Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = S. nigra extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8073 KiB  
Article
Wound Healing Properties of Plant-Based Hydrogel and Oleogel Formulations in a Rat Scald Burn Model
by Oana Janina Roșca, Alexandru Nistor, Georgeta Hermina Coneac, Ioana Viorica Olariu, Ana-Maria Cotan, Roxana Racoviceanu, Elena Rodica Heredea, Adelin Ciudoiu, Gabriela Didea, Camelia Mihaela Lupou, Florin Borcan, Teodora Hoinoiu, Cristina Adriana Dehelean, Lavinia Lia Vlaia and Codruța Marinela Șoica
Pharmaceutics 2025, 17(5), 597; https://doi.org/10.3390/pharmaceutics17050597 - 1 May 2025
Cited by 1 | Viewed by 1089
Abstract
Background: Scald burns pose significant morbidity, and effective topical treatments remain a clinical priority. Burn injuries pose a significant clinical challenge due to the prolonged inflammation and high infection risk. Traditional treatments focus on moisture retention and infection prevention, but biocompatible formulations such [...] Read more.
Background: Scald burns pose significant morbidity, and effective topical treatments remain a clinical priority. Burn injuries pose a significant clinical challenge due to the prolonged inflammation and high infection risk. Traditional treatments focus on moisture retention and infection prevention, but biocompatible formulations such as hydrogels and oleogels offer advantages. Hydrogels hydrate, cool, and promote epidermal regeneration, while oleogels form a lipid barrier that enhances the absorption of lipophilic bioactive compounds. There is an increasing demand for novel topical alternatives that can effectively improve wound healing by modulating the inflammatory cascade, accelerating epithelial and dermal regeneration, and restoring barrier function. Objective: This study aimed to determine the most effective plant-based topical formulations for enhancing second-degree scald burn wound healing. Methods: Utilizing a standardized rat model, we compared 21 distinct topical formulations, consisting of oleogel and hydrogel bases enriched with extracts from Boswellia serrata (frankincense), Ocimum basilicum (basil), Sambucus nigra flower (elderflower), and Galium verum (lady’s bedstraw). Second-degree burns were uniformly induced in 24 Wistar rats using boiling water (100 °C for 8 s) using the RAPID-3D device, a validated 3D-printed tool that ensures reproducible burns through controlled exposure to boiling water. Post-burn, rats were divided into three equal subgroups, and topical formulations were applied daily. Wound healing efficacy was evaluated through wound surface area measurements, transepidermal water loss (TEWL), skin hydration, sebum production, pigmentation, inflammation (erythema), skin perfusion, and histological parameters at multiple timepoints (days 1, 4, 9, 14, and 21 post-burn induction). Results: Statistical analyses indicated significant advantages of oleogel-based formulations over hydrogel-based formulations. Specifically, formulations containing Boswellia serrata and Ocimum basilicum extracts significantly reduced wound size and inflammation, improved skin hydration, and decreased melanin production by days 9 and 21 (p < 0.05). Conclusions: These findings underscore the potential clinical value of oleogel-based topical preparations containing specific plant extracts for improving scald burn wound healing outcomes, warranting further clinical evaluation. Full article
(This article belongs to the Special Issue Prospects of Hydrogels in Wound Healing)
Show Figures

Graphical abstract

23 pages, 7439 KiB  
Article
Nardostachys jatamansi Extract and Nardosinone Exert Neuroprotective Effects by Suppressing Glucose Metabolic Reprogramming and Modulating T Cell Infiltration
by Congyan Duan, Weifang Lin, Mingjie Zhang, Bianxia Xue, Wangjie Sun, Yang Jin, Xiaoxu Zhang, Hong Guo, Qing Yuan, Mingyu Yu, Qi Liu, Naixuan Wang, Hong Wang, Honghua Wu and Shaoxia Wang
Cells 2025, 14(9), 644; https://doi.org/10.3390/cells14090644 - 28 Apr 2025
Viewed by 937
Abstract
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. [...] Read more.
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. This study investigated the effects of ethyl acetate extract (NJ-1A) from N. jatamansi and its active constituent nardosinone on neuroinflammatory mediator release, glucose metabolic reprogramming, and T cell migration using both in vitro and in vivo experimental models. Methods: Lipopolysaccharide(LPS)-induced BV-2 microglial cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced male C57BL/6N mouse chronic model of Parkinson’s disease were applied. Results: Both NJ-1A and Nar could significantly suppress LPS-induced production of M1 pro-inflammatory factors or markers in microglia and could inhibit the glycolytic process and promote oxidative phosphorylation via the AKT/mTOR signaling pathway. Furthermore, they exhibited the capacity to attenuate chemokine release from activated microglia, consequently reducing T cell migration. In vivo experiments revealed that NJ-1A and Nar effectively inhibited microglial activation, diminished T cell infiltration, and mitigated the loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra of MPTP-induced mice. Conclusions: NJ-1A and nardosinone exert neuroprotective effects through the modulation of microglial polarization states, regulation of metabolic reprogramming, and suppression of T cell infiltration. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

21 pages, 6184 KiB  
Article
Synergistic Antiviral Activity of European Black Elderberry Fruit Extract and Quinine Against SARS-CoV-2 and Influenza A Virus
by Christian Setz, Pia Rauch, Melanie Setz, Stephan Breitenberger, Stephan Plattner and Ulrich Schubert
Nutrients 2025, 17(7), 1205; https://doi.org/10.3390/nu17071205 - 29 Mar 2025
Cited by 1 | Viewed by 1714
Abstract
Background/Objectives: The persistent threat of emerging respiratory RNA viruses like SARS-CoV-2 and Influenza A virus (IAV) necessitates the continuous development of effective, safe, broadly acting, and generally accessible antiviral agents. Current treatments often face limitations such as early administration requirements, resistance development, and [...] Read more.
Background/Objectives: The persistent threat of emerging respiratory RNA viruses like SARS-CoV-2 and Influenza A virus (IAV) necessitates the continuous development of effective, safe, broadly acting, and generally accessible antiviral agents. Current treatments often face limitations such as early administration requirements, resistance development, and limited global access. Natural products, like European black elderberry (Sambucus nigra L.; S. nigra) fruit extract and quinine, have been used historically against viral infections. In this study, we investigated the antiviral efficacy of a standardized black elderberry fruit extract containing 3.2% anthocyanins (EC 3.2) and, as a second natural antiviral product, quinine, against IAV and SARS-CoV-2 in vitro. Methods: Madin–Darby Canine Kidney II (MDCKII) cells were infected with IAV PR-8, while human Calu-3 lung epithelial cells were infected with Wuhan-type SARS-CoV-2. Cells were treated with varying concentrations of EC 3.2 and quinine either as mono- or combinational therapy. Viral replication was assessed using quantitative RT-PCR, and cell viability was evaluated using WST-1 assays. Results: Our results demonstrate, for the first time, that both EC 3.2 and quinine individually inhibited IAV replication in a dose-dependent manner, with IC50 values of approximately 1:400 for EC 3.2 and 250 nM for quinine. Most importantly, the combinational treatment exhibited a strong synergistic antiviral effect, as confirmed by the Bliss independence model (synergy scores of 14.7 for IAV, and 27.8 for SARS-CoV-2), without affecting cell viability. Conclusions: These findings suggest that the combined use of black elderberry extract and quinine might serve as an effective antiviral strategy against IAV and SARS-CoV-2, particularly since the synergistic effect allows for lower doses of each product while retaining therapeutic efficacy. In summary, this combinational in vitro approach, when expanded to other respiratory RNA viruses and confirmed in clinical studies, has the potential to open a promising avenue for pandemic preparedness. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

22 pages, 2120 KiB  
Article
Antimicrobial and Antioxidant Properties of Sambucus nigra L. (Elderflower) Oil: A Molecular Docking and Biochemical Study
by Doris Floares (Oarga), Diana Obistioiu, Anca Hulea, Mukhtar Adeiza Suleiman, Iuliana Popescu, Adina Berbecea, Ionel Samfira and Isidora Radulov
Agronomy 2025, 15(2), 310; https://doi.org/10.3390/agronomy15020310 - 26 Jan 2025
Cited by 2 | Viewed by 1548
Abstract
The present study investigates the antimicrobial and antioxidant potential of an essential oil extracted from Sambucus nigra L. flowers. Using hydrodistillation, the volatile compounds were profiled through GC–MS analysis for the fatty acid profile and volatile compounds. The fatty acid profile demonstrated a [...] Read more.
The present study investigates the antimicrobial and antioxidant potential of an essential oil extracted from Sambucus nigra L. flowers. Using hydrodistillation, the volatile compounds were profiled through GC–MS analysis for the fatty acid profile and volatile compounds. The fatty acid profile demonstrated a balanced composition of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids, with oleic, palmitic, and linolenic acids as key contributors. The volatile profile revealed the dominance of nonanal, cis-rose oxide, trans-rose oxide, and 2-Pentadecanone, 6,10,14-trimethyl-. Antioxidant activity was assessed using the 1,1-Diphenyl-2-Picrylhydrazyl radical scavenging assay, showing significant inhibition, with an IC50 value of 2.52 mg/mL. Antimicrobial efficacy was determined against Gram-positive, Gram-negative, and fungal strains, highlighting moderate inhibitory activity for Streptococcus pyogenes, Staphylococcus aureus, and Candida albicans. The S. nigra essential oil exhibited more activity against fungal strains, especially C. albicans, compared to the bacterial strains, which might be attributed to differences in the composition and permeability of the cell wall between fungi and bacteria. Among the bacteria, E. coli was the most susceptible, while P. aeruginosa showed moderate resistance, in agreement with its known stronger membrane structure and efflux mechanisms. Molecular docking analysis was conducted to evaluate the potential inhibitory effects of the oil on microbial proteins to corroborate the observed in vitro outcome. The results indicated that nonanal, cis-rose oxide, trans-rose oxide, and 2-pentadecanone, 6,10,14-trimethyl- displayed interesting hydrophilic and hydrophobic binding interactions with the putative microbial proteins. These findings elucidate the bioactive role of Sambucus nigra essential oils, suggesting their potential as therapeutic agents in managing oxidative stress and microbial infections. Full article
(This article belongs to the Special Issue Tissue Structure and Plant Phytochemicals)
Show Figures

Figure 1

26 pages, 10278 KiB  
Article
Sambucus nigra-Lyophilized Fruit Extract Attenuated Acute Redox–Homeostatic Imbalance via Mutagenic and Oxidative Stress Modulation in Mice Model on Gentamicin-Induced Nephrotoxicity
by Kamelia Petkova-Parlapanska, Ivaylo Stefanov, Julian Ananiev, Tsvetelin Georgiev, Petya Hadzhibozheva, Veselina Petrova-Tacheva, Nikolay Kaloyanov, Ekaterina Georgieva, Galina Nikolova and Yanka Karamalakova
Pharmaceuticals 2025, 18(1), 85; https://doi.org/10.3390/ph18010085 - 13 Jan 2025
Viewed by 1539
Abstract
Background: Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. Sambucus nigra L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential. Objectives: The present study aimed to investigate the nephroprotective and anti-inflammatory potential of lyophilized [...] Read more.
Background: Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. Sambucus nigra L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential. Objectives: The present study aimed to investigate the nephroprotective and anti-inflammatory potential of lyophilized Sambucus nigra fruit extract (S. nigra extract) to reduce acute oxidative stress and residual toxicity of GM in a 7-day experimental model in Balb/c rodents. Methods: The S. nigra extract was lyophilized (300 rpm; 10 min; −45 °C) to improve pharmacological properties. Balb/c mice were divided into four (n = 6) groups: controls; S. nigra extract per os (120 mg kg−1 day−1 bw); GM (200 mg kg−1 day−1 bw) (4); and GM + S. nigra therapy. The activities of antioxidant and renal enzymes, cytokines, and levels of oxidative stress biomarkers—Hydroxiproline, CysC, GST, KIM-1, PGC-1α, MDA, GSPx—were analyzed by ELISA tests. The ROS and RNS levels, as well as 5-MSL-protein oxidation, were measured by EPR spectroscopy. Results: The antioxidant-protective effect of S. nigra extract (120 mg kg−1) was demonstrated by reduced MDA, ROS, and RNS and increased activation of endogenous enzymes. Furthermore, S. nigra extract significantly reduced the expression of IL-1β, IL-6, IL-10, TNF-α, IFN-γ, and KIM-1 and regulated collagen/protein (PGC-1α and albumin) deposition in renal tissues. Conclusions: Histological evaluation confirmed that S. nigra (120 mg kg−1) attenuated renal dysfunction and structural damage by modulating oxidative stress and acute inflammation and could be used as an anti-fibrotic alternative in GM nephrotoxicity. Full article
Show Figures

Figure 1

11 pages, 544 KiB  
Article
Protective Effects of a Brassica nigra Sprout Hydroalcoholic Extract on Lipid Homeostasis, Hepatotoxicity, and Nephrotoxicity in Cyclophosphamide-Induced Toxicity in Rats
by Hassan Barakat, Thamer Aljutaily, Raghad I. Alkhurayji, Huda Aljumayi, Khalid S. Alhejji and Sami O. Almutairi
Metabolites 2024, 14(12), 690; https://doi.org/10.3390/metabo14120690 - 8 Dec 2024
Viewed by 1312
Abstract
Background: Brassica nigra possesses a significant concentration of bioactive compounds and has been demonstrated to have a variety of pharmacological properties, although its sprout has not been extensively studied. Thus, the protective effects of Brassica nigra sprout hydroalcoholic extract (BNSE) on lipid [...] Read more.
Background: Brassica nigra possesses a significant concentration of bioactive compounds and has been demonstrated to have a variety of pharmacological properties, although its sprout has not been extensively studied. Thus, the protective effects of Brassica nigra sprout hydroalcoholic extract (BNSE) on lipid homeostasis, hepatotoxicity, and nephrotoxicity in cyclophosphamide (CYP)-induced toxicity in rats were examined in this study. Methods: Four experimental rat groups (n = 8 for each group) were examined as follows: NR, normal rats that received normal saline by oral gavage daily; CYP, injected with a single dose of CYP at 250 mg kg−1 intraperitoneally (i.p.) and did not receive any treatment, receiving only normal saline by oral gavage daily; CYP + BNSE250, injected with a single dose of CYP at 250 mg kg−1 i.p. and treated with BNSE at 250 mg kg−1 by oral gavage daily for three weeks; and CYP + BNSE500, injected with a single dose of CYP at 250 mg kg−1 i.p. and treated with BNSE at 500 mg kg−1 by oral gavage daily for three weeks. Results: The results indicated a significant increase (p < 0.05) in triglyceride (TG), cholesterol (CHO), low-density lipoprotein cholesterol (LDL-c), and very low-density lipoprotein cholesterol (VLDL-c) levels in CYP-induced toxicity rats. The administration of BNSE at 250 and 500 mg kg−1 significantly (p < 0.05) attenuated TG, CHO, LDL-c, and VLDL-c at values comparable with the NR group. The most efficient treatment for improving the lipid profile and atherogenicity complication was BNSE at 500 mg kg−1, performing even better than 250 mg kg−1. Administrating BNSE at 250 or 500 mg kg−1 improved the liver’s function in a dose-dependent manner. Comparing the lower dose of 250 mg kg−1 of BNSE with 500 mg kg−1 showed that administrating 250 mg kg−1 attenuated alanine transaminase (ALT) by 28.92%, against 33.36% when 500 mg kg−1 was given. A similar trend was observed in aspartate aminotransferase (AST), where 19.44% was recorded for BNSE at 250 mg kg−1 and 34.93% for BNSE at 500 mg kg−1. Higher efficiency was noticed for BNSE at 250 and 500 mg kg−1 regarding alkaline phosphatase (ALP). An improvement of 38.73% for BNSE at 500 mg kg−1 was shown. The best treatment was BNSE at 500 mg kg−1, as it markedly improved liver function, such as total bilirubin (T.B.), in a dose-dependent manner. The administration of BNSE attenuated the total protein (T.P.), albumin, and globulin levels to be close to or higher than the typical values in NR rats. Conclusions: BNSE might be used for its promising hypolipidemic, hepatoprotective, and nephroprotective potential and to prevent diseases related to oxidative stress. Further research on its application in humans is highly recommended. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Figure 1

24 pages, 15107 KiB  
Article
A Single-Cell Atlas of the Substantia Nigra Reveals Therapeutic Effects of Icaritin in a Rat Model of Parkinson’s Disease
by Hao Wu, Zhen-Hua Zhang, Ping Zhou, Xin Sui, Xi Liu, Yi Sun, Xin Zhao and Xiao-Ping Pu
Antioxidants 2024, 13(10), 1183; https://doi.org/10.3390/antiox13101183 - 30 Sep 2024
Cited by 1 | Viewed by 2414
Abstract
Degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain are the main pathological changes in Parkinson’s disease (PD); however, the mechanism underlying the selective vulnerability of specific neuronal populations in PD remains unclear. Here, we used single-cell RNA sequencing [...] Read more.
Degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain are the main pathological changes in Parkinson’s disease (PD); however, the mechanism underlying the selective vulnerability of specific neuronal populations in PD remains unclear. Here, we used single-cell RNA sequencing to identify seven cell clusters, including oligodendrocytes, neurons, astrocytes, oligodendrocyte progenitor cells, microglia, synapse-rich cells (SRCs), and endothelial cells, in the substantia nigra of a rotenone-induced rat model of PD based on marker genes and functional definitions. We found that SRCs were a previously unidentified cell subtype, and the tight interactions between SRCs and other cell populations can be improved by icaritin, which is a flavonoid extracted from Epimedium sagittatum Maxim. and exerts anti-neuroinflammatory, antioxidant, and immune-improving effects in PD. We also demonstrated that icaritin bound with transcription factors of SRCs, and icaritin application modulated synaptic characterization of SRCs, neuroinflammation, oxidative stress, and survival of dopaminergic neurons, and improved abnormal energy metabolism, amino acid metabolism, and phospholipase D metabolism of astrocytes in the substantia nigra of rats with PD. Moreover, icaritin supplementation also promotes the recovery of the physiological homeostasis of the other cell clusters to delay the pathogenesis of PD. These data uncovered previously unknown cellular diversity in a rat model of Parkinson’s disease and provide insights into the promising therapeutic potential of icaritin in PD. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

21 pages, 2023 KiB  
Article
Anti-Coronavirus Activity of Chitosan-Stabilized Liposomal Nanocarriers Loaded with Natural Extracts from Bulgarian Flora
by Anna Gyurova, Viktoria Milkova, Ivan Iliev, Nevena Lazarova-Zdravkova, Viktor Rashev, Lora Simeonova and Neli Vilhelmova-Ilieva
Life 2024, 14(9), 1180; https://doi.org/10.3390/life14091180 - 19 Sep 2024
Viewed by 1334
Abstract
Disease’s severity, mortality rates, and common failures to achieve clinical improvement during the unprecedented COVID-19 pandemic exposed the emergency need for new antiviral therapeutics with higher efficacy and fewer adverse effects. This study explores the potential to encapsulate multi-component plant extracts in liposomes [...] Read more.
Disease’s severity, mortality rates, and common failures to achieve clinical improvement during the unprecedented COVID-19 pandemic exposed the emergency need for new antiviral therapeutics with higher efficacy and fewer adverse effects. This study explores the potential to encapsulate multi-component plant extracts in liposomes as optimized delivery systems and to verify if they exert inhibitory effects against human seasonal betacoronavirus OC43 (HCoV-OC43) in vitro. The selection of Sambucus nigra, Potentilla reptans, Allium sativum, Aesculus hippocastanum, and Glycyrrhiza glabra L. plant extracts was based on their established pharmacological and antiviral properties. The physicochemical characterization of extract-loaded liposomes was conducted by DLS and electrokinetics. Encapsulated amounts of the extract were evaluated based on the total flavonoid content (TFC) and total polyphenol content (TPC) by colorimetric methods. The BALB 3T3 neutral red uptake (NRU) phototoxicity/cytotoxicity assay was used to estimate compounds’ safety. Photo irritation factors (PIFs) of the liposomes containing extracts were <2 which assigned them as non-phototoxic substances. The antiviral capacities of liposomes containing medicinal plant extracts against HCoV-OC43 were measured by the cytopathic effect inhibition test in susceptible HCT-8 cells. The antiviral activity increased by several times compared to “naked” extracts’ activity reported previously. A. hippocastanum extract showed 16 times higher inhibitory properties reaching a selectivity index (SI) of 58.96. Virucidal and virus-adsorption effects were investigated using the endpoint dilution method and ∆lgs comparison with infected and untreated controls. The results confirmed that nanoparticles do not directly affect the viral surface or cell membrane, but only serve as carriers of the active substances and the observed protection is due solely to the intracellular action of the extracts. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

23 pages, 3482 KiB  
Review
Genus Sambucus: Exploring Its Potential as a Functional Food Ingredient with Neuroprotective Properties Mediated by Antioxidant and Anti-Inflammatory Mechanisms
by Anna Merecz-Sadowska, Przemysław Sitarek, Karolina Zajdel, Wiktoria Sztandera and Radosław Zajdel
Int. J. Mol. Sci. 2024, 25(14), 7843; https://doi.org/10.3390/ijms25147843 - 18 Jul 2024
Cited by 6 | Viewed by 3216
Abstract
The genus Sambucus, mainly Sambucus nigra, has emerged as a valuable source of bioactive compounds with potential neuroprotective properties. This review explores the antioxidant, anti-inflammatory, and neuroregenerative effects of Sambucus-derived compounds and their implications for brain health and cognitive function. [...] Read more.
The genus Sambucus, mainly Sambucus nigra, has emerged as a valuable source of bioactive compounds with potential neuroprotective properties. This review explores the antioxidant, anti-inflammatory, and neuroregenerative effects of Sambucus-derived compounds and their implications for brain health and cognitive function. In vitro studies have demonstrated the ability of Sambucus extracts to mitigate oxidative stress, modulate inflammatory responses, and promote neural stem cell proliferation and differentiation. In vivo studies using animal models of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, have shown that Sambucus compounds can improve cognitive function, motor performance, and neuronal survival while attenuating neuroinflammation and oxidative damage. The neuroprotective effects of Sambucus are primarily attributed to its rich content of polyphenols, particularly anthocyanins, which exert their benefits through multiple mechanisms, including the modulation of signaling pathways involved in inflammation, apoptosis, mitochondrial function, and oxidative stress. Furthermore, the potential of Sambucus as a functional food ingredient is discussed, highlighting its application in various food products and the challenges associated with the stability and bioavailability of its bioactive compounds. This review provides a comprehensive overview of the current state of research on the neuroprotective potential of Sambucus and its derivatives, offering valuable insights for the development of dietary strategies to promote brain health and prevent age-related cognitive decline. Full article
(This article belongs to the Special Issue Effect of Diet on Human Neurocognitive Function)
Show Figures

Figure 1

15 pages, 2608 KiB  
Article
In Vivo Study of Moringa oleifera Seed Extracts as Potential Sources of Neuroprotection against Rotenone-Induced Neurotoxicity
by Chand Raza, Sehrish Mohsin, Mehwish Faheem, Uzma Hanif, Hamad Z. Alkhathlan, Mohammed Rafi Shaik, Hasib Aamir Riaz, Rabia Anjum, Husna Jurrat and Merajuddin Khan
Plants 2024, 13(11), 1479; https://doi.org/10.3390/plants13111479 - 27 May 2024
Cited by 5 | Viewed by 2119
Abstract
Parkinson’s disease (PD) is a leading neurodegenerative disorder affecting 1–3 percent of the elderly population. Oxidative stress is the primary factor for the neurodegeneration of Substantia Nigra (SN). The current study aims to assess the seed extracts of Moringa oleifera (MO) on rotenone-mediated [...] Read more.
Parkinson’s disease (PD) is a leading neurodegenerative disorder affecting 1–3 percent of the elderly population. Oxidative stress is the primary factor for the neurodegeneration of Substantia Nigra (SN). The current study aims to assess the seed extracts of Moringa oleifera (MO) on rotenone-mediated motor function impairments in a PD mouse model. For this purpose, two different seed extracts of MO were prepared, including aqueous MO (AqMO) and ethanolic MO (EthMO). Male Swiss albino mice were grouped into five groups. Mice received 2.5 mg/kg rotenone for 21 consecutive days, and control mice received the vehicle. Extract-treated mice received 200 mg/kg AqMO and EthMO separately, orally and daily for 28 days. Sinemet-treated mice received 20 mg/kg, oral dose, as a positive group. The motor function performance was evaluated using standard neurobehavioral tests. The antioxidant potentials of MO seed extracts were estimated by lipid peroxidation (LPO), reduced glutathione (GSH), glutathione-s-transferase (GST) and catalase (CAT) activities in mice brain homogenates. The PD mice brain SN sections were investigated for neurodegeneration. MO seed extract-treated mice showed a significant reduction in motor dysfunction compared to rotenone-treated mice as assessed through the open field, beam walk, pole climb-down, tail suspension, stride length and stepping tests. Increased antioxidant capacities of the PD mice brains of MO extract-administered groups were observed compared to the control. A histological study showed reduced signs of neurodegeneration, vacuolation around multipolar cells and cytoplasmic shrinkage in MO extract-treated mice SN brain sections. Collectively, MO seed extracts protected the animals from locomotor deficits induced by rotenone, possibly through antioxidant means, and seem to have potential applications in neurodegenerative diseases. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants IV)
Show Figures

Figure 1

17 pages, 6320 KiB  
Article
Dopamine- and Grape-Seed-Extract-Loaded Solid Lipid Nanoparticles: Interaction Studies between Particles and Differentiated SH-SY5Y Neuronal Cell Model of Parkinson’s Disease
by Rosanna Mallamaci, Debora Musarò, Marco Greco, Antonello Caponio, Stefano Castellani, Anas Munir, Lorenzo Guerra, Marina Damato, Giuseppe Fracchiolla, Chiara Coppola, Rosa Angela Cardone, Mehdi Rashidi, Roberta Tardugno, Sara Sergio, Adriana Trapani and Michele Maffia
Molecules 2024, 29(8), 1774; https://doi.org/10.3390/molecules29081774 - 13 Apr 2024
Cited by 3 | Viewed by 2587
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood–brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we [...] Read more.
Parkinson’s disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood–brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187–297 nm, zeta potential values in the range of −4.1–−9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB. Full article
(This article belongs to the Special Issue Lipid Carriers in Drug Delivery)
Show Figures

Figure 1

14 pages, 4519 KiB  
Article
In Vivo Anti-Inflammatory and Antinociceptive Activities of Black Elder (Sambucus nigra L.) Fruit and Flower Extracts
by Daniela Seymenska, Desislava Teneva, Irina Nikolova, Niko Benbassat and Petko Denev
Pharmaceuticals 2024, 17(4), 409; https://doi.org/10.3390/ph17040409 - 23 Mar 2024
Cited by 9 | Viewed by 2815
Abstract
Sambucus nigra L. (S. nigra, SN) or black elder is a traditional medicinal plant widely used worldwide for therapeutic and dietary purposes. The aim of the current study was to investigate the anti-inflammatory and antinociceptive activities of black elder fruit and [...] Read more.
Sambucus nigra L. (S. nigra, SN) or black elder is a traditional medicinal plant widely used worldwide for therapeutic and dietary purposes. The aim of the current study was to investigate the anti-inflammatory and antinociceptive activities of black elder fruit and flower extracts (SNFrE and SNFlE, respectively). The primary polyphenol constituents in the flower extract were flavonoids and phenolic acids, while anthocyanins were the main components in the fruit extract. SNFrE revealed pronounced and dose-dependent in vivo anti-inflammatory activity assessed by the cotton pellet-induced granuloma test. Doses of 10, 20, and 50 mg/kg BW of SNFrE reduced the weight of induced granuloma in rats by 20.3%, 20.5%, and 28.4%, respectively. At the highest dose (50 mg/kg BW), SNFrE had significant (p < 0.01) anti-inflammatory activity comparable to that of diclofenac, the reference compound used (10 mg/kg BW). In addition, the in vivo antinociceptive activity of the extracts in mice was estimated using the acetic-acid-induced writhing test. Both extracts at doses of 50 mg/kg BW inhibited the abdominal contractions induced by the acetic acid significantly comparing to the control group (p < 0.01). Our findings indicate that black elder extracts and particularly SNFrE possess anti-inflammatory and antinociceptive activities, providing experimental evidence for the use of S. nigra in traditional medicine. Full article
Show Figures

Figure 1

31 pages, 2045 KiB  
Article
Specific Antimicrobial Activities Revealed by Comparative Evaluation of Selected Gemmotherapy Extracts
by Melinda Héjja, Emőke Mihok, Amina Alaya, Maria Jolji, Éva György, Noemi Meszaros, Violeta Turcus, Neli Kinga Oláh and Endre Máthé
Antibiotics 2024, 13(2), 181; https://doi.org/10.3390/antibiotics13020181 - 13 Feb 2024
Cited by 4 | Viewed by 5058
Abstract
Nowadays, unprecedented health challenges are urging novel solutions to address antimicrobial resistance as multidrug-resistant strains of bacteria, yeasts and moulds are emerging. Such microorganisms can cause food and feed spoilage, food poisoning and even more severe diseases, resulting in human death. In order [...] Read more.
Nowadays, unprecedented health challenges are urging novel solutions to address antimicrobial resistance as multidrug-resistant strains of bacteria, yeasts and moulds are emerging. Such microorganisms can cause food and feed spoilage, food poisoning and even more severe diseases, resulting in human death. In order to overcome this phenomenon, it is essential to identify novel antimicrobials that are naturally occurring, biologically effective and increasingly safe for human use. The development of gemmotherapy extracts (GTEs) using plant parts such as buds and young shoots has emerged as a novel approach to treat/prevent human conditions due to their associated antidiabetic, anti-inflammatory and/or antimicrobial properties that all require careful evaluations. Seven GTEs obtained from plant species like the olive (Olea europaea L.), almond (Prunus amygdalus L.), black mulberry (Morus nigra L.), walnut (Juglans regia L.), blackberry (Rubus fruticosus L.), blackcurrant (Ribes nigrum L.) and bilberry (Vaccinium myrtillus L.) were tested for their antimicrobial efficiency via agar diffusion and microbroth dilution methods. The antimicrobial activity was assessed for eight bacterial (Bacillus cereus, Staphylococcus aureus, Salmonella enterica subsp. enterica, Proteus vulgaris, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Listeria monocytogenes), five moulds (Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, Penicillium citrinum, Penicillium expansum) and one yeast strain (Saccharomyces cerevisiae). The agar diffusion method revealed the blackberry GTE as the most effective since it inhibited the growth of three bacterial, four moulds and one yeast species, having considered the total number of affected microorganism species. Next to the blackberry, the olive GTE appeared to be the second most efficient, suppressing five bacterial strains but no moulds or yeasts. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for each GTE and the microorganisms tested. Noticeably, the olive GTE appeared to feature the strongest bacteriostatic and bactericidal outcome, displaying specificity for S. aureus, E. faecalis and L. monocytogenes. The other GTEs, such as blueberry, walnut, black mulberry and almond (the list indicates relative strength), were more effective at suppressing microbial growth than inducing microbial death. However, some species specificities were also evident, while the blackcurrant GTE had no significant antimicrobial activity. Having seen the antimicrobial properties of the analysed GTEs, especially the olive and black mulberry GTEs, these could be envisioned as potential antimicrobials that might enhance antibiotic therapies efficiency, while the blackberry GTE would act as an antifungal agent. Some of the GTE mixtures analysed have shown interesting antimicrobial synergies, and all the antimicrobial effects observed argue for extending these studies to include pathological microorganisms. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Products and Plants Extracts)
Show Figures

Figure 1

18 pages, 2442 KiB  
Article
Gene Expression Profiling of Post Mortem Midbrain of Parkinson’s Disease Patients and Healthy Controls
by Michele Salemi, Maria Ravo, Giuseppe Lanza, Francesca A. Schillaci, Giovanna Maria Ventola, Giovanna Marchese, Maria Grazia Salluzzo, Graziella Cappelletti and Raffaele Ferri
Int. J. Mol. Sci. 2024, 25(2), 707; https://doi.org/10.3390/ijms25020707 - 5 Jan 2024
Cited by 9 | Viewed by 3631
Abstract
Parkinson’s disease (PD) stands as the most prevalent degenerative movement disorder, marked by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. In this study, we conducted a transcriptome analysis utilizing post mortem mRNA extracted from the substantia nigra of [...] Read more.
Parkinson’s disease (PD) stands as the most prevalent degenerative movement disorder, marked by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. In this study, we conducted a transcriptome analysis utilizing post mortem mRNA extracted from the substantia nigra of both PD patients and healthy control (CTRL) individuals. Specifically, we acquired eight samples from individuals with PD and six samples from CTRL individuals, with no discernible pathology detected in the latter group. RNA sequencing was conducted using the TapeStation 4200 system from Agilent Technologies. A total of 16,148 transcripts were identified, with 92 mRNAs displaying differential expression between the PD and control groups. Specifically, 33 mRNAs were significantly up-regulated, while 59 mRNAs were down-regulated in PD compared to the controls. The identification of statistically significant signaling pathways, with an adjusted p-value threshold of 0.05, unveiled noteworthy insights. Specifically, the enriched categories included cardiac muscle contraction (involving genes such as ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), solute carrier family 8 member A1 (SLC8A1), and cytochrome c oxidase subunit II (COX2)), GABAergic synapse (involving GABA type A receptor-associated protein-like 1 (GABARAPL1), G protein subunit beta 5 (GNB5), and solute carrier family 38 member 2 (SLC38A2), autophagy (involving GABARAPL1 and tumor protein p53-inducible nuclear protein 2 (TP53INP2)), and Fc gamma receptor (FcγR) mediated phagocytosis (involving amphiphysin (AMPH)). These findings uncover new pathophysiological dimensions underlying PD, implicating genes associated with heart muscle contraction. This knowledge enhances diagnostic accuracy and contributes to the advancement of targeted therapies. Full article
Show Figures

Figure 1

15 pages, 2743 KiB  
Article
Neuroprotective Effects of Aldehyde-Reducing Composition in an LPS-Induced Neuroinflammation Model of Parkinson’s Disease
by Sora Kang, Youngjin Noh, Seung Jun Oh, Hye Ji Yoon, Suyeol Im, Hung Taeck Kwon and Youngmi Kim Pak
Molecules 2023, 28(24), 7988; https://doi.org/10.3390/molecules28247988 - 7 Dec 2023
Cited by 4 | Viewed by 3093
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disease in which neuroinflammation and oxidative stress interact to contribute to pathogenesis. This study investigates the in vivo neuroprotective effects of a patented yeast extract lysate in a lipopolysaccharide (LPS)-induced neuroinflammation model. The yeast extract lysate, [...] Read more.
Parkinson’s disease (PD) is a complex neurodegenerative disease in which neuroinflammation and oxidative stress interact to contribute to pathogenesis. This study investigates the in vivo neuroprotective effects of a patented yeast extract lysate in a lipopolysaccharide (LPS)-induced neuroinflammation model. The yeast extract lysate, named aldehyde-reducing composition (ARC), exhibited potent antioxidant and anti-aldehyde activities in vitro. Oral administration of ARC at 10 or 20 units/kg/day for 3 days prior to intraperitoneal injection of LPS (10 mg/kg) effectively preserved dopaminergic neurons in the substantia nigra (SN) and striatum by preventing LPS-induced cell death. ARC also normalized the activation of microglia and astrocytes in the SN, providing further evidence for its neuroprotective properties. In the liver, ARC downregulated the LPS-induced increase in inflammatory cytokines and reversed the LPS-induced decrease in antioxidant-related genes. These findings indicate that ARC exerts potent antioxidant, anti-aldehyde, and anti-inflammatory effects in vivo, suggesting its potential as a disease-modifying agent for the prevention and treatment of neuroinflammation-related diseases, including Parkinson’s disease. Full article
Show Figures

Graphical abstract

Back to TopTop