d) into lower-dimensional vectors Rl , while preserving the relevant clustering
information. The depths of CNN layers are n1 = 32, n2 = 64, and n3 = 128, with the square
kernel sizes of k1 = 14, k2 = 7, and k3 = 3. The dimensions of the layers’ width wi and
height hr, r = {1, 2, 3} are implicitly determined by the size of input SPD matrices, but we
note that the stride value was 2. The bottleneck layer of size Rl is connected to the last
CNN layer by one flattening layer and two additional linear layers with a ReLU component
in between. ReLU components are also added among convolutional layers, including
one batch norm regularizer between the last two convolutional layers. The CNN decoder
architecture replicates the above-described pattern in the backward order, decompressing
the latent feature space into the original matrix features. For CNN autoencoder training,
the Adam gradient descent optimization algorithm is applied. Adaptive optimization algo-
rithms, such as Adam, have shown a better optimization performance in the means of faster
convergence, due to the adaptive learning rate, as can be seen in [42]. Moreover, empirical
results demonstrate that Adam works well in practice and still achieves a competitive
performance when compared with newer methods, as can be seen in [43]. The procedure
is performed by using the objective defined in (15) over 30 epochs, with a learning rate
of 0.001, a learning decay rate decay of 1e− 05, and the feature map regularization term
RFMR(F ,G) defined in (21), with a regularization penalty value of λFMR = 10. The first
regularization termR(F ,G) in (15) refers to network weights and is of the same type as in
the case of previously described GMM-Autoenci,AE. In both cases, all input matrices (from
both the training and test data instances) have been normalized to the [0,1] range before
the actual training.

3.2. Performances

Experimental results are given for the proposed GMM-Autoenc-based similarity mea-
sures invoked in Sections 2.2 and 2.2.4, compared to baseline KL-based measures KLWA,
KLMB and KLVB given by (3), (4), and (7), respectively, and proposed in [1,2]; as well as
to the baseline EMD-based unsupervised uDPLMWA, uDPLMMB, uDPLMVB measures,
proposed in [27]. Experiments were conducted within the texture recognition tasks on
the UIUC texture dataset, the KTH-TIPS image dataset, and the UMD texture dataset.
A five-class recognition problem is considered in all experiments. Concerning the UIUC
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dataset, the following classes are considered: wood, water, granite, marble, and floor,
with images of 640× 480 pixel resolution. In the case of the KTH-TIPS dataset, the follow-
ing classes were considered: aluminum foil, brown bread, corduroy, cotton, and cracker,
with images of 1280× 960 pixel resolution. Finally, for the UMD texture dataset, we used
images from the following classes: paint cans, stones, brick walls, apples, and textile pat-
terns, sampled at 1280× 960 pixels. Selected samples from all three databases are shown in
Figure 3.

Concerning the underlying texture features used for the experiments as texture de-
scriptors, the region covariance descriptors proposed in [30] are employed, since they
have already shown good performance in various texture recognition tasks (see for ex-
ample [19,23,27,30]). For any given N ×M image, they are formed in the following way:
patches of size m×m, m < min{N, M} are cropped (m = 128 with the step size of 16 for
the UIUC dataset, m = 40 with the step size of 5 for the KTH-TIPS dataset and m = 256
with the step size of 32 for the UMD dataset). For every pixel positioned at (x, y), features
were calculated as elements of Rd̂, d̂ = 5, i.e., [I, |Ix|, |Iy|, |Ixx|, |Iyy|], where I represents
illumination, Ix and Iy are the first-order derivatives and Ixx and Iyy are the second-order
derivatives. Covariance matrices were calculated for the mentioned features and their
upper triangular part is vectorized into d = d̂(d̂ + 1)/2 = 15-dimensional feature vectors.
The parameters of GMMs are then estimated using the EM algorithm (as can be seen in [44])
applied over the pool of feature vectors obtained as previously described. During ex-
periments, for every n× m-size image in all mentioned datasets, the uniform sampling
of the Nsmpl sub-images of the size of (n/2)× (m/2) is performed in order to augment
every database, which is needed to train a nonlinear autoencoder in order to perform
the GMM-Autoenc measure (deep autoencoder in the case of GMM-Autoenc1,AECNN),
because originally, we do not have a sufficient amount of data in order to train them.
Every GMM (or its low-dimensional Euclidean or SPD representatives for the proposed
GMM-Autoenc or DPLM GMM similarity measures, respectively) is compared to all other
GMMs in the training set, and its class is determined using the KNN method.

Figure 3. UIUC, KTH-TIPS, and UMD database samples.

In Tables 1–3, the performances of the novel GMM-Autoenc GMM similarity measures
are presented when compared with KL-based as well as DPLM-based measures, for the
UIUC, KTH-TIPS, and UMD datasets, respectively. In all experiments, the number of
Gaussian components used to represent any particular training or testing image was set
to m ∈ {1, 5, 10}. For the case of DPLM-based and GMM-Autoenc measures, K = 3 for
the KNN, and the projection dimension for DPLM-based methods was set to l̃ ∈ {5, 7}.
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Results in Tables 1–3 for the proposed GMM-Autoenci,AECNN refer to the model training
procedure with FMR regularization based on the log-Euclidean ground distance gd = le
given in (19), as we obtained slightly better results with this regularizer when compared
with other ground distances.

From the experimental results presented in Tables 1–3, which correspond to recog-
nition accuracy, and taking into account the computational complexity analyses given in
Section 2.3, it can be seen that all of the proposed novel GMM-Autoenc measures obtained a
better trade-off between recognition accuracy and computational complexity for all datasets
when compared with the baseline KL-based as well as DPLM-based measures mentioned
in Section 2.2. We note that GMM-Autoenci,AE variants could be the preferred choice when
compared with GMM-Autoenci,AECNN models, probably due to the number of training
samples in all datasets, which is relatively small for the training of a CNN architecture.

Table 1. Recognition accuracies for the proposed GMM-Autoenc-based measures when compared
with KL-based as well as DPLM-based GMM similarity measures on UIUC database.

GMM Sim. Meas. Accuracy

m = 1 m = 5 m = 10

KLMB 0.82 0.80 0.80
KLWA 0.82 0.82 0.82
KLVB 0.82 0.82 0.82

l̃ = 5 l̃ = 7 l̃ = 5 l̃ = 7 l̃ = 5 l̃ = 7

uDPLMMB 0.72 0.81 0.73 0.74 0.79 0.79
uDPLMWA 0.72 0.81 0.73 0.74 0.80 0.80
uDPLMVB 0.72 0.81 0.73 0.74 0.80 0.80

l = 20 l = 30 l = 20 l = 30 l = 20 l = 30

GMM-Autoenc1,AE 0.75 0.81 0.75 0.76 0.80 0.80
GMM-Autoenc2,AE 0.75 0.81 0.76 0.76 0.80 0.80
GMM-Autoenc3,AE 0.76 0.80 0.76 0.77 0.81 0.81

GMM-Autoenc1,AECNN 0.75 0.80 0.73 0.77 0.81 0.80
GMM-Autoenc2,AECNN 0.76 0.81 0.71 0.78 0.81 0.81
GMM-Autoenc3,AECNN 0.77 0.81 0.71 0.79 0.81 0.80

Table 2. Recognition accuracies for the proposed GMM-Autoenc-based measures when compared with
KL-based as well as DPLM-based GMM similarity measures on KTH-TIPS database.

GMM Sim. Meas. Accuracy

m = 1 m = 5 m = 10

KLMB 0.78 0.74 0.75
KLWA 0.78 0.78 0.78
KLVB 0.78 0.78 0.78

l̃ = 5 l̃ = 7 l̃ = 5 l̃ = 7 l̃ = 5 l̃ = 7

uDPLMMB 0.57 0.73 0.69 0.71 0.63 0.72
uDPLMWA 0.57 0.73 0.72 0.75 0.64 0.75
uDPLMVB 0.57 0.73 0.72 0.75 0.63 0.75

l = 20 l = 30 l = 20 l = 30 l = 20 l = 30

GMM-Autoenc1,AE 0.71 0.75 0.73 0.75 0.72 0.74
GMM-Autoenc2,AE 0.71 0.74 0.72 0.74 0.72 0.75
GMM-Autoenc3,AE 0.72 0.75 0.73 0.75 0.73 0.76

GMM-Autoenc1,AECNN 0.72 0.75 0.73 0.74 0.73 0.73
GMM-Autoenc2,AECNN 0.73 0.75 0.71 0.75 0.74 0.76
GMM-Autoenc3,AECNN 0.73 0.76 0.72 0.77 0.74 0.77
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Table 3. Recognition accuracies for the proposed GMM-Autoenc-based measures when compared
with KL-based as well as DPLM-based GMM similarity measures on UMD database.

GMM Sim. Meas. Accuracy

m = 1 m = 5 m = 10

KLMB 0.75 0.73 0.72
KLWA 0.75 0.75 0.75
KLVB 0.75 0.75 0.75

l̃ = 5 l̃ = 7 l̃ = 5 l̃ = 7 l̃ = 5 l̃ = 7

uDPLMMB 0.73 0.74 0.72 0.72 0.70 0.72
uDPLMWA 0.73 0.74 0.73 0.74 0.71 0.75
uDLPMVB 0.73 0.74 0.73 0.74 0.71 0.75

l = 20 l = 30 l = 20 l = 30 l = 20 l = 30

GMM-Autoenc1,AE 0.74 0.74 0.73 0.73 0.71 0.72
GMM-Autoenc2,AE 0.73 0.74 0.73 0.74 0.73 0.74
GMM-Autoenc3,AE 0.74 0.75 0.74 0.75 0.73 0.75

GMM-Autoenc1,AECNN 0.74 0.75 0.73 0.73 0.72 0.72
GMM-Autoenc2,AECNN 0.75 0.75 0.74 0.75 0.74 0.74
GMM-Autoenc3,AECNN 0.74 0.75 0.74 0.75 0.74 0.75

4. Conclusions

In this work, a novel similarity measure between GMMs based on autoencoder-
generated Gaussian component representations is proposed. Low-dimensional Euclidean
vectors obtained using nonlinear autoencoder embedding demonstrated higher similarity
measurement capabilities when compared with the existing baseline models. Two different
approaches were explored and utilized to encode the original Gaussian mixture components.
The first one focused on the simple architecture of the classical autoencoder, where the
vectorized versions of the SPD matrices obtained by the Lovric embedding of GMM
Gaussians were used to generate inputs for the fully connected autoencoder. In the second
approach, a more complex CNN autoencoder was utilized in combination with the novel
regularization training in the feature space. In terms of trade-off between the recognition
accuracy and the computational complexity, autoencoder embedding proved to be a better
solution when compared with the existing GMM similarity measurement baselines in
texture recognition tasks. In general, any domain in which some random processes, data
instances, or groups of entities are described by PDFs in the form of Gaussian mixture
models can be considered as possible fields of application that would benefit from the
proposed computationally efficient GMM similarity measures. Besides ML recognition
tasks based on decision rules in the form of minimum distance classifiers, we also foresee
various applications in other domains such as clustering, probabilistic modeling, kriging
methods, learning regularization, and feature space alignment as possible extensions of
the current study and proposed similarity measures. For more effective dimensionality
reduction, the utilized autoencoder networks should be trained on large datasets, but this
could be performed in various settings, online or offline, or by designing encoders for
specific sub-tasks and data modalities. In that sense, described methods are scalable and
could be adapted to specific system requirements. Thus, in order to fully explore the
capabilities of the CNN-based embedding approach, in future work, we plan to conduct
experiments on tasks with much larger datasets and different data modalities.
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