Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Rio São Francisco

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1724 KiB  
Systematic Review
Biodegradation Potential of Glyphosate by Bacteria: A Systematic Review on Metabolic Mechanisms and Application Strategies
by Karolayne Silva Souza, Milena Roberta Freire da Silva, Manoella Almeida Candido, Hévellin Talita Sousa Lins, Gabriela de Lima Torres, Kátia Cilene da Silva Felix, Kaline Catiely Campos Silva, Ricardo Marques Nogueira Filho, Rahul Bhadouria, Sachchidanand Tripathi, Rishikesh Singh, Milena Danda Vasconcelos Santos, Isac Palmeira Santos Silva, Amanda Vieira de Barros, Lívia Caroline Alexandre de Araújo, Fabricio Motteran and Maria Betânia Melo de Oliveira
Agronomy 2025, 15(5), 1247; https://doi.org/10.3390/agronomy15051247 - 21 May 2025
Viewed by 1328
Abstract
The biodegradation of glyphosate by bacteria is an emerging bioremediation strategy necessitated by the intensive use of this herbicide in global agriculture. This study systematically reviews the literature to identify bacteria with the potential to degrade glyphosate. The PRISMA protocol was utilized, considering [...] Read more.
The biodegradation of glyphosate by bacteria is an emerging bioremediation strategy necessitated by the intensive use of this herbicide in global agriculture. This study systematically reviews the literature to identify bacteria with the potential to degrade glyphosate. The PRISMA protocol was utilized, considering relevant articles identified in electronic databases such as PubMed, Scopus, and Science Direct. The research identified 34 eligible studies, highlighting the genera Bacillus, Pseudomonas, and Ochrobactrum as having the greatest potential for glyphosate degradation. These findings were based on analytical techniques such as High-Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR), which identified and quantified intermediate metabolites, primarily AMPA (aminomethylphosphonic acid), sarcosine, and glyoxylate. This investigation also addressed enzymatic efficiency in biodegradation, emphasizing enzymes like glyphosate oxidoreductase and C-P lyases. The results indicated that South and North America lead in publications on this topic, with Argentina and the United States being the main contributors, reflecting the intense use of glyphosate in these countries. Additionally, studies in Europe and Asia focused on microbial diversity, exploring various bacterial genera. This investigation revealed that despite the promising microbial potential, there are challenges related to environmental condition variations and the cost of large-scale implementation, indicating that continuous research and process optimization are essential for the effective and sustainable application of this biotechnology. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

37 pages, 51596 KiB  
Article
Characterization of Water Bodies through Hydro-Physical Indices and Anthropogenic Effects in the Eastern Northeast of Brazil
by Christopher Horvath Scheibel, Astrogilda Batista do Nascimento, George do Nascimento Araújo Júnior, Alexsandro Claudio dos Santos Almeida, Thieres George Freire da Silva, José Lucas Pereira da Silva, Francisco Bento da Silva Junior, Josivalter Araújo de Farias, João Pedro Alves de Souza Santos, José Francisco de Oliveira-Júnior, Jhon Lennon Bezerra da Silva, Fernando Manuel João, Alex Santos de Deus, Iêdo Teodoro, Henrique Fonseca Elias de Oliveira and Marcos Vinícius da Silva
Climate 2024, 12(9), 150; https://doi.org/10.3390/cli12090150 - 23 Sep 2024
Viewed by 3178
Abstract
Brazil, despite possessing the largest renewable freshwater reserves in the world (8.65 trillion m3 annually), faces growing challenges in water management due to increasing demand. Agriculture, responsible for 68.4% of water consumption, is one of the main drivers of this demand, especially [...] Read more.
Brazil, despite possessing the largest renewable freshwater reserves in the world (8.65 trillion m3 annually), faces growing challenges in water management due to increasing demand. Agriculture, responsible for 68.4% of water consumption, is one of the main drivers of this demand, especially in the São Francisco River Basin, where irrigation accounts for 81% of total water withdrawals. Water bodies play a crucial role in sustaining ecosystems and supporting life, particularly along the East-West axis of Alagoas, a water-rich region in the ENEB. This study aimed to map and quantify the spatiotemporal variations of water bodies in the ENEB region and assess the impacts of human activities using MODIS satellite data, applying hydrological indices such as NDWI, MNDWI, and AWEI. Between 2003 and 2022, significant variations in the extent of water bodies were observed, with reductions of up to 100 km2 during dry periods and expansions of up to 300 km2 during wet seasons compared to dry periods. AWEI and MNDWI proved to be the most effective indices for detecting water bodies with MODIS data, providing accurate insights into water dynamics. Additionally, the MapBiomas Rios dataset, despite being resampled from a 30 m to a 500 m resolution, offered the most accurate representation of water bodies due to its methodology for data acquisition. Changes in albedo and surface temperature were also detected, highlighting the influence of climate change on the region’s water resources. These findings are crucial for guiding the sustainable management of water resources, not only in Alagoas but also in other regions of Brazil and similar semi-arid areas around the world. The study demonstrates the hydrological variability in the state of Alagoas, indicating the need for adaptive strategies to mitigate the impacts of climate change and anthropogenic pressures, supporting the need for informed decision-making in water resource management at both local and national levels. Full article
Show Figures

Figure 1

15 pages, 12894 KiB  
Article
A Poorly Known Catfish Clade in an Endangered Neotropical Biodiversity Hotspot: Relationships and Distribution Patterns of the Cambeva variegata Group (Siluriformes: Trichomycteridae)
by Wilson J. E. M. Costa, José Leonardo O. Mattos, Valter M. Azevedo-Santos, Caio R. M. Feltrin, Pedro F. Amorim, Felipe P. Ottoni, Paulo J. Vilardo and Axel M. Katz
Fishes 2024, 9(4), 116; https://doi.org/10.3390/fishes9040116 - 24 Mar 2024
Cited by 3 | Viewed by 1873
Abstract
The Cambeva variegata group (CVG) is endemic to a region situated in the intersection of two endangered biodiversity hotspots, Cerrado and Atlantic Forest, and drained by two important South American river basins, the upper Rio Paraná and upper Rio São Francisco basins. Presently, [...] Read more.
The Cambeva variegata group (CVG) is endemic to a region situated in the intersection of two endangered biodiversity hotspots, Cerrado and Atlantic Forest, and drained by two important South American river basins, the upper Rio Paraná and upper Rio São Francisco basins. Presently, CVG comprises two nominal species, besides some still undescribed. We first performed a molecular phylogenetic analysis (total of 3368 bp) for five species of the CVG and 30 outgroups, which supported the monophyly of the CVG and its inclusion in Cambeva. Most morphological character states distinguishing the CVG from congeners are also present in Scleronema, possibly consisting of plesiomorphic features. We also performed the first time-calibrated phylogeny of the group, which supported possible relationships between present geographical distribution patterns and palaeogeographical events. The estimated time of origin of CVG in the Middle Miocene is nearly contemporaneous to a past hydrographical configuration when part of the upper Rio Paraná basin was connected to the Rio São Francisco basin. The first CVG lineage split occurring in the Miocene end corresponds to a major break in that palaeo basin. Species diversification between the Pliocene and early Pleistocene is compatible with final drainage rearrangement. This study highlights the urgent need for more detailed studies on the diversity and phylogenetic relationships of still poorly known organisms in this highly diverse and threatened region. Full article
(This article belongs to the Special Issue Featured Papers in Taxonomy, Evolution, and Biogeography Section)
Show Figures

Figure 1

38 pages, 13006 KiB  
Review
Wrapping a Craton: A Review of Neoproterozoic Fold Belts Surrounding the São Francisco Craton, Eastern Brazil
by Alexandre Uhlein, Gabriel Jubé Uhlein, Fabrício de Andrade Caxito and Samuel Amaral Moura
Minerals 2024, 14(1), 43; https://doi.org/10.3390/min14010043 - 29 Dec 2023
Cited by 3 | Viewed by 4043
Abstract
A synthesis of the evolution of the Neoproterozoic belts or orogens surrounding the São Francisco craton (SFC) in northeastern and southeastern Brazil is presented. Emphasis is placed on recognizing the superposition of sedimentary basins, from rift to passive margin to retroarc and foreland, [...] Read more.
A synthesis of the evolution of the Neoproterozoic belts or orogens surrounding the São Francisco craton (SFC) in northeastern and southeastern Brazil is presented. Emphasis is placed on recognizing the superposition of sedimentary basins, from rift to passive margin to retroarc and foreland, as well as identifying three diachronic continental collisions in the formation of the SFC. The Tonian passive margin occurs in the southern Brasília Belt with the Vazante, Canastra, and Araxá Groups. During the Tonian, island magmatic arcs and basins developed in front and behind these arcs (fore- and back-arcs). Subsequently, in the Cryogenian–Ediacaran, a retroarc foreland basin developed with part of the Araxá Group and the Ibiá Group, and finally, a foreland basin developed, which was filled by the Bambuí Group. A tectonic structure of superimposed nappes, with subhorizontal S1–2 foliation, formed between 650 and 610 Ma, is striking. In the northern Brasília Belt, there is the Stenian passive margin of the Paranoá Group, the Tonian intrusion of the Mafic–Ultramafic Complexes, and the Mara Rosa Island magmatic arc, active since the Tonian, with limited volcanic–sedimentary basins associated with the arc. A thrust–fold belt structure is prominent, with S1 foliation and late transcurrent, transpressive tectonics characterized by the Transbrasiliano (TB) lineament. The Cryogenian–Ediacaran collision between the Paranapanema and São Francisco cratons is the first collisional orogenic event to the west. In the Rio Preto belt, on the northwestern margin of the São Francisco craton, the Cryogenian–Ediacaran Canabravinha rift basin is prominent, with gravitational sediments that represent the intracontinental termination of the passive margin that occurs further northeast. The rift basin was intensely deformed at the Ediacaran–Cambrian boundary, as was the Bambuí Group. On the northern and northeastern margins of the São Francisco craton, the Riacho do Pontal and Sergipano orogens stand out, showing a comparable evolution with Tonian and Cryogenian rifts (Brejo Seco, Miaba, and Canindé); Cryogenian–Ediacaran passive margin, where the Monte Orebe ophiolite is located; and Cordilleran magmatic arcs, which developed between 620 and 610 Ma. In the Sergipano fold belt, with a better-preserved outer domain, gravitational sedimentation occurs with glacial influence. A continental collision between the SFC and the PEAL (Pernambuco-Alagoas Massif) occurred between 610 and 540 Ma, with intense deformation of nappes and thrusts, with vergence to the south and accommodation by dextral transcurrent shear zones, such as the Pernambuco Lineament (PE). The Araçuaí belt or orogen was formed at the southeastern limit of the SFC by a Tonian intracontinental rift, later superimposed by a Cryogenian–Ediacaran rift–passive margin of the Macaúbas Group, with gravitational sedimentation and glacial influence, and distally by oceanic crust. It is overlain by a retroarc basin with syn-orogenic sedimentation of the Salinas Formation, partly derived from the Rio Doce cordilleran magmatic arc and associated basins, such as the Rio Doce and Nova Venécia Groups. A third continental collision event (SF and Congo cratons), at the end of the Ediacaran (580–530 Ma), developed a thrust–fold belt that deforms the sediments of the Araçuaí Belt and penetrates the Paramirim Corridor, transitioning to the south to a dextral strike-slip shear zone that characterizes the Ribeira Belt. Full article
(This article belongs to the Special Issue Geological Evolution of South American Cratons)
Show Figures

Figure 1

38 pages, 12831 KiB  
Article
Structural Evolution of the Rio das Velhas Greenstone Belt, Quadrilátero Ferrífero, Brazil: Influence of Proterozoic Orogenies on Its Western Archean Gold Deposits
by Orivaldo Ferreira Baltazar and Lydia Maria Lobato
Minerals 2020, 10(11), 983; https://doi.org/10.3390/min10110983 - 4 Nov 2020
Cited by 21 | Viewed by 8175
Abstract
The Quadrilátero Ferrífero region is located in the extreme southeast of the Brasiliano São Francisco craton, Minas Gerais state, Brazil. It is composed of (i) Archean TTG granite-gneaissic terranes; (ii) the Archean Rio das Velhas greenstone belt; (iii) the Proterozoic metasedimentary and metavolcano-sedimentary [...] Read more.
The Quadrilátero Ferrífero region is located in the extreme southeast of the Brasiliano São Francisco craton, Minas Gerais state, Brazil. It is composed of (i) Archean TTG granite-gneaissic terranes; (ii) the Archean Rio das Velhas greenstone belt; (iii) the Proterozoic metasedimentary and metavolcano-sedimentary covers. The Rio das Velhas rocks were deposited in the synformal NW–SE-directed Nova Lima basin. The Archean deformation converted the Nova Lima basin into an ample synclinorium with an eastern inverted flank. Archean orogenic gold mineralization within the Rio das Velhas greenstone belt rocks is controlled by NNW–SSE-directed, Archean regional shear zones subparallel to the strata of the Nova Lima synclinorium borders. Transamazonian and Brasiliano orogenies are superposed onto the Archean structures that control gold mineralization. In the eastern domain, Brasiliano fold-and-fault belts prevail, whereas in the western domain Archean and Transamazonian structures abound. The present study focus mainly is the western domain where the Cuiabá, Morro Velho, Raposos, Lamego and Faria deposits are located. Gold orebodies plunge to the E–NE and are tectonically controlled by the Archean D1–D2 deformation. The D3 Transamazonian compression—Which had a SE–NW vector sub-parallel to the regional mineralized Archean foliation/bedding—Buckled these structures, resulting in commonly open, synformal and antiformal regional folds. These are well documented near the gold deposits, with NE–SW axial traces and fold axes plunging to E–NE. Such folds are normal to inverted, NW-verging, with an axial planar foliation dipping moderately to the SE. The Transamazonian compression has only been responsible for the reorientation of the mineralized Archean gold ores, due to coaxial refolding characterized by an opposite tectonic transport. It has therefore not caused any other significant changes. Thrust shear zones, sub-parallel to the strong Transamazonian foliation, have given rise to localized metric segmentation and to the dislocation of gold orebodies. Throughout the region, along the towns of Nova Lima to Sabará, structures pertaining to the Brasiliano Araçuaí orogeny are represented only by gentle folding and by a discrete, non-pervasive crenulation cleavage. Thrust-shear zones and small-scale normal faults have caused, at most, metric dislocations along N–S-oriented planes. Full article
(This article belongs to the Special Issue Gold Deposits in Brazil)
Show Figures

Figure 1

18 pages, 1820 KiB  
Article
Molecular Data Reveal Multiple Lineages in Piranhas of the Genus Pygocentrus (Teleostei, Characiformes)
by Nadayca T.B. Mateussi, Bruno F. Melo, Fausto Foresti and Claudio Oliveira
Genes 2019, 10(5), 371; https://doi.org/10.3390/genes10050371 - 15 May 2019
Cited by 14 | Viewed by 7195
Abstract
Carnivorous piranhas are distributed in four serrasalmid genera including Pygocentrus, which inhabit major river basins of South America. While P. cariba and P. piraya are endemics of the Orinoco and São Francisco basins, respectively, P. nattereri is widely distributed across the Amazonas, Essequibo, [...] Read more.
Carnivorous piranhas are distributed in four serrasalmid genera including Pygocentrus, which inhabit major river basins of South America. While P. cariba and P. piraya are endemics of the Orinoco and São Francisco basins, respectively, P. nattereri is widely distributed across the Amazonas, Essequibo, lower Paraná, Paraguay, and coastal rivers of northeastern Brazil, with recent records of introductions in Asia. Few studies have focused on the genetic diversity and systematics of Pygocentrus and the putative presence of additional species within P. nattereri has never been the subject of a detailed molecular study. Here we aimed to delimit species of Pygocentrus, test the phylogeographic structure of P. nattereri, and access the origin of introduced specimens of P. nattereri in Asia. Phylogenetic analyses based on a mitochondrial dataset involving maximum-likelihood tree reconstruction, genetic distances, Bayesian analysis, three delimitation approaches, and haplotype analysis corroborate the morphological hypothesis of the occurrence of three species of Pygocentrus. However, we provide here strong evidence that P. nattereri contains at least five phylogeographically-structured lineages in the Amazonas, Guaporé (type locality), Itapecuru, Paraná/Paraguay, and Tocantins/Araguaia river basins. We finally found that the introduced specimens in Asia consistently descend from the lineage of P. nattereri from the main Rio Amazonas. These results contribute to future research aimed to detect morphological variation that may occur in those genetic lineages of Pygocentrus. Full article
Show Figures

Figure 1

Back to TopTop