Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Rouse modes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 1747 KiB  
Review
Simulational Tests of the Rouse Model
by George David Joseph Phillies
Polymers 2023, 15(12), 2615; https://doi.org/10.3390/polym15122615 - 8 Jun 2023
Cited by 5 | Viewed by 3734
Abstract
An extensive review of literature simulations of quiescent polymer melts is given, considering results that test aspects of the Rouse model in the melt. We focus on Rouse model predictions for the mean-square amplitudes [...] Read more.
An extensive review of literature simulations of quiescent polymer melts is given, considering results that test aspects of the Rouse model in the melt. We focus on Rouse model predictions for the mean-square amplitudes (Xp(0))2 and time correlation functions Xp(0)Xp(t) of the Rouse mode Xp(t). The simulations conclusively demonstrate that the Rouse model is invalid in polymer melts. In particular, and contrary to the Rouse model, (i) mean-square Rouse mode amplitudes (Xp(0))2 do not scale as sin2(pπ/2N), N being the number of beads in the polymer. For small p (say, p3) (Xp(0))2 scales with p as p2; for larger p, it scales as p3. (ii) Rouse mode time correlation functions Xp(t)Xp(0) do not decay with time as exponentials; they instead decay as stretched exponentials exp(αtβ). β depends on p, typically with a minimum near N/2 or N/4. (iii) Polymer bead displacements are not described by independent Gaussian random processes. (iv) For pq, Xp(t)Xq(0) is sometimes non-zero. (v) The response of a polymer coil to a shear flow is a rotation, not the affine deformation predicted by Rouse. We also briefly consider the Kirkwood–Riseman polymer model. Full article
(This article belongs to the Special Issue Computational Modeling and Simulations of Polymers)
Show Figures

Figure 1

14 pages, 849 KiB  
Article
The Kirkwood–Riseman Model of Polymer Solution Dynamics Is Qualitatively Correct
by George David Joseph Phillies
Polymers 2023, 15(9), 1995; https://doi.org/10.3390/polym15091995 - 23 Apr 2023
Cited by 2 | Viewed by 2019
Abstract
The Rouse model is the foundational basis of much of modern polymer physics. The period alternative, the Kirkwood–Riseman model, is rarely mentioned in modern monographs. The models are qualitatively different. The models do not agree as to how many internal modes a polymer [...] Read more.
The Rouse model is the foundational basis of much of modern polymer physics. The period alternative, the Kirkwood–Riseman model, is rarely mentioned in modern monographs. The models are qualitatively different. The models do not agree as to how many internal modes a polymer molecule has. In the Kirkwood–Riseman model, polymers in a shear field perform whole-body rotation; in the Rouse model, polymers respond to shear with an affine deformation. We use Brownian dynamics to show that the Kirkwood–Riseman model for chain motion is qualitatively correct. Contrary to the Rouse model, in shear flow, polymer coils rotate. Rouse modes are cross-correlated. The amplitudes and relaxation rates of Rouse modes depend on the shear rate. Several alternatives to Rouse modes as collective coordinates are discussed. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

24 pages, 7091 KiB  
Article
The Effect of Conductive Heat Transfer on the Morphology Formation in Polymer Solutions Undergoing Thermally Induced Phase Separation
by Samira Ranjbarrad and Philip K. Chan
Polymers 2022, 14(20), 4345; https://doi.org/10.3390/polym14204345 - 15 Oct 2022
Cited by 6 | Viewed by 2297
Abstract
Owing to the fact that heat transfer during the thermally induced phase separation process is limited, a quench rate is inevitably entailed, which leads to the existence of temporal and spatial variations in temperature. Hence, it is of great importance to take into [...] Read more.
Owing to the fact that heat transfer during the thermally induced phase separation process is limited, a quench rate is inevitably entailed, which leads to the existence of temporal and spatial variations in temperature. Hence, it is of great importance to take into account the nonisothermality during the phase separation process, especially in high viscosity polymer solutions. In this study, the influence of conductive heat transfer on the morphology formation during the thermally induced phase separation process was investigated theoretically in terms of quench depth, boundary conditions, and enthalpy of demixing to elucidate the interaction between temperature and concentration through incorporating the nonlinear Cahn-Hilliard equation and the Fourier heat transfer equation in two dimensions. The Flory-Huggins free energy theory for the thermodynamics of phase separation, slow mode theory, and Rouse law for polymer diffusion without entanglements were taken into account in the model development. The simulation results indicated a strong interaction between heat transfer and phase separation, which impacted the morphology formation significantly. Results confirmed that quench depth had an indispensable impact on phase separation in terms of higher characteristic frequency by increasing the driving force for heat transfer. Applying quench from various boundaries led to a difference in the quench rate due to the high viscosity of the polymer solution. This led to a gradation in pore size and anisotropic morphology formation. The degree and direction of anisotropy depended on quench depth and rate, quench time, heat conduction rate inside the solution, solution viscosity, temperature evolution, and the enthalpy of demixing. It was also verified that the influence of enthalpy of demixing on phase separation could not be neglected as it increased the solution temperature and led to phase separation being accomplished at a higher temperature than the initial quench temperature. Full article
(This article belongs to the Special Issue Synergistic Interactions in Complex Formulations)
Show Figures

Figure 1

17 pages, 7502 KiB  
Article
Material Property Recovery by Controlling the Melt Memory Effects on Recrystallization and on Crystal Deformation: An Approach by the Molecular Dynamics Simulation for Polyethylene
by Takashi Yamamoto, Mohammed Althaf Hussain and Shigeru Yao
Polymers 2022, 14(15), 3082; https://doi.org/10.3390/polym14153082 - 29 Jul 2022
Cited by 5 | Viewed by 2796
Abstract
Degradation in the mechanical properties of recycled polymer materials has been recently appearing as a big issue in polymer science. The molecular mechanism of the degradation is considered in part due to residual memories of flow experienced during molding processes, and therefore the [...] Read more.
Degradation in the mechanical properties of recycled polymer materials has been recently appearing as a big issue in polymer science. The molecular mechanism of the degradation is considered in part due to residual memories of flow experienced during molding processes, and therefore the mechanical recycling through remolding involving melting and recrystallization has been attempted in recent years. In the present paper, the molecular processes of melting and recrystallization are investigated by the molecular dynamics simulation for polyethylene with special interest in the melt memory effects. We also studied the mechanical properties of the recrystalized materials that have undergone different recrystallization processes aiming to discover better recycling strategies. A successive step-by-step approach is adopted to study the loss of the crystal memory during retention in the melt, the effects of the melt memory on the mode of recrystallization, the relation between the recrystallization mode and the resulting higher-order structure, and the mechanical properties controlled by the higher-order structures. It is shown that the melt memory clearly remains in various order parameters that persist over time scales corresponding to the Rouse time, the remaining melt memory markedly affects the crystallization mode leading to distinct crystalline morphologies, and the distinct morphologies obtained give different mechanical responses during large deformations. Full article
(This article belongs to the Special Issue Advanced Recycling of Plastic Waste: An Approach for Circular Economy)
Show Figures

Figure 1

12 pages, 671 KiB  
Article
Temperature Dependence of Conformational Relaxation of Poly(ethylene oxide) Melts
by Hye Sol Kim, Taejin Kwon, Chung Bin Park and Bong June Sung
Polymers 2021, 13(22), 4049; https://doi.org/10.3390/polym13224049 - 22 Nov 2021
Cited by 6 | Viewed by 3457
Abstract
The time-temperature superposition (TTS) principle, employed extensively for the analysis of polymer dynamics, is based on the assumption that the different normal modes of polymer chains would experience identical temperature dependence. We aim to test the critical assumption for TTS principle by investigating [...] Read more.
The time-temperature superposition (TTS) principle, employed extensively for the analysis of polymer dynamics, is based on the assumption that the different normal modes of polymer chains would experience identical temperature dependence. We aim to test the critical assumption for TTS principle by investigating poly(ethylene oxide) (PEO) melts, which have been considered excellent solid polyelectrolytes. In this work, we perform all-atom molecular dynamics simulations up to 300 ns at a range of temperatures for PEO melts. We find from our simulations that the conformations of strands of PEO chains in melts show ideal chain statistics when the strand consists of at least 10 monomers. At the temperature range of T= 400 to 300 K, the mean-square displacements (Δr2(t)) of the centers of mass of chains enter the Fickian regime, i.e., Δr2(t)t1. On the other hand, Δr2(t) of the monomers of the chains scales as Δr2(t)t1/2 at intermediate time scales as expected for the Rouse model. We investigate various relaxation modes of the polymer chains and their relaxation times (τn), by calculating for each strand of n monomers. Interestingly, different normal modes of the PEO chains experience identical temperature dependence, thus indicating that the TTS principle would hold for the given temperature range. Full article
(This article belongs to the Special Issue Computational Modeling of Polymers)
Show Figures

Figure 1

19 pages, 5277 KiB  
Article
Viscoelastic Relaxation of Polymerized Ionic Liquid and Lithium Salt Mixtures: Effect of Salt Concentration
by Arisa Yokokoji, Wakana Kitayama, Kamonthira Wichai, Osamu Urakawa, Atsushi Matsumoto, Visit Vao-Soongnern and Tadashi Inoue
Polymers 2021, 13(11), 1772; https://doi.org/10.3390/polym13111772 - 28 May 2021
Cited by 9 | Viewed by 4081
Abstract
Polymerized ionic liquids (PILs) doped with lithium salts have recently attracted research interests as the polymer component in lithium-ion batteries because of their high ionic mobilities and lithium-ion transference numbers. To date, although the ion transport mechanism in lithium-doped PILs has been considerably [...] Read more.
Polymerized ionic liquids (PILs) doped with lithium salts have recently attracted research interests as the polymer component in lithium-ion batteries because of their high ionic mobilities and lithium-ion transference numbers. To date, although the ion transport mechanism in lithium-doped PILs has been considerably studied, the role of lithium salts on the dynamics of PIL chains remains poorly understood. Herein, we examine the thermal and rheological behaviors of the mixture of poly(1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide (PC4-TFSI)/lithium TFSI (LiTFSI) in order to clarify the effect of the addition of LiTFSI. We show that the glass transition temperature Tg and the entanglement density decrease with the increase in LiTFSI concentration wLiTFSI. These results indicate that LiTFSI acts as a plasticizer for PC4-TFSI. Comparison of the frequency dependence of the complex modulus under the iso-frictional condition reveals that the addition of LiTFSI does not modify the stress relaxation mechanism of PC4-TFSI, including its characteristic time scale. This suggests that the doped LiTFSI, component that can be carrier ions, is not so firmly bound to the polymer chain as it modifies the chain dynamics. In addition, a broadening of the loss modulus spectrum in the glass region occurs at high wLiTFSI. This change in the spectrum can be caused by the responses of free TFSI and/or coordination complexes of Li and TFSI. Our detailed rheological analysis can extract the information of the dynamical features for PIL/salt mixtures and may provide helpful knowledge for the control of mechanical properties and ion mobilities in PILs. Full article
(This article belongs to the Special Issue Advances in Polymerized Ionic Liquids and Their Composites)
Show Figures

Graphical abstract

23 pages, 6925 KiB  
Article
Precise Locating Control for a Polar Crane Based on Sliding Mode Active Disturbance Rejection Control and Quadratic Programming Algorithm
by Xuyang Cao, Zhiwei Wang and Xingang Zhang
Machines 2021, 9(2), 22; https://doi.org/10.3390/machines9020022 - 20 Jan 2021
Cited by 10 | Viewed by 3712
Abstract
A polar crane is a large-scale special lifting equipment operated in a nuclear power plant. To address the precise locating control problem of a polar crane with the center of gravity shifting, with cross-coupling, and with external disturbance, an effective control scheme is [...] Read more.
A polar crane is a large-scale special lifting equipment operated in a nuclear power plant. To address the precise locating control problem of a polar crane with the center of gravity shifting, with cross-coupling, and with external disturbance, an effective control scheme is proposed in this paper. Firstly, a nonholonomic constraint dynamic model of the polar crane is established according to the Lagrange–Rouse equation. Then, an expansion state observer (ESO) of the active disturbance rejection control (ADRC) method is applied to estimate and compensate the cross-coupling disturbance in real-time. To improve the robustness and convergence speed of the control system, the nonsingular terminal sliding mode (NTSM) control method is incorporated with ADRC and the stability of the controller is proven by the Lyapunov function approach. Furthermore, to solve the problem of redundant actuation and to reduce trajectory deviation of the bridge truck, the contact forces of the horizontal guide device are introduced into the quadratic programming (QP) optimization algorithm. Finally, the effectiveness and superiority of the proposed control scheme are illustrated by simulation results. Full article
Show Figures

Figure 1

10 pages, 868 KiB  
Article
Diffusion Spectrum of Polymer Melt Measured by Varying Magnetic Field Gradient Pulse Width in PGSE NMR
by Aleš Mohorič, Gojmir Lahajnar and Janez Stepišnik
Molecules 2020, 25(24), 5813; https://doi.org/10.3390/molecules25245813 - 9 Dec 2020
Cited by 4 | Viewed by 2590
Abstract
The translational motion of polymers is a complex process and has a big impact on polymer structure and chemical reactivity. The process can be described by the segment velocity autocorrelation function or its diffusion spectrum, which exhibit several characteristic features depending on the [...] Read more.
The translational motion of polymers is a complex process and has a big impact on polymer structure and chemical reactivity. The process can be described by the segment velocity autocorrelation function or its diffusion spectrum, which exhibit several characteristic features depending on the observational time scale—from the Brownian delta function on a large time scale, to complex details in a very short range. Several stepwise, more-complex models of translational dynamics thus exist—from the Rouse regime over reptation motion to a combination of reptation and tube-Rouse motion. Accordingly, different methods of measurement are applicable, from neutron scattering for very short times to optical methods for very long times. In the intermediate regime, nuclear magnetic resonance (NMR) is applicable—for microseconds, relaxometry, and for milliseconds, diffusometry. We used a variation of the established diffusometric method of pulsed gradient spin-echo NMR to measure the diffusion spectrum of a linear polyethylene melt by varying the gradient pulse width. We were able to determine the characteristic relaxation time of the first mode of the tube-Rouse motion. This result is a deviation from a Rouse model of polymer chain displacement at the crossover from a square-root to linear time dependence, indicating a new long-term diffusion regime in which the dynamics of the tube are also described by the Rouse model. Full article
(This article belongs to the Special Issue Advances in NMR and MRI of Materials)
Show Figures

Figure 1

16 pages, 5896 KiB  
Article
Lane Departure Warning Mechanism of Limited False Alarm Rate Using Extreme Learning Residual Network and ϵ-Greedy LSTM
by Qiaoming Gao, Huijun Yin and Weiwei Zhang
Sensors 2020, 20(3), 644; https://doi.org/10.3390/s20030644 - 23 Jan 2020
Cited by 12 | Viewed by 4592
Abstract
Neglecting the driver behavioral model in lane-departure-warning systems has taken over as the primary reason for false warnings in human–machine interfaces. We propose a machine learning-based mechanism to identify drivers’ unintended lane-departure behaviors, and simultaneously predict the possibility of driver proactive correction after [...] Read more.
Neglecting the driver behavioral model in lane-departure-warning systems has taken over as the primary reason for false warnings in human–machine interfaces. We propose a machine learning-based mechanism to identify drivers’ unintended lane-departure behaviors, and simultaneously predict the possibility of driver proactive correction after slight departure. First, a deep residual network for driving state feature extraction is established by combining time series sensor data and three serial ReLU residual modules. Based on this feature network, online extreme learning machine is organized to identify a driver’s behavior intention, such as unconscious lane-departure and intentional lane-changing. Once the system senses unconscious lane-departure before crossing the outermost warning boundary, the ϵ-greedy LSTM module in shadow mode is roused to verify the chances of driving the vehicle back to the original lane. Only those unconscious lane-departures with no drivers’ proactive correction behavior are transferred into the warning module, guaranteeing that the system has a limited false alarm rate. In addition, naturalistic driving data of twenty-one drivers are collected to validate the system performance. Compared with the basic time-to-line-crossing (TLC) method and the TLC-DSPLS method, the proposed warning mechanism shows a large-scale reduction of 12.9% on false alarm rate while maintaining the competitive accuracy rate of about 98.8%. Full article
Show Figures

Graphical abstract

15 pages, 4370 KiB  
Article
Opposite Effects of SiO2 Nanoparticles on the Local α and Larger-Scale α’ Segmental Relaxation Dynamics of PMMA Nanocomposites
by Na Wang, Xuebang Wu and C.S. Liu
Polymers 2019, 11(6), 979; https://doi.org/10.3390/polym11060979 - 3 Jun 2019
Cited by 14 | Viewed by 3974
Abstract
The segmental relaxation dynamics of poly(methyl methacrylate)/silica (PMMA/SiO2) nanocomposites with different compositions ( ϕ SiO 2 ) near and above the glass transition temperature were investigated by mechanical spectroscopy. At ϕ SiO 2 ≤ 0.5%, the α peak temperature hardly changes [...] Read more.
The segmental relaxation dynamics of poly(methyl methacrylate)/silica (PMMA/SiO2) nanocomposites with different compositions ( ϕ SiO 2 ) near and above the glass transition temperature were investigated by mechanical spectroscopy. At ϕ SiO 2 ≤ 0.5%, the α peak temperature hardly changes with ϕ SiO 2 , but that of α’ relaxation composed of Rouse and sub-Rouse modes decreases by 15 °C due to the increase of free volume. At ϕ SiO 2 ≥ 0.7%, both α and α’ relaxations shift to high temperatures because of the steric hindrance introduced by nanoparticle agglomeration. On the other hand, with increasing ϕ SiO 2 , the peak height for α relaxation increases at ϕ SiO 2 ≤ 0.5% and then decreases at ϕ SiO 2 ≥ 0.7%, but that for α’ relaxation shows an opposite behavior. This is because at low ϕ SiO 2 , the short-chain segments related to α relaxation can easily bypass the particles, but the longer-chain segments related to α’ relaxation cannot. At high ϕ SiO 2 , the polymer chains were bound to the nanoparticles due to the physical adsorption effect, leading to the decrease of relaxation unit concentration involved in α relaxation. However, the dissociation of those bonds with heating and the concentration heterogeneity of polymer chains result in the increase of peak height for α’ relaxation. Full article
(This article belongs to the Special Issue Polymer Rheology: Fundamentals and Applications)
Show Figures

Graphical abstract

11 pages, 24858 KiB  
Article
Effects of Harbor Shape on the Induced Sedimentation; L-Type Basin
by Rozita Kian, Deniz Velioglu, Ahmet Cevdet Yalciner and Andrey Zaytsev
J. Mar. Sci. Eng. 2016, 4(3), 55; https://doi.org/10.3390/jmse4030055 - 2 Sep 2016
Cited by 11 | Viewed by 4863
Abstract
Tsunamis in shallow water zones lead to sea water level rise and fall, strong currents, forces (drag, impact, uplift, etc.), morphological changes (erosion, deposition), dynamic water pressure, as well as resonant oscillations. As a result, ground materials under the tsunami motion move, and [...] Read more.
Tsunamis in shallow water zones lead to sea water level rise and fall, strong currents, forces (drag, impact, uplift, etc.), morphological changes (erosion, deposition), dynamic water pressure, as well as resonant oscillations. As a result, ground materials under the tsunami motion move, and scour/erosion/deposition patterns can be observed in the region. Ports and harbors as enclosed basins are the main examples of coastal structures that usually encounter natural hazards with small or huge damaging scales. Morphological changes are one of the important phenomena in the basins under short and long wave attack. Tsunamis as long waves lead to sedimentation in the basins, and therefore, in this study, the relation to the current pattern is noticed to determine sedimentation modes. Accordingly, we present a methodology based on the computation of the instantaneous Rouse number to investigate the tsunami motion and to calculate the respective sedimentation. This study aims to investigate the effects of the incident wave period on an L-type harbor sedimentation with a flat bathymetry using a numerical tool, NAMI DANCE, which solves non-linear shallow water equations. The results showed that the corner points on the bending part of the basin are always the critical points where water surface elevation and current velocity amplify in the exterior and interior corners, respectively. Full article
Show Figures

Figure 1

Back to TopTop