Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = Road Traffic Noise Models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3657 KiB  
Article
Vehicle Trajectory Data Augmentation Using Data Features and Road Map
by Jianfeng Hou, Wei Song, Yu Zhang and Shengmou Yang
Electronics 2025, 14(14), 2755; https://doi.org/10.3390/electronics14142755 - 9 Jul 2025
Viewed by 320
Abstract
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection [...] Read more.
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection costs. The lack of data creates challenges for training machine learning models and optimizing algorithms. To address this, we propose a new method for generating synthetic vehicle trajectory data, leveraging traffic flow characteristics and road maps. The approach begins by estimating hourly traffic volumes, then it uses the Poisson distribution modeling to assign departure times to synthetic trajectories. Origin and destination (OD) distributions are determined by analyzing historical data, allowing for the assignment of OD pairs to each synthetic trajectory. Path planning is then applied using a road map to generate a travel route. Finally, trajectory points, including positions and timestamps, are calculated based on road segment lengths and recommended speeds, with noise added to enhance realism. This method offers flexibility to incorporate additional information based on specific application needs, providing valuable opportunities for machine learning in intelligent transportation systems. Full article
(This article belongs to the Special Issue Big Data and AI Applications)
Show Figures

Figure 1

19 pages, 739 KiB  
Article
Urban Built Environment Perceptions and Female Cycling Behavior: A Gender-Comparative Study of E-bike and Bicycle Riders in Nanjing, China
by Yayun Qu, Qianwen Wang and Hui Wang
Urban Sci. 2025, 9(6), 230; https://doi.org/10.3390/urbansci9060230 - 17 Jun 2025
Viewed by 419
Abstract
As cities globally prioritize sustainable transportation, understanding gender-differentiated responses to the urban built environment is critical for equitable mobility planning. This study combined the Social Ecological Model (SEM) with the theoretical perspective of Gendered Spatial Experience to explore the differentiated impacts of the [...] Read more.
As cities globally prioritize sustainable transportation, understanding gender-differentiated responses to the urban built environment is critical for equitable mobility planning. This study combined the Social Ecological Model (SEM) with the theoretical perspective of Gendered Spatial Experience to explore the differentiated impacts of the Perceived Street Built Environment (PSBE) on the cycling behavior of men and women. Questionnaire data from 285 e-bike and traditional bicycle riders (236 e-bike riders and 49 traditional cyclists, 138 males and 147 females) from Gulou District, Nanjing, between May and October 2023, were used to investigate gender differences in cycling behavior and PSBE using the Mann–Whitney U-test and crossover analysis. Linear regression and logistic regression analyses examined the PSBE impact on gender differences in cycling probability and route choice. The cycling frequency of women was significantly higher than that of men, and their cycling behavior was obviously driven by family responsibilities. Greater gender differences were observed in the PSBE among e-bike riders. Women rated facility accessibility, road accessibility, sense of safety, and spatial comfort significantly lower than men. Clear traffic signals and zebra crossings positively influenced women’s cycling probability. Women were more sensitive to the width of bicycle lanes and street noise, while men’s detours were mainly driven by the convenience of bus connections. We recommend constructing a gender-inclusive cycling environment through intersection optimization, family-friendly routes, lane widening, and noise reduction. This study advances urban science by identifying gendered barriers in cycling infrastructure, providing actionable strategies for equitable transport planning and urban design. Full article
Show Figures

Figure 1

27 pages, 4244 KiB  
Article
Developing a Prediction Model for Real-Time Incident Detection Leveraging User-Oriented Participatory Sensing Data
by Md Tufajjal Hossain, Joyoung Lee, Dejan Besenski, Branislav Dimitrijevic and Lazar Spasovic
Information 2025, 16(6), 423; https://doi.org/10.3390/info16060423 - 22 May 2025
Viewed by 673
Abstract
Effective incident detection is essential for emergency response and transportation management. Traditional methods relying on stationary technologies are often costly and provide limited coverage, prompting the exploration of crowdsourced data such as Waze. While Waze offers extensive coverage, its data can be unverified [...] Read more.
Effective incident detection is essential for emergency response and transportation management. Traditional methods relying on stationary technologies are often costly and provide limited coverage, prompting the exploration of crowdsourced data such as Waze. While Waze offers extensive coverage, its data can be unverified and unreliable. This study aims to identify factors affecting the reliability of Waze alerts and develop a predictive model to distinguish true incidents from false alerts using real-time Waze data, thereby improving emergency response times. Real crash data from the New Jersey Department of Transportation (NJDOT) and crowdsourced data from Waze were matched using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to differentiate true and false alerts. A binary logit model was constructed to reveal significant predictors such as time categories around peak hours, road type, report ratings, and crash type. Findings indicate that the likelihood of accurate Waze alerts increases during peak hours, on streets, and with higher report ratings and major crashes. Additionally, multiple machine learning-based predictive models were developed and evaluated to forecast in real time whether Waze alerts correspond to actual incidents. Among those models, the Random Forest model achieved the highest overall accuracy (82.5%) and F1-score (82.8%), and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.90, demonstrating its robustness and reliability for real-time incident detection. Gradient Boosting, with an AUC-ROC of 0.90 and Area Under the Precision–Recall Curve (AUC-PR) of 0.90, also performed strongly, particularly excelling at predicting true alerts. The analysis further emphasized the importance of key predictors such as time of day, report ratings, and road type. These findings provide actionable insights for enhancing the accuracy of incident detection and improving the reliability of crowdsourced traffic alerts, supporting more effective traffic management and emergency response systems. Full article
Show Figures

Figure 1

22 pages, 12274 KiB  
Article
3D Reconstruction and Large-Scale Detection of Roads Based on UAV Imagery
by Xiang Zhang, Shuwei Cheng, Pu’an Wang, Hao Zheng, Xu Yang and Yaolin Guo
Materials 2025, 18(9), 2133; https://doi.org/10.3390/ma18092133 - 6 May 2025
Viewed by 532
Abstract
Accurate and efficient detection of road damage is crucial in traffic safety and maintenance management. Traditional road detection methods have problems such as low efficiency and insufficient accuracy, making it difficult to meet the needs of large-scale road health assessments. With the development [...] Read more.
Accurate and efficient detection of road damage is crucial in traffic safety and maintenance management. Traditional road detection methods have problems such as low efficiency and insufficient accuracy, making it difficult to meet the needs of large-scale road health assessments. With the development of drone technology and computer vision, new ideas have been provided for the automatic detection of road diseases. The existing drone-based road detection methods have poor performance in dealing with complex road scenes such as vehicle occlusion, and there is still room for improvement in 3D modeling accuracy and disease detection accuracy, lacking a comprehensive and efficient solution. This paper proposes a UAV (Unmanned Aerial Vehicle)-based 3D reconstruction and large-scale disease detection method for roads. By capturing aerial images with UAVs and utilizing an improved YOLOv8 model, vehicles in the images are identified and removed. Apply MVSNet (Multi-View Stereo Network) 3D reconstruction algorithm for road surface modeling, and finally use point cloud processing and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering for disease detection. The experimental results show that this method performs excellently in terms of 3D modeling accuracy and speed. Compared with the traditional colmap method, the reconstruction speed is greatly improved, and the reconstruction density is three times that of colmap. Meanwhile, the reconstructed point cloud can effectively detect road smoothness and settlement. This study provides a new method for effective disease detection under complex road conditions, suitable for large-scale road health assessment tasks. Full article
(This article belongs to the Special Issue Materials, Structures and Designs for Durable Roads)
Show Figures

Figure 1

9 pages, 3054 KiB  
Proceeding Paper
Simulated Adversarial Attacks on Traffic Sign Recognition of Autonomous Vehicles
by Chu-Hsing Lin, Chao-Ting Yu, Yan-Ling Chen, Yo-Yu Lin and Hsin-Ta Chiao
Eng. Proc. 2025, 92(1), 15; https://doi.org/10.3390/engproc2025092015 - 25 Apr 2025
Viewed by 424
Abstract
With the development and application of artificial intelligence (AI) technology, autonomous driving systems are gradually being applied on the road. However, people still have requirements for the safety and reliability of unmanned vehicles. Autonomous driving systems in today’s unmanned vehicles also have to [...] Read more.
With the development and application of artificial intelligence (AI) technology, autonomous driving systems are gradually being applied on the road. However, people still have requirements for the safety and reliability of unmanned vehicles. Autonomous driving systems in today’s unmanned vehicles also have to respond to information security attacks. If they cannot defend against such attacks, traffic accidents might be caused, leaving passengers exposed to risks. Therefore, we investigated adversarial attacks on the traffic sign recognition of autonomous vehicles in this study. We used You Look Only Once (YOLO) to build a machine learning model for traffic sign recognition and simulated attacks on traffic signs. The simulated attacks included LED light strobes, color-light flash, and Gaussian noise. Regarding LED strobes and color-light flash, translucent images were used to overlay the original traffic sign images to simulate corresponding attack scenarios. In the Gaussian noise attack, Python 3.11.10 was used to add noise to the original image. Different attack methods interfered with the original machine learning model to a certain extent, hindering autonomous vehicles from recognizing traffic signs and detecting them accurately. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

20 pages, 13082 KiB  
Article
Exploring the Soundscape in a University Campus: Students’ Perceptions and Eco-Acoustic Indices
by Valentina Zaffaroni-Caorsi, Oscar Azzimonti, Andrea Potenza, Fabio Angelini, Ilaria Grecchi, Giovanni Brambilla, Giorgia Guagliumi, Luca Daconto, Roberto Benocci and Giovanni Zambon
Sustainability 2025, 17(8), 3526; https://doi.org/10.3390/su17083526 - 15 Apr 2025
Cited by 2 | Viewed by 663
Abstract
Urban noise pollution significantly degrades people’s health and well-being and, furthermore, traditional noise reduction strategies often overlook individual perception differences. This study proposed to explore the role of eco-acoustic indices in capturing the interplay between biophony, geophony, and anthrophony, and their relationship with [...] Read more.
Urban noise pollution significantly degrades people’s health and well-being and, furthermore, traditional noise reduction strategies often overlook individual perception differences. This study proposed to explore the role of eco-acoustic indices in capturing the interplay between biophony, geophony, and anthrophony, and their relationship with classical acoustic metrics and the perceived soundscapes within a University Campus (University of “Mila-no-Bicocca”, Italy). The study area is divided in to eight different sites in “Piazza della Scienza” square. Sound measurements and surveys conducted in June 2023 across four paved sites and adjacent courtyards involved 398 participants (51.7% female, 45.6% male, 2.7% other). The main noise sources included road traffic, technical installations, and human activity, where traffic noise was more prominent at street-level sites (Sites 1–4) and technical installations dominated underground courtyards (6–8). Human activity was most noticeable at Sites 4–8, especially at Site 5, which showed the highest activity levels. A circumplex model revealed that street-level sites were less pleasant and eventful than courtyards. Pairwise comparisons of noise variability showed significant differences among sites, with underground locations offering quieter environments. Eco-acoustic analysis identified two site groups: one linked to noisiness and spectral features, the other to intensity distribution metrics. Technical installations, people, and traffic noises showed distinct correlations with acoustic indices, influencing emotional responses like stimulation and liveliness. These findings emphasize the need to integrate subjective perceptions with objective noise metrics in soundscape descriptions. Full article
Show Figures

Figure 1

19 pages, 6732 KiB  
Article
Improvement and Validation of a Smart Road Traffic Noise Model Based on Vehicles Tracking Using Image Recognition: EAgLE 3.0
by Claudio Guarnaccia, Ulysse Catherin, Aurora Mascolo and Domenico Rossi
Sensors 2025, 25(6), 1750; https://doi.org/10.3390/s25061750 - 12 Mar 2025
Viewed by 823
Abstract
Noise coming from road traffic represents a major contributor to the high levels of noise to which people are continuously exposed—especially in urban areas—throughout all of Europe. Since it represents a very detrimental pollutant, the assessment of such noise is an important procedure. [...] Read more.
Noise coming from road traffic represents a major contributor to the high levels of noise to which people are continuously exposed—especially in urban areas—throughout all of Europe. Since it represents a very detrimental pollutant, the assessment of such noise is an important procedure. Noise levels can be measured or simulated, and, in this second case, for the building of a valid model, a proper collection of input data cannot be left out of consideration. In this paper, the authors present the development of a methodology for the collection of the main inputs for a road traffic noise model, i.e., vehicle number, category, and speed, from a video recording of traffic on an Italian highway. Starting from a counting and recognition tool already available in the literature, a self-written Python routine based on image inference has been developed for the instantaneous detection of the position and speed of vehicles, together with the categorization of vehicles (light or heavy). The obtained data are coupled with the CNOSSOS-EU model to estimate the noise power level of a single vehicle and, ultimately, the noise impact of traffic on the selected road. The results indicate good performance from the proposed model, with a mean error of −1.0 dBA and a mean absolute error (MAE) of 3.6 dBA. Full article
Show Figures

Figure 1

31 pages, 4051 KiB  
Article
A Stochastic Model for Traffic Incidents and Free Flow Recovery in Road Networks
by Fahem Mouhous, Djamil Aissani and Nadir Farhi
Mathematics 2025, 13(3), 520; https://doi.org/10.3390/math13030520 - 4 Feb 2025
Viewed by 886
Abstract
This study addresses the disruptive impact of incidents on road networks, which often lead to traffic congestion. If not promptly managed, congestion can propagate and intensify over time, significantly delaying the recovery of free-flow conditions. We propose an enhanced model based on an [...] Read more.
This study addresses the disruptive impact of incidents on road networks, which often lead to traffic congestion. If not promptly managed, congestion can propagate and intensify over time, significantly delaying the recovery of free-flow conditions. We propose an enhanced model based on an exponential decay of the time required for free flow recovery between incident occurrences. Our approach integrates a shot noise process, assuming that incidents follow a non-homogeneous Poisson process. The increases in recovery time following incidents are modeled using exponential and gamma distributions. We derive key performance metrics, providing insights into congestion risk and the unlocking phenomenon, including the probability of the first passage time for our process to exceed a predefined congestion threshold. This probability is analyzed using two methods: (1) an exact simulation approach and (2) an analytical approximation technique. Utilizing the analytical approximation, we estimate critical extreme quantities, such as the minimum incident clearance rate, the minimum intensity of recovery time increases, and the maximum intensity of incident occurrences required to avoid exceeding a specified congestion threshold with a given probability. These findings offer valuable tools for managing and mitigating congestion risks in road networks. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

18 pages, 3425 KiB  
Article
A Predictive Model for Traffic Noise Reduction Effects of Street Green Spaces with Variable Widths of Coniferous Vegetation
by Qi Meng, Olga Evgrafova and Mengmeng Li
Forests 2025, 16(2), 238; https://doi.org/10.3390/f16020238 - 26 Jan 2025
Cited by 4 | Viewed by 1306
Abstract
Street green spaces can effectively attenuate traffic noise, but the crucial role of coniferous trees and shrubs in the reduction in green space noise has not been systematically explored. Therefore, in this study, the aim was to determine the mechanism of the influence [...] Read more.
Street green spaces can effectively attenuate traffic noise, but the crucial role of coniferous trees and shrubs in the reduction in green space noise has not been systematically explored. Therefore, in this study, the aim was to determine the mechanism of the influence of plant morphological characteristics and planting forms on the noise reduction effect using field measurements of the noise reduction effect of 36 street green spaces planted with coniferous trees and shrubs. It was found that for the same width of street green spaces, the noise reduction effects of planting single and multiple trees were significantly different, and this difference increased with an increase in street green space width. The noise reduction effect of planting low shrubs in street green spaces was significantly different from that of planting common shrubs of the same width, and their difference increased with an increase in the street green space width. The factors that significantly affected the noise reduction effect of the 5 m wide street green space were tree height, crown width, and DBH, and all of them were positively correlated. In addition, the noise reduction effect of the street green space planted with conifers was affected by the road and pavement widths. Finally, in this study, a stepwise regression model was constructed for the noise reduction effect of street green spaces based on plant morphological parameters, planting methods, and physical characteristics of the road to quantify the crucial role of each factor in the noise reduction effect of street green spaces. The results of this study can provide plant noise reduction strategies for urban landscape planning and design to create a healthy urban acoustic environment. Full article
(This article belongs to the Special Issue Soundscape in Urban Forests—2nd Edition)
Show Figures

Figure 1

18 pages, 4469 KiB  
Article
Sustainable Applications of Satellite Video Technology in Transportation Land Planning and Management
by Ming Lu, Yan Yan, Jingzheng Tu, Yi Yang, Yizhen Li, Runsheng Wang, Wenliang Zhou and Huisheng Wu
Sustainability 2025, 17(2), 444; https://doi.org/10.3390/su17020444 - 8 Jan 2025
Viewed by 850
Abstract
The accurate perception and prediction of traffic parameters like vehicles is essential to transportation land planning and management. Video satellites launched in recent years have brought promising opportunities into this field, providing a wide perspective and high frame frequency for extracting moving vehicles. [...] Read more.
The accurate perception and prediction of traffic parameters like vehicles is essential to transportation land planning and management. Video satellites launched in recent years have brought promising opportunities into this field, providing a wide perspective and high frame frequency for extracting moving vehicles. However, detecting moving vehicles remains a challenge due to their small size, which diminishes shape and texture details, often causing them to blend with noise or other objects. To address this issue, we propose an effective method for moving vehicle detection in video satellites by integrating road maps. Experiments conducted on videos sampled from Jilin-1 and Skysat satellites show that our approach achieves F-scores of 0.98 and 0.87, respectively, which are superior to the three traditional methods, Gaussian mixture model (GMM), improved frame difference (IFD), and visual background extractor (ViBe). Our method can be used for accurate parameter estimation in real traffic, which paves the way for the application of video satellites in transportation land planning and management. Full article
Show Figures

Figure 1

20 pages, 4544 KiB  
Article
Intelligent Recognition of Road Internal Void Using Ground-Penetrating Radar
by Qian Kan, Xing Liu, Anxin Meng and Li Yu
Appl. Sci. 2024, 14(24), 11848; https://doi.org/10.3390/app142411848 - 18 Dec 2024
Cited by 2 | Viewed by 1368
Abstract
Internal road voids can lead to decreased load-bearing capacity, which may result in sudden road collapse, posing threats to traffic safety. Three-dimensional ground-penetrating radar (3D GPR) detects internal road structures by transmitting high-frequency electromagnetic waves into the ground and receiving reflected waves. However, [...] Read more.
Internal road voids can lead to decreased load-bearing capacity, which may result in sudden road collapse, posing threats to traffic safety. Three-dimensional ground-penetrating radar (3D GPR) detects internal road structures by transmitting high-frequency electromagnetic waves into the ground and receiving reflected waves. However, due to noise interference during detection, accurately identifying void areas based on GPR-collected images remains a significant challenge. Therefore, in order to more accurately detect and identify the void areas inside the road, this study proposes an intelligent recognition method for internal road voids based on 3D GPR. First, extensive data on internal road voids was collected using 3D GPR, and the GPR echo characteristics of void areas were analyzed. To address the issue of poor image quality in GPR images, a GPR image enhancement model integrating multi-frequency information was proposed by combining the Unet model, Multi-Head Cross Attention mechanism, and diffusion model. Finally, the intelligent recognition model and enhanced GPR images were used to achieve intelligent and accurate recognition of internal road voids, followed by engineering validation. The research results demonstrate that the proposed road internal void image enhancement model achieves significant improvements in both visual effects and quantitative evaluation metrics, while providing more effective void features for intelligent recognition models. This study offers technical support for precise decision making in road maintenance and ensuring safe road operations. Full article
(This article belongs to the Special Issue Ground Penetrating Radar: Data, Imaging, and Signal Analysis)
Show Figures

Figure 1

13 pages, 7696 KiB  
Article
From Stationary to Nonstationary UAVs: Deep-Learning-Based Method for Vehicle Speed Estimation
by Muhammad Waqas Ahmed, Muhammad Adnan, Muhammad Ahmed, Davy Janssens, Geert Wets, Afzal Ahmed and Wim Ectors
Algorithms 2024, 17(12), 558; https://doi.org/10.3390/a17120558 - 6 Dec 2024
Cited by 2 | Viewed by 1751
Abstract
The development of smart cities relies on the implementation of cutting-edge technologies. Unmanned aerial vehicles (UAVs) and deep learning (DL) models are examples of such disruptive technologies with diverse industrial applications that are gaining traction. When it comes to road traffic monitoring systems [...] Read more.
The development of smart cities relies on the implementation of cutting-edge technologies. Unmanned aerial vehicles (UAVs) and deep learning (DL) models are examples of such disruptive technologies with diverse industrial applications that are gaining traction. When it comes to road traffic monitoring systems (RTMs), the combination of UAVs and vision-based methods has shown great potential. Currently, most solutions focus on analyzing traffic footage captured by hovering UAVs due to the inherent georeferencing challenges in video footage from nonstationary drones. We propose an innovative method capable of estimating traffic speed using footage from both stationary and nonstationary UAVs. The process involves matching each pixel of the input frame with a georeferenced orthomosaic using a feature-matching algorithm. Subsequently, a tracking-enabled YOLOv8 object detection model is applied to the frame to detect vehicles and their trajectories. The geographic positions of these moving vehicles over time are logged in JSON format. The accuracy of this method was validated with reference measurements recorded from a laser speed gun. The results indicate that the proposed method can estimate vehicle speeds with an absolute error as low as 0.53 km/h. The study also discusses the associated problems and constraints with nonstationary drone footage as input and proposes strategies for minimizing noise and inaccuracies. Despite these challenges, the proposed framework demonstrates considerable potential and signifies another step towards automated road traffic monitoring systems. This system enables transportation modelers to realistically capture traffic behavior over a wider area, unlike existing roadside camera systems prone to blind spots and limited spatial coverage. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

23 pages, 4649 KiB  
Article
A Decentralized Digital Watermarking Framework for Secure and Auditable Video Data in Smart Vehicular Networks
by Xinyun Liu, Ronghua Xu and Yu Chen
Future Internet 2024, 16(11), 390; https://doi.org/10.3390/fi16110390 - 24 Oct 2024
Cited by 5 | Viewed by 1739
Abstract
Thanks to the rapid advancements in Connected and Automated Vehicles (CAVs) and vehicular communication technologies, the concept of the Internet of Vehicles (IoVs) combined with Artificial Intelligence (AI) and big data promotes the vision of an Intelligent Transportation System (ITS). An ITS is [...] Read more.
Thanks to the rapid advancements in Connected and Automated Vehicles (CAVs) and vehicular communication technologies, the concept of the Internet of Vehicles (IoVs) combined with Artificial Intelligence (AI) and big data promotes the vision of an Intelligent Transportation System (ITS). An ITS is critical in enhancing road safety, traffic efficiency, and the overall driving experience by enabling a comprehensive data exchange platform. However, the open and dynamic nature of IoV networks brings significant performance and security challenges to IoV data acquisition, storage, and usage. To comprehensively tackle these challenges, this paper proposes a Decentralized Digital Watermarking framework for smart Vehicular networks (D2WaVe). D2WaVe consists of two core components: FIAE-GAN, a novel feature-integrated and attention-enhanced robust image watermarking model based on a Generative Adversarial Network (GAN), and BloVA, a Blockchain-based Video frames Authentication scheme. By leveraging an encoder–noise–decoder framework, trained FIAE-GAN watermarking models can achieve the invisibility and robustness of watermarks that can be embedded in video frames to verify the authenticity of video data. BloVA ensures the integrity and auditability of IoV data in the storing and sharing stages. Experimental results based on a proof-of-concept prototype implementation validate the feasibility and effectiveness of our D2WaVe scheme for securing and auditing video data exchange in smart vehicular networks. Full article
Show Figures

Figure 1

25 pages, 6736 KiB  
Article
LFIR-YOLO: Lightweight Model for Infrared Vehicle and Pedestrian Detection
by Quan Wang, Fengyuan Liu, Yi Cao, Farhan Ullah and Muxiong Zhou
Sensors 2024, 24(20), 6609; https://doi.org/10.3390/s24206609 - 14 Oct 2024
Cited by 5 | Viewed by 3617
Abstract
The complexity of urban road scenes at night and the inadequacy of visible light imaging in such conditions pose significant challenges. To address the issues of insufficient color information, texture detail, and low spatial resolution in infrared imagery, we propose an enhanced infrared [...] Read more.
The complexity of urban road scenes at night and the inadequacy of visible light imaging in such conditions pose significant challenges. To address the issues of insufficient color information, texture detail, and low spatial resolution in infrared imagery, we propose an enhanced infrared detection model called LFIR-YOLO, which is built upon the YOLOv8 architecture. The primary goal is to improve the accuracy of infrared target detection in nighttime traffic scenarios while meeting practical deployment requirements. First, to address challenges such as limited contrast and occlusion noise in infrared images, the C2f module in the high-level backbone network is augmented with a Dilation-wise Residual (DWR) module, incorporating multi-scale infrared contextual information to enhance feature extraction capabilities. Secondly, at the neck of the network, a Content-guided Attention (CGA) mechanism is applied to fuse features and re-modulate both initial and advanced features, catering to the low signal-to-noise ratio and sparse detail features characteristic of infrared images. Third, a shared convolution strategy is employed in the detection head, replacing the decoupled head strategy and utilizing shared Detail Enhancement Convolution (DEConv) and Group Norm (GN) operations to achieve lightweight yet precise improvements. Finally, loss functions, PIoU v2 and Adaptive Threshold Focal Loss (ATFL), are integrated into the model to better decouple infrared targets from the background and to enhance convergence speed. The experimental results on the FLIR and multispectral datasets show that the proposed LFIR-YOLO model achieves an improvement in detection accuracy of 4.3% and 2.6%, respectively, compared to the YOLOv8 model. Furthermore, the model demonstrates a reduction in parameters and computational complexity by 15.5% and 34%, respectively, enhancing its suitability for real-time deployment on resource-constrained edge devices. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 15389 KiB  
Article
Impact of Sliding Window Variation and Neuronal Time Constants on Acoustic Anomaly Detection Using Recurrent Spiking Neural Networks in Automotive Environment
by Shreya Kshirasagar, Andre Guntoro and Christian Mayr
Algorithms 2024, 17(10), 440; https://doi.org/10.3390/a17100440 - 1 Oct 2024
Cited by 3 | Viewed by 1621
Abstract
Acoustic perception of the automotive environment has the potential to advance driving potentials with enhanced safety. The challenge arises when these acoustic perception systems need to perform under resource and power constraints on edge devices. Neuromorphic computing has introduced spiking neural networks in [...] Read more.
Acoustic perception of the automotive environment has the potential to advance driving potentials with enhanced safety. The challenge arises when these acoustic perception systems need to perform under resource and power constraints on edge devices. Neuromorphic computing has introduced spiking neural networks in the context of ultra-low power sensory edge devices. Spiking architectures leverage biological plausibility to achieve computational capabilities, accurate performance, and great compatibility with neuromorphic hardware. In this work, we explore the depths of spiking neurons and feature components with the acoustic scene analysis task for siren sounds. This research work aims to address the qualitative analysis of sliding windows’ variation on the feature extraction front of the preprocessing pipeline. Optimization of the parameters to exploit the feature extraction stage facilitates the advancement of the performance of the acoustics anomaly detection task. We exploit the parameters for mel spectrogram features and FFT calculations, prone to be suitable for computations in hardware. We conduct experiments with different window sizes and the overlapping ratio within the windows. We present our results for performance measures like accuracy and onset latency to provide an insight on the choice of optimal window. The non-trivial motivation of this research is to understand the effect of encoding behavior of spiking neurons with different windows. We further investigate the heterogeneous nature of membrane and synaptic time constants and their impact on the accuracy of anomaly detection. On a large scale audio dataset comprising of siren sounds and road traffic noises, we obtain accurate predictions of siren sounds using a recurrent spiking neural network. The baseline dataset comprising siren and noise sequences is enriched with a bird dataset to evaluate the model with unseen samples. Full article
(This article belongs to the Special Issue Artificial Intelligence and Signal Processing: Circuits and Systems)
Show Figures

Figure 1

Back to TopTop