Characterization of Water Bodies through Hydro-Physical Indices and Anthropogenic Effects in the Eastern Northeast of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Precipitation Data
Meteorological Characterization of the Data
2.4. Pre-Processing
2.5. Calculation of Hydro-Physical Indices
2.6. Classification and Extraction of Water Bodies Using MapBiomas Rios 2.0
2.7. Sampling of Water Body Values
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANA | National Water and Basic Sanitation Agency |
APAC | Pernambuco Agency for Water and Climate |
AWEI | Automated Water Extraction Index |
CEMADEM | National Center for Monitoring and Early Warning of Natural Disasters |
CV | Coefficient of Variation |
EMATER | Institute for Innovation in Sustainable Rural Development of Alagoas |
ENEB | Eastern Northeast of Brazil |
ENSO | El Niño-Southern Oscillation |
GEE | Google Earth Engine |
IBGE | Brazilian Institute of Geography and Statistics |
IDE | Integrated Development Environment |
INMET | National Institute of Meteorology |
MBR | MapBiomas Rios |
MNDWI | Modified Normalized Difference Water Index |
NDMI | Normalized Difference Moisture Index |
NDWI | Normalized Difference Water Index |
NEB | Northeast Brazil |
QGIS | Quantum Geographic Information System |
SFRB | São Francisco River Basin |
SHP | Shapefile |
SPI | Standardized Precipitation Index |
SRTM | Shuttle Radar Topography Mission |
SST | Sea Surface Temperature |
Tsup | Surface Temperature |
WRI | Water Ratio Index |
References
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Diop, M.; Chirinda, N.; Beniaich, A.; El Gharous, M.; El Mejahed, K. Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands. Sustainability 2022, 14, 13425. [Google Scholar] [CrossRef]
- Boudhar, A.; Boudhar, S.; Oudgou, M.; Ibourk, A. Assessment of Virtual Water Flows in Morocco’s Foreign Trade of Crop Products. Resources 2023, 12, 49. [Google Scholar] [CrossRef]
- Nlend, B.; Huneau, F.; Ngo Boum-Nkot, S.; Song, F.; Komba, D.; Gwodog, B.; Meyoupe, P.; Djieugoue, B.; Fongoh, E. Review of Isotope Hydrology Investigations on Aquifers of Cameroon (Central Africa): What Information for the Sustainable Management of Groundwater Resources? Water 2023, 15, 4056. [Google Scholar] [CrossRef]
- Fan, J.; Wei, S.; Liu, G.; Zhou, X.; Li, Y.; Wu, C.; Xu, F. Response Time of Vegetation to Drought in Weihe River Basin, China. Atmosphere 2023, 14, 938. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, L.; Liu, X.; Liang, D.; Zhu, Q.; Gou, Y.; Zhou, H.; Zhang, L.; Liu, X.; Liang, D.; et al. Study of the Relationship between High Mountain Asia Snow Cover and Drought and Flood in the Yangtze River Basin during 1980–2019. Remote Sens. 2022, 14, 3588. [Google Scholar] [CrossRef]
- Megdal, S.B.; Dillon, P.; Seasholes, K. Water Banks: Using Managed Aquifer Recharge to Meet Water Policy Objectives. Water 2014, 6, 1500–1514. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Han, S.C.; Tian, S.; Schmied, H.M.; Sutanudjaja, E.H.; Ran, J.; Feng, W. Evaluation of Groundwater Storage Variations Estimated from GRACE Data Assimilation and State-of-the-Art Land Surface Models in Australia and the North China Plain. Remote Sens. 2018, 10, 483. [Google Scholar] [CrossRef]
- Deribe, M.M.; Melesse, A.M.; Kidanewold, B.B.; Dinar, S.; Anderson, E.P. Assessing International Transboundary Water Management Practices to Extract Contextual Lessons for the Nile River Basin. Water 2024, 16, 1960. [Google Scholar] [CrossRef]
- He, J.; Li, Q.M.; Wang, W.C.; Xu, D.M.; Wan, Y.R. The Diurnal Variation Characteristics of Latent Heat Flux under Different Underlying Surfaces and Analysis of Its Drivers in the Middle Reaches of the Heihe River. Water 2022, 14, 3514. [Google Scholar] [CrossRef]
- Qi, S.; He, M.; Bai, Z.; Ding, Z.; Sandhu, P.; Chung, F.; Namadi, P.; Zhou, Y.; Hoang, R.; Tom, B.; et al. Novel Salinity Modeling Using Deep Learning for the Sacramento—San Joaquin Delta of California. Water 2022, 14, 3628. [Google Scholar] [CrossRef]
- Robinson, G.M.; Song, B. Managing Water for Environmental Provision and Horticultural Production in South Australia’s Riverland. Sustainability 2023, 15, 11546. [Google Scholar] [CrossRef]
- de Brito, P.L.C.; de Azevedo, J.P.S. Economic Value of Water for Irrigation in São Francisco River Basin, Brazil. Appl. Water Sci. 2022, 12, 155. [Google Scholar] [CrossRef]
- Agência Nacional de Águas—Conjuntura Dos Recursos Hídricos—Sistema Nacional de Informações Sobre Recursos Hídricos. Available online: https://www.snirh.gov.br/portal/centrais-de-conteudos/conjuntura-dos-recursos-hidricos (accessed on 12 September 2024).
- Agência Nacional de Águas (ANA) Atlas Irrigação 2017: Uso Da Água Na Agricultura Irrigada (1a Edição). Available online: https://metadados.snirh.gov.br/geonetwork/srv/api/records/c639ac44-8151-421d-a1ed-c333392d76a9 (accessed on 10 September 2024).
- Fernandes, M.M.; Fernandes, M.R.d.M.; Garcia, J.R.; Matricardi, E.A.T.; Lima, A.H.d.S.; Filho, R.N.d.A.; Filho, R.R.G.; Piscoya, V.C.; Piscoya, T.O.F.; Filho, M.C. Land Use and Land Cover Changes and Carbon Stock Valuation in the São Francisco River Basin, Brazil. Environ. Chall. 2021, 5, 100247. [Google Scholar] [CrossRef]
- Teixeira, A.H.d.C.; Takemura, C.M.; Leivas, J.F.; Pacheco, E.P.; Bayma-Silva, G.; Garçon, E.A.M. Water Productivity Monitoring by Using Geotechnological Tools in Contrasting Social and Environmental Conditions: Applications in the São Francisco River Basin, Brazil. Remote Sens. Appl. 2020, 18, 100296. [Google Scholar] [CrossRef]
- Lyra, G.B.; Oliveira-Júnior, J.F.; Zeri, M. Cluster Analysis Applied to the Spatial and Temporal Variability of Monthly Rainfall in Alagoas State, Northeast of Brazil. Int. J. Climatol. 2014, 34, 3546–3558. [Google Scholar] [CrossRef]
- Marengo Orsini, J.A.; Alves, L.M.; Alvala, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic Characteristics of the 2010–2016 Drought in the Semiarid Northeast Brazil Region. Acad. Bras. Ciênc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A Review of Droughts on the African Continent: A Geospatial and Long-Term Perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Abreu, V.; Coralli, A.; Proença, L.; Santos, A. Uso Da áGua NA Agricultura Irrigada (1A Edição).Avaliação Do Ciclo de Vida Como Ferramenta Para Medir a Eficiência Ambiental Do Hidrogênio Renovável. Impact Proj. 2023, 2, 105–122. [Google Scholar] [CrossRef]
- Barbosa, H.A. Flash Drought and Its Characteristics in Northeastern South America during 2004–2022 Using Satellite-Based Products. Atmosphere 2023, 14, 1629. [Google Scholar] [CrossRef]
- Barbosa, H.A. Understanding the Rapid Increase in Drought Stress and Its Connections with Climate Desertification since the Early 1990s over the Brazilian Semi-Arid Region. J. Arid Environ. 2024, 222, 105142. [Google Scholar] [CrossRef]
- Filho, W.L.F.C.; dos Santos, T.V.; Diogo, A.M.; de Amorim, R.F.C. de Diagnóstico Da Precipitação e EVI Em Dois Eventos de Seca No Nordeste Do Brasil. J. Dep. Geogr. 2018, 35, 102–112. [Google Scholar] [CrossRef]
- Júnior, J.F.d.O.; Lyra, G.B.; Góis, G.; Brito, T.T.; de Moura, N.d.S.H. Análise de Homogeneidade de Séries Pluviométricas Para Determinação Do Índice de Seca IPP No Estado de Alagoas. Floresta Ambiente 2012, 19, 101–112. [Google Scholar] [CrossRef]
- Lyra, G.B.; Oliveira-Júnior, J.F.; Gois, G.; Cunha-Zeri, G.; Zeri, M. Rainfall Variability over Alagoas under the Influences of SST Anomalies. Meteorol. Atmos. Phys. 2017, 129, 157–171. [Google Scholar] [CrossRef]
- da Silva, J.L.B.; Moura, G.B.d.A.; da Silva, M.V.; de Oliveira-Júnior, J.F.; Jardim, A.M.d.R.F.; Refati, D.C.; Lima, R.d.C.C.; de Carvalho, A.A.; Ferreira, M.B.; de Brito, J.I.B.; et al. Environmental Degradation of Vegetation Cover and Water Bodies in the Semiarid Region of the Brazilian Northeast via Cloud Geoprocessing Techniques Applied to Orbital Data. J. S. Am. Earth Sci. 2023, 121, 104164. [Google Scholar] [CrossRef]
- Delazeri, L.M.M.; Da Cunha, D.A.; Oliveira, L.R. Climate Change and Rural–Urban Migration in the Brazilian Northeast Region. GeoJournal 2022, 87, 2159–2179. [Google Scholar] [CrossRef]
- Rebelo, A.J.; Holden, P.B.; Esler, K.; New, M.G. Benefits of Water-Related Ecological Infrastructure Investments to Support Sustainable Land-Use: A Review of Evidence from Critically Water-Stressed Catchments in South Africa. R. Soc. Open Sci. 2021, 8, 201402. [Google Scholar] [CrossRef]
- Santos, E.; Carvalho, M.; Martins, S. Sustainable Water Management: Understanding the Socioeconomic and Cultural Dimensions. Sustainability 2023, 15, 13074. [Google Scholar] [CrossRef]
- Chavez, P.S. Image-Based Atmospheric Corrections Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Hope, A.; Coulter, L.; Stow, D.; Service, D.; Schutte, T.; Redlin, S.; Peterson, S.; Lowenfish, M.; Kaiser, J.; Walters, A. Irrigated Vegetation Assessment in Urban Environments: A Project of the NASA Affiliated Research Center at SDSU, AgriCast Incorporated Partnership. Photogramm. Eng. Remote Sens. 2003, 69, 381–390. [Google Scholar]
- de Medeiros, E.S.; Oliveira, W.D.S.; da Silva, P.V.; de Souza, A.; Bicalho, C.C.; Mauad, M.; de Souza, S.A. Mapping Rainfall Variability in the São Francisco River Basin: Insights for Water Resource Management. Rev. Bras. Meteorol. 2024, 39, e39240050. [Google Scholar] [CrossRef]
- da Silva, J.L.P.; da Silva Junior, F.B.; de Souza Santos, J.P.A.; dos Santos Almeida, A.C.; da Silva, T.G.F.; Oliveira-Júnior, J.F.d.; Araújo Júnior, G.d.N.; Scheibel, C.H.; da Silva, J.L.B.; de Lima, J.L.M.P.; et al. Semi-Arid to Arid Scenario Shift: Is the Cabrobó Desertification Nucleus Becoming Arid? Remote Sens. 2024, 16, 2834. [Google Scholar] [CrossRef]
- Crispim, D.L.; Pimentel Da Silva, G.D.; Fernandes, L.L. Rural Water Sustainability Index (RWSI): An Innovative Multicriteria and Participative Approach for Rural Communities. Impact Assess. Proj. Apprais. 2021, 39, 320–334. [Google Scholar] [CrossRef]
- Alsaeed, B.S.; Hunt, D.V.L.; Sharifi, S. A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 1: Developing the Conceptual Framework. Sustainability 2024, 16, 2634. [Google Scholar] [CrossRef]
- Moura, M.S.B.; Galvincio, J.D.; Brito, L.T.L.; Souza, L.S.B.; Sá, I.I.S.; Silva, T.G.F. Clima e Água de Chuva No Semi-Árido; Embrapa Semi-Árido: Petrolina, Brazil, 2007. [Google Scholar]
- Silva, J.d.S.; Júnior, J.B.C.; Rodrigues, D.T.; Silva, F.D.d.S. Climatology and Significant Trends in Air Temperature in Alagoas, Northeast Brazil. Theor. Appl. Climatol. 2023, 151, 1805–1824. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Maguire, M.S.; da Silva, B.B.; Neale, C.M.U.; Serrão, E.A.O.; Ferreira, J.D.; de Moura, M.S.B.; dos Santos, C.A.C.; Silva, M.T.; Rodrigues, L.N.; et al. Assessment of Water Demands for Irrigation Using Energy Balance and Satellite Data Fusion Models in Cloud Computing: A Study in the Brazilian Semiarid Region. Agric. Water Manag. 2023, 281, 108260. [Google Scholar] [CrossRef]
- Sousa, T.R.; Schietti, J.; de Souza, F.C.; Esquivel-Muelbert, A.; Ribeiro, I.O.; Emílio, T.; Pequeno, P.A.C.L.; Phillips, O.; Costa, F.R.C. Palms and Trees Resist Extreme Drought in Amazon Forests with Shallow Water Tables. J. Ecol. 2020, 108, 2070–2082. [Google Scholar] [CrossRef]
- Ferreira, J.J.M.; Fernandes, C.I.; Ferreira, F.A.F. Technology Transfer, Climate Change Mitigation, and Environmental Patent Impact on Sustainability and Economic Growth: A Comparison of European Countries. Technol. Forecast. Soc. Change 2020, 150, 119770. [Google Scholar] [CrossRef]
- Júnior, P.F.; de Sousa, M.L.; Vitorino, I.; de Oliveira Ponte de Souza, P.J. Estimativa Da Evapotranspiração Da Soja via Sensoriamento Remoto No Leste Do Pará: Uma Avaliação Quantitativa. In Proceeding of the XV Brazilian Symposium on Remote Sensing—SBSR, Curitiba, PR, Brazil, 30 April–5 May 2011; INPE: São Paulo, Brazil, 2011. [Google Scholar]
- Dos Santos, S.R.Q.; Cunha, A.P.M.d.A.; Ribeiro-Neto, G.G. Avaliação de Dados de Precipitação Para O Monitoramento Do Padrão Espaço-Temporal Da Seca No Nordeste Do Brasil. Rev. Bras. Climatol. 2019, 25, 80–100. [Google Scholar] [CrossRef]
- Lima, B.P.; Mamede, G.L.; Lima Neto, I.E. Monitoring and Modeling of Water Quality in a Semiarid Watershed. Eng. Sanit. Ambient. 2018, 23, 125–135. [Google Scholar] [CrossRef]
- de Almeida, H.A.; Aguiar, D.B.; Silva, J.N.; Damaseceno, J. Indicadores Hídricos Do Núcleo de Desertificação Da Microrregião Do Seridó Ocidental Da Paraíba (Water Indicators of Desertification Nucleus in the Seridó Microregion of Paraíba State). Rev. Bras. Geogr. Física 2015, 7, 784–797. [Google Scholar] [CrossRef]
- Carvalho, W.d.S.; Filho, F.J.C.M.; dos Santos, T.L. Uso E Cobertura Do Solo Utilizando a Plataforma Google Earth Engine (Gee): Estudo de Caso Em Uma Unidade de Conservação/Land Use and Land Cover Using the Google Earth Engine Platform (Gee): Case Study in a Conservation Unit. Braz. J. Dev. 2021, 7, 15280–15300. [Google Scholar] [CrossRef]
- Costa, M.D.S.; De Oliveira-Júnior, J.F.; Dos Santos, P.J.; Correia Filho, W.L.F.; De Gois, G.; Blanco, C.J.C.; Teodoro, P.E.; da Silva, C.A., Jr.; Santiago, D.D.B.; Souza, E.D.O.; et al. Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. Int. J. Climatol. 2021, 41, E2111–E2135. [Google Scholar] [CrossRef]
- Nascimento, A.; Araújo, K.; Dias-Silva, K. Variação Espaço-Temporal E Correlatos Das Variáveis Limnológicas Do Rio Xingu a Montante Da Usina Hidrelétrica de Belo Monte, Altamira-Pa. Encicl. Biosf. 2021, 18, 353. [Google Scholar] [CrossRef]
- Carvalho, A.T.F. Reflexões Sobre a Hidrogeomorfologia Dos Rios Intermitentes Frente Às Definições Das Áreas de Preservação Permanente de Cursos d’água No Brasil. Geogr. Atos 2020, 4, 135–150. [Google Scholar] [CrossRef]
- Günther, W.M.R.; Ciccotti, L.; Rodrigues, A.C. Desastres: Múltiplas Abordagens e Desafios; Elsevier: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- View of Preliminary Study of GPM-IMERG Data to Analyze Rainfall Variability in the State of Alagoas—Brazil. Available online: https://periodicos.ufpe.br/revistas/index.php/jhrs/article/view/260549/45257 (accessed on 10 September 2024).
- de Oliveira-Júnior, J.F.; de Gois, G.; Silva, I.J.d.L.; Souza, E.d.O.; Jardim, A.M.d.R.F.; da Silva, M.V.; Shah, M.; Jamjareegulgarn, P. Wet and Dry Periods in the State of Alagoas (Northeast Brazil) via Standardized Precipitation Index. J. Atmos. Sol. Terr. Phys. 2021, 224, 105746. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Textbook of Sensoriamento Remoto Aplicado ao Estudo da Vegetação; Oficina de Textos: São Paulo, SP, Brasil, 2012; pp. 101–102. [Google Scholar]
- Kaplan, G.; Avdan, U. Monthly Analysis of Wetlands Dynamics Using Remote Sensing Data. ISPRS Int. J. Geoinf. 2018, 7, 411. [Google Scholar] [CrossRef]
- Rahaman, H.; Roshani; Masroor; Sajjad, H. Integrating Remote Sensing Derived Indices and Machine Learning Algorithms for Precise Extraction of Small Surface Water Bodies in the Lower Thoubal River Watershed, India. J. Clean. Prod. 2023, 422, 138563. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Li, Z. A near Real-Time Flood-Mapping Approach by Integrating Social Media and Post-Event Satellite Imagery. Ann. GIS 2018, 24, 113–123. [Google Scholar] [CrossRef]
- Saprathet, T.; Losiri, C.; Sitthi, A.; Laonamsai, J. Monitoring of Morphological Change in Lam Phachi River Using Geo-Informatics System. In Applied Geography and Geoinformatics for Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2023; pp. 51–64. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Saprathet, T.; Kimmany, B.; Ganchanasuragit, T.; Chomcheawchan, P.; Tomun, N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology 2023, 10, 70. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Moghaddam, M.H.R.; Sedighi, A.; Fayyazi, M.A. Applying MNDWI Index and Linear Directional Mean Analysis for Morphological Changes in the Zarriné-Rūd River. Arab. J. Geosci. 2015, 8, 8419–8428. [Google Scholar] [CrossRef]
- Wang, X.; Xie, S.; Zhang, X.; Chen, C.; Guo, H.; Du, J.; Duan, Z. A Robust Multi-Band Water Index (MBWI) for Automated Extraction of Surface Water from Landsat 8 OLI Imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 73–91. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of Time Series Tasseled Cap Wetness and the Normalized Difference Moisture Index in Detecting Forest Disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Gao, H.; Savenije, H.H.G.; Maekan, E.; Saengsawang, S.; Thianpopirug, S. Comparing the Normalized Difference Infrared Index (NDII) with Root Zone Storage in a Lumped Conceptual Model. Hydrol. Earth Syst. Sci. 2016, 20, 3361–3377. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Sadegh, M. Augmented Normalized Difference Water Index for Improved Surface Water Monitoring. Environ. Model. Softw. 2021, 140, 105030. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, L.; Ma, Q.; Chen, H.; Liu, C.; Zubaida, M. The Consecutive Lake Group Water Storage Variations and Their Dynamic Response to Climate Change in the Central Tibetan Plateau. J. Hydrol. 2021, 601, 126615. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly Estimation of the Surface Water Extent in France at a 10-m Resolution Using Sentinel-2 Data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; IEEE: New York, NY, USA, 2010; pp. 1–4. [Google Scholar]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Li, Y.; Sheng, W.; Yang, G.; Liang, B.; Su, Z.; Chen, Z. Home Assistant-Based Collaborative Framework of Multi-Sensor Fusion for Social Robot. In Proceedings of the 2018 13th World Congress on Intelligent Control and Automation (WCICA), Changsha, China, 4–8 July 2018; IEEE: New York, NY, USA; pp. 401–406.
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Zou, Z.; Li, X.; Liu, Y.; Wang, X.; Wang, W. Tendências Divergentes Da Área Do Corpo d’água de Superfície Aberta Nos Estados Unidos Contíguos de 1984 a 2016 (Original Em Inglês: Divergent Trends of Open-Surface Water Body Area in the Contiguous United States from 1984 to 2016). Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS Fire Products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch Characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef]
- Xiong, X.; Che, N.; Barnes, W. Terra MODIS On-Orbit Spatial Characterization and Performance. IEEE Trans. Geosci. Remote Sens. 2005, 43, 355–365. [Google Scholar] [CrossRef]
- Morton, D.C.; Defries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Bon, F.D.; Santo, E.-; Hansen, M.; Carroll, M. Rapid Assessment of Annual Deforestation in the Brazilian Amazon Using MODIS Data. Am. Meteorol. Soc. 2005, 9, 1–22. [Google Scholar] [CrossRef]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; da Motta, R.S.; et al. Slowing Amazon Deforestation through Public Policy and Interventions in Beef and Soy Supply Chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef]
- Diniz, C.G.; Souza, A.A.d.A.; Santos, D.C.; Dias, M.C.; da Luz, N.C.; de Moraes, D.R.V.; Maia, J.S.A.; Gomes, A.R.; Narvaes, I.d.S.; Valeriano, D.M.; et al. DETER-B: The New Amazon Near Real-Time Deforestation Detection System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3619–3628. [Google Scholar] [CrossRef]
- de Barros Corrêa, A.C.; de Azevêdo Cavalcanti Tavares, B.; de Lira, D.R.; da Silva Mutzenberg, D.; de Souza Cavalcanti, L.C. The Semi-Arid Domain of the Northeast of Brazil. In The Physical Geography of Brazil; Springer: Berlin/Heidelberg, Germany, 2019; pp. 119–150. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Huete, A.R. Assessing the Seasonal Dynamics of the Brazilian Cerrado Vegetation through the Use of Spectral Vegetation Indices. Int. J. Remote Sens. 2004, 25, 1837–1860. [Google Scholar] [CrossRef]
- Jacon, A.D.; Galvão, L.S.; dos Santos, J.R.; Sano, E.E. Seasonal Characterization and Discrimination of Savannah Physiognomies in Brazil Using Hyperspectral Metrics from Hyperion/EO-1. Int. J. Remote Sens. 2017, 38, 4494–4516. [Google Scholar] [CrossRef]
- Gao, X.; Dong, S.; Li, S.; Xu, Y.; Liu, S.; Zhao, H.; Yeomans, J.; Li, Y.; Shen, H.; Wu, S.; et al. Using the Random Forest Model and Validated MODIS with the Field Spectrometer Measurement Promote the Accuracy of Estimating Aboveground Biomass and Coverage of Alpine Grasslands on the Qinghai-Tibetan Plateau. Ecol. Indic. 2020, 112, 106114. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS Land Surface Reflectance and Albedo Products: Methods and Preliminary Results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- Miettinen, J.; Stibig, H.J.; Achard, F. Remote Sensing of Forest Degradation in Southeast Asia-Aiming for a Regional View through 5–30 m Satellite Data. Glob. Ecol. Conserv. 2014, 2, 24–36. [Google Scholar] [CrossRef]
- Leinenkugel, P.; Deck, R.; Huth, J.; Ottinger, M.; Mack, B. The Potential of Open Geodata for Automated Large-Scale Land Use and Land Cover Classification. Remote Sens. 2019, 11, 2249. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Y.; Liu, S.; Wang, G.; Zhang, J.; He, X.; Zhang, J.; Rui, Y.; Zhang, Z. Phytotoxicity, Uptake and Transformation of Nano-CeO2 in Sand Cultured Romaine Lettuce. Environ. Pollut. 2017, 220, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of Three Deep Learning Models for Early Crop Classification Using Sentinel-1A Imagery Time Series-a Case Study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef]
- MapBiomas Brasil. Available online: https://brasil.mapbiomas.org/colecoes-mapbiomas-1 (accessed on 12 September 2024).
- Pastick, N.J.; Dahal, D.; Wylie, B.K.; Parajuli, S.; Boyte, S.P.; Wu, Z. Characterizing Land Surface Phenology and Exotic Annual Grasses in Dryland Ecosystems Using Landsat and Sentinel-2 Data in Harmony. Remote Sens. 2020, 12, 725. [Google Scholar] [CrossRef]
- Zhu, L.; Ives, A.R.; Zhang, C.; Guo, Y.; Radeloff, V.C. Climate Change Causes Functionally Colder Winters for Snow Cover-Dependent Organisms. Nat. Clim. Change 2019, 9, 886–893. [Google Scholar] [CrossRef]
- Li, X.; Su, X.; Hu, Z.; Yang, L.; Zhang, L.; Chen, F. Improved Distortion Correction Method and Applications for Large Aperture Infrared Tracking Cameras. Infrared Phys. Technol. 2019, 98, 82–88. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Guo, Z.; Zhi, Y. Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China. Remote Sens. 2022, 14, 2663. [Google Scholar] [CrossRef]
- Parente, L.; Ferreira, L. Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated Classification of MODIS Images from 2000 to 2016. Remote Sens. 2018, 10, 606. [Google Scholar] [CrossRef]
- Tseng, M.L.; Chang, C.H.; Lin, C.W.R.; Wu, K.J.; Chen, Q.; Xia, L.; Xue, B. Future Trends and Guidance for the Triple Bottom Line and Sustainability: A Data Driven Bibliometric Analysis. Environ. Sci. Pollut. Res. 2020, 27, 33543–33567. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Souza, C.M.; Olofsson, P. Satellite-Based Estimates Reveal Widespread Forest Degradation in the Amazon. Glob. Change Biol. 2020, 26, 2956–2969. [Google Scholar] [CrossRef]
- Rapinel, S.; Mony, C.; Lecoq, L.; Clément, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 Time-Series for Mapping Floodplain Grassland Plant Communities. Remote Sens. Environ. 2019, 223, 115–129. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística Área Da Unidade Territorial: Área Territorial Brasileira. Available online: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html (accessed on 10 September 2024).
- IBGE|Portal Do IBGE|IBGE. Available online: https://www.ibge.gov.br/ (accessed on 13 September 2024).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric Correction of MODIS Data in the Visible to Middle Infrared: First Results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Wan, B.; Guo, Q.; Fang, F.; Su, Y.; Wang, R. Mapping US Urban Extents from MODIS Data Using One-Class Classification Method. Remote Sens. 2015, 7, 10143–10163. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia—INMET. Available online: https://portal.inmet.gov.br/ (accessed on 13 September 2024).
- APAC—Agência Pernambucana de Águas e Clima—Início. Available online: https://www.apac.pe.gov.br/ (accessed on 13 September 2024).
- De Souza, E.B.; Carmo, A.M.C.; de Moraes, B.C.; Nacif, A.; da Silva Ferreira, D.B.; da Rocha, E.J.P.; Souza, P.J.D.O.P. Sazonalidade Da Precipitação Sobre a Amazônia Legal Brasileira: Clima Atual e Projeções Futuras Usando o Modelo REGCM4. Rev. Bras. Climatol. 2016, 18, 2237–8642. [Google Scholar]
- Wanderley, H.S.; Sediyama, G.C.; Justino, F.B.; Alencar, L.P.d.; Delgado, R.C. Variabilidade Da Precipitação No Sertão Do São Francisco, Estado de Alagoas. Rev. Bras. Eng. Agríc. Ambient. 2013, 17, 790–795. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Teegavarapu, R.S.V. Methods for Analysis of Trends and Changes in Hydroclimatological Time-Series. In Trends and Changes in Hydroclimatic Variables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–89. [Google Scholar]
- Campozano, L.; Sanchez, E.; Aviles, A.; Samaniego, E. Evaluation of Infilling Methods for Time Series of Daily Precipitation and Temperature: The Case of the Ecuadorian Andes. Maskana 2014, 5, 99–115. [Google Scholar] [CrossRef]
- Mukherjee, M.; Shu, L.; Wang, D. Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1826–1857. [Google Scholar] [CrossRef]
- Cavalcante, I.B.d.S.; Da Silva, D.F.; Brandão, C.B. Analysis of the Spatio-Temporal Variability of Rainfall in Maceió-Al and Its Climate Causes. Pesqui. Geocienc. 2022, 49, e123971. [Google Scholar] [CrossRef]
- Martins, E.S.P.R.; Coelho, C.A.S.; Haarsma, R.; Otto, F.E.L.; King, A.D.; Jan van Oldenborgh, G.; Kew, S.; Philip, S.; Vasconcelos Júnior, F.C.; Cullen, H. A Multimethod Attribution Analysis of the Prolonged Northeast Brazil Hydrometeorological Drought (2012–16). Bull. Am. Meteorol. Soc. 2018, 99, S65–S69. [Google Scholar] [CrossRef]
- Nobre, G.G.; Muis, S.; Veldkamp, T.I.; Ward, P.J. Achieving the Reduction of Disaster Risk by Better Predicting Impacts of El Niño and La Niña. Prog. Disaster Sci. 2019, 2, 100022. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G. van der Record-Breaking Warming and Extreme Drought in the Amazon Rainforest during the Course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A.; Camargo, H.; Riveros, M.P.; Pabló, A.D. Two Contrasting Severe Seasonal Extremes in Tropical South America in 2012: Flood in Amazonia and Drought in Northeast Brazil. J. Clim. 2013, 26, 9137–9154. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Grimm, A.M.; Tedeschi, R.G. ENSO and Extreme Rainfall Events in South America. J. Clim. 2009, 22, 1589–1609. [Google Scholar] [CrossRef]
- Kayano, M.T.; Andreoli, R.V.; Ferreira de Souza, R.A. Relations between ENSO and the South Atlantic SST Modes and Their Effects on the South American Rainfall. Int. J. Climatol. 2013, 33, 2008–2023. [Google Scholar] [CrossRef]
- Knight, A.W.; Tindall, D.R.; Wilson, B.A. A Multitemporal Multiple Density Slice Method for Wetland Mapping across the State of Queensland, Australia. Int. J. Remote Sens. 2009, 30, 3365–3392. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. A Water Index for Rapid Mapping of Shoreline Changes of Five East African Rift Valley Lakes: An Empirical Analysis Using Landsat TM and ETM+ Data. Int. J. Remote Sens. 2006, 27, 3153–3181. [Google Scholar] [CrossRef]
- Xie, W.; Liang, G.; Guo, Q. A New Improved FSVM Algorithm Based on SVDD. Concurr. Comput. 2019, 31, e4893. [Google Scholar] [CrossRef]
- Oliveira, B.S.; Moraes, E.C.; Carrasco-Benavides, M.; Bertani, G.; Mataveli, G.A.V. Improved Albedo Estimates Implemented in the METRIC Model for Modeling Energy Balance Fluxes and Evapotranspiration over Agricultural and Natural Areas in the Brazilian Cerrado. Remote Sens. 2018, 10, 1181. [Google Scholar] [CrossRef]
- Felipe, A.J.B.; Baguio, M.A.; Saludes, R.B. Modeling Assessment on the Influences of Physiographic Dynamics of Landscape and Micro-Climatic Conditions at Siffu-Mallig Watershed in the Philippines. Model. Earth Syst. Environ. 2024, 10, 5329–5350. [Google Scholar] [CrossRef]
- Souza, E.d.O.; Costa, M.d.S.; Júnior, J.F.d.O.; de Gois, G.; Mariano, G.L.; Costa, C.E.d.S.; Filho, W.L.F.C.; Santiago, D.d.B. Estimativa e Espacialização Da Erosividade Em Mesorregiões Climáticas No Estado de Alagoas. Rev. Bras. Meteorol. 2020, 35, 769–783. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Experimental Designs Using ANOVA; Thomson/Brooks/Cole: Belmont, CA, USA, 2007. [Google Scholar]
- Hair, J.F., Jr.; Babin, B.; Money, A.H.; Samouel, P. Fundamentos de Métodos de Pesquisa Em Administração; Bookman: Porto Alegre, Brazil, 2005. [Google Scholar]
- De Melo Albuquerque, P.I.; Bezerra Rodrigues, J.P.; Peixoto, F.D.S.; Miranda, M.D.P. Sensoriamento Remoto Aplicado Em Indicadores de Desertificação No Municipio de Parelhas—RN. Rev. Geogr. 2020, 37, 241. [Google Scholar] [CrossRef]
- Gonçalves, R.V.S.; Cardoso, J.C.F.; Oliveira, P.E.; Raymundo, D.; de Oliveira, D.C. The Role of Topography, Climate, Soil and the Surrounding Matrix in the Distribution of Veredas Wetlands in Central Brazil. Wetl. Ecol. Manag. 2022, 30, 1261–1279. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y.; Li, Z.; Wu, J. Capability of Remotely Sensed Drought Indices for Representing the Spatio–Temporal Variations of the Meteorological Droughts in the Yellow River Basin. Remote Sens. 2018, 10, 1834. [Google Scholar] [CrossRef]
- Sousa, L.d.B.d.; Montenegro, A.A.d.A.; Silva, M.V.d.; Lopes, P.M.O.; Silva, J.R.I.; Silva, T.G.F.d.; Lins, F.A.C.; Silva, P.C. Spatiotemporal Dynamics of Land Use and Land Cover through Physical–Hydraulic Indices: Insights in the São Francisco River Transboundary Region, Brazilian Semiarid Area. AgriEngineering 2023, 5, 1147–1162. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, J.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Quantifying Glacier Mass Change and Its Contribution to Lake Growths in Central Kunlun during 2000–2015 from Multi-Source Remote Sensing Data. J. Hydrol. 2019, 570, 38–50. [Google Scholar] [CrossRef]
- Acharya, P.; Liu, F. Spectral Index. Monitoring for Temporal Changes in Mining Areas. In Proceedings of Tailings and Mine Waste 2023, Vancouver, CA, USA, 5–8 November 2023; University of British Columbia Library: Vancouver, CA, USA, 2023. [Google Scholar]
- Santos, M.R.d.S.; Vitorino, M.I.; Pereira, L.C.C.; Pimentel, M.A.d.S.; Quintão, A.F. Socioenvironmental Vulnerability to Climate Change: Conditions of Coastal Municipalities in Pará State. Ambiente Soc. 2021, 24, e01671. [Google Scholar] [CrossRef]
- Silva, T.R.B.F.; Santos, C.A.C.d.; Silva, D.J.F.; Santos, C.A.G.; da Silva, R.M.; de Brito, J.I.B. Climate Indices-Based Analysis of Rainfall Spatiotemporal Variability in Pernambuco State, Brazil. Water 2022, 14, 2190. [Google Scholar] [CrossRef]
- Silva, C.A.; Fialho, E.S.; Rocha, V.M. Uma Visão Social Sobre o Clima e Seus Significados Nas Paisagens Climáticas Dos Lugares, o Pantanal/Brasil No Contexto Das Mudanças Climáticas. In Métodos e Técnicas no Estudo da Dinâmica da Paisagem Física nos Países da CPLP Comunidade dos Países de Expressão Portuguesa; Oliveira, J.L.P.C., Zacharias, A.A., Pancher, A.M., Eds.; EUMED: Málaga, Spain, 2022; pp. 49–76. [Google Scholar]
- Almeida, A.H.B.d.; Almeida, H.S.A.d.; Oliveira, M.K.T.d. Perspectivas Da Gestão Hídrica No Semiárido Brasileiro Para a Irrigação. Discip. Sci.—Ciênc. Nat. Tecnol. 2021, 22, 119–132. [Google Scholar] [CrossRef]
- Lopes, F.A.S.; Martins, M.E.; De Oliveira, F.B.; De Oliveira, C.H.R. Sistema de Informação Geográfica Como Ferramenta de Gestão Em Uma Universidade Pública. Obs. Econ. Latinoam. 2023, 21, 26656–26678. [Google Scholar] [CrossRef]
- Da Cunha, N.O. Análise Multitemporal da Fragilidade Ambiental da Bacia Hidrográfica do Córrego da Porteira no Município de Aquidauana. Master’s Thesis, Universidade Federal de Mato Grosso do Sul, Pioneiros, Brazil, 2021. [Google Scholar]
- Lima, F.J.L.d.; Martins, F.R.; Costa, R.S.; Gonçalves, A.R.; dos Santos, A.P.P.; Pereira, E.B. The Seasonal Variability and Trends for the Surface Solar Irradiation in Northeastern Region of Brazil. Sustain. Energy Technol. Assess. 2019, 35, 335–346. [Google Scholar] [CrossRef]
- Dantas, J.C.; da Silva, R.M.; Santos, C.A.G. Drought Impacts, Social Organization, and Public Policies in Northeastern Brazil: A Case Study of the Upper Paraíba River Basin. Environ. Monit. Assess. 2020, 192, 317. [Google Scholar] [CrossRef]
- Fernandez-Moran, R.; Wigneron, J.P.; De Lannoy, G.; Lopez-Baeza, E.; Parrens, M.; Mialon, A.; Mahmoodi, A.; Al-Yaari, A.; Bircher, S.; Al Bitar, A.; et al. A New Calibration of the Effective Scattering Albedo and Soil Roughness Parameters in the SMOS SM Retrieval Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 27–38. [Google Scholar] [CrossRef]
- Ponce, V.M.; Lohani, A.K.; Huston, P.T. Surface Albedo and Water Resources: Hydroclimatological Impact of Human Activities. J. Hydrol. Eng. 1997, 2, 197–203. [Google Scholar] [CrossRef]
- Chrystiane, R.; Matos, M.; Lúcia, A.; Candeias, B.; Rodrigues, J.; Junior, T. Revista Brasileira de Cartografia (2013) N 0 65/1: 139-160 Sociedade Brasileira de Cartografia, Geodésia, Fotogrametria e Sensoriamento Remoto Mapeamento Da Vegetação, Temperatura E Albedo Da Bacia Hidrográfica Do Pajeú Com Imagens Modis Mapping Vegetation, Temperature and Albedo of Watershed Pajeú with MODIS Images. Rev. Bras. Cartogr. 2021, 73, 598–614. [Google Scholar] [CrossRef]
- Damasceno, C.E.; Martins, A.P. Análise Comparativa Do Albedo de Superfície Utilizando o Algoritmo SEBAL Para Os Sistemas Sensores Terra/MODIS e Landsat8/OLI No Município de Jataí (GO). In Os Desafios da Geografia Física na Fronteira do Conhecimento; Instituto De Geociências—UNICAMP: Campinas, Brazil, 2017; pp. 4931–4940. [Google Scholar]
- Bezerra, A.C.; da Silva, J.L.B.; Moura, G.B.d.A.; Lopes, P.M.O.; Nascimento, C.R.; Ribeiro, E.P.; Galvíncio, J.D.; Silva, M.V. da Dynamics of Land Cover and Land Use in Pernambuco (Brazil): Spatio-Temporal Variability and Temporal Trends of Biophysical Parameters. Remote Sens. Appl. 2022, 25, 100677. [Google Scholar] [CrossRef]
- Nascimento, C.M.; Demattê, J.A.M.; Mello, F.A.O.; Rosas, J.T.F.; Tayebi, M.; Bellinaso, H.; Greschuk, L.T.; Albarracín, H.S.R.; Ostovari, Y. Soil Degradation Detected by Temporal Satellite Image in São Paulo State, Brazil. J. S. Am. Earth Sci. 2022, 120, 104036. [Google Scholar] [CrossRef]
- Souza, Í.N.P.d.; Nóbrega, R.A.d.A.; Ribeiro, S.M.C. O Papel Das Infraestruturas Ferroviárias Nas Mudanças de Uso e Cobertura Do Solo No MATOPIBA. Geogr. Dep. Univ. Sao Paulo 2019, 38, 123–136. [Google Scholar] [CrossRef]
- Teixeira, A.; Leivas, J.; Struiving, T.; Reis, J.; Simão, F. Energy Balance and Irrigation Performance Assessments in Lemon Orchards by Applying the SAFER Algorithm to Landsat 8 Images. Agric. Water Manag. 2021, 247, 106725. [Google Scholar] [CrossRef]
- Mariano, D.A.; Santos, C.A.C.d.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of Remote Sensing Indicators to Assess Effects of Drought and Human-Induced Land Degradation on Ecosystem Health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Gil, A.P.; Padovani, C.R.; Luiz, A.; Coelho, N. Comparação Entre Ndwi E Mndwi Para O Mapeamento de áReas Inundadas No Pantanal Do Taquari; INPE: São José dos Campos, Brazil, 2019. [Google Scholar]
- Caballero, C.B.; Ruhoff, A.; Biggs, T. Land Use and Land Cover Changes and Their Impacts on Surface-Atmosphere Interactions in Brazil: A Systematic Review. Sci. Total Environ. 2022, 808, 152134. [Google Scholar] [CrossRef]
- Beeram, S.N.R.; Shahanas, P.V.; Pramada, S.K.; Thendiyath, R. Impact of Change in Land Use/Land Cover and Climate Variables on Groundwater Recharge in a Tropical River Basin. Environ. Dev. Sustain. 2024, 26, 14763–14786. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; Araújo Júnior, G.D.N.; da Silva, M.V.; Dos Santos, A.; da Silva, J.L.B.; Pandorfi, H.; de Oliveira-Júnior, J.F.; Teixeira, A.H.d.C.; Teodoro, P.E.; de Lima, J.L.M.P.; et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens. 2022, 14, 1911. [Google Scholar] [CrossRef]
- De Medeiros, F.J.; De Oliveira, C.P.; Gomes, R.D.S.; Da Silva, M.L.; Cabral Júnior, J.B. Hydrometeorological Conditions in the Semiarid and East Coast Regions of Northeast Brazil in the 2012–2017 Period. Acad. Bras. Ciênc. 2021, 93, e20200198. [Google Scholar] [CrossRef]
- Nair, K.S. Impact of Climate Change and Anthropogenic Pressure on the Water resources of India: Challenges in Management. Proc. IAHS 2016, 374, 63–67. [Google Scholar] [CrossRef]
- A 30 Meter Landsat Pixel Sub-Divided into 900 1 Meter Pixels (a) and...| Download Scientific Diagram. Available online: https://www.researchgate.net/figure/A-30-meter-Landsat-pixel-sub-divided-into-900-1-meter-pixels-a-and-the-incremental_fig1_351736252 (accessed on 23 August 2024).
- De Lima, J.L.; Silva Sousa, K.N.; Santos, P.R.B. Detecção Remota Dos Potenciais Efeitos de Secas Intensas sobre a Sazonalidade da áGua no Complexo Fluvio-Lacustre do Curuaí, Rio Amazonas, Pará, Brasil. Geo UERJ 2021, 38, e42362. [Google Scholar] [CrossRef]
- Silva, G.P.d. Expressão Geomorfológica da Queda do Nível de Base no Baixo São Francisco. Master’s Thesis, Universidade Federal de Alagoas, Maceió, Brazil, 2022. [Google Scholar]
- Lima, M.M.d.; Donegá, M.V.B.; de Souza, T.W.S.; Panza, M.R.; Pacheco, F.M.P.; Cavalheiro, W.C.S.; Hara, F.A. dos S.; Vendruscolo, J. Hidrogeomorfometria da Microbacia do Rio Paraíso: Informações para Auxiliar o Manejo dos Recursos Naturais na Amazônia Ocidental. Res. Soc. Dev. 2021, 10, e41410313367. [Google Scholar] [CrossRef]
- Bettencourt, P.; Fernandes, P.A.; Fulgêncio, C.; Canas, Â.; Wasserman, J.C. Prospective Scenarios for Water Sustainability in the São Francisco River Basin. Sustain. Water Resour. Manag. 2023, 9, 81. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, J.F.; Correia Filho, W.L.F.; de Barros Santiago, D.; de Gois, G.; da Silva Costa, M.; da Silva Junior, C.A.; Teodoro, P.E.; Freire, F.M. Rainfall in Brazilian Northeast via In Situ Data and CHELSA Product: Mapping, Trends, and Socio-Environmental Implications. Environ. Monit. Assess. 2021, 193, 263. [Google Scholar] [CrossRef]
- Silva, J.L.B.d.; Moura, G.B.d.A.; Silva, M.V.d.; Lopes, P.M.O.; Guedes, R.V.; e Silva, Ê.F.D.F.; Ortiz, P.F.S.; de Moraes Rodrigues, J.A. Changes in the Water Resources, Soil Use and Spatial Dynamics of Caatinga Vegetation Cover over Semiarid Region of the Brazilian Northeast. Remote Sens. Appl. 2020, 20, 100372. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Mutti, P.; Mendes, K.R.; Campos, S.; Marques, T.V.; Oliveira, C.P.; Gonçalves, W.; Mota, J.; Difante, G.; Urbano, S.A.; et al. An Assessment of the MOD17A2 Gross Primary Production Product in the Caatinga Biome, Brazil. Int. J. Remote Sens. 2021, 42, 1275–1291. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Alves, L.M. A Seca de 2012-15 no Semiárido do Nordeste do Brasil no Contexto Histórico. Rev. Climanálise 2016, 3, 49–54. [Google Scholar]
- Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; de Arruda, P.H.Z.; Neves, G.A.R.; de Almeida Lobo, F.; Neale, C.M.U.; de Souza Nogueira, J. Patterns of Energy Exchange for Tropical Ecosystems across a Climate Gradient in Mato Grosso, Brazil. Agric. For. Meteorol. 2015, 202, 112–124. [Google Scholar] [CrossRef]
- Krol, M.S.; Bronstert, A. Regional Integrated Modelling of Climate Change Impacts on Natural Resources and Resource Usage in Semi-Arid Northeast Brazil. Environ. Model. Softw. 2007, 22, 259–268. [Google Scholar] [CrossRef]
- Zilli, M.; Scarabello, M.; Soterroni, A.C.; Valin, H.; Mosnier, A.; Leclère, D.; Havlík, P.; Kraxner, F.; Lopes, M.A.; Ramos, F.M. The Impact of Climate Change on Brazil’s Agriculture. Sci. Total Environ. 2020, 740, 139384. [Google Scholar] [CrossRef]
- Marques, J.F.; Alves, M.B.; Silveira, C.F.; Amaral e Silva, A.; Silva, T.A.; dos Santos, V.J.; Calijuri, M.L. Fires Dynamics in the Pantanal: Impacts of Anthropogenic Activities and Climate Change. J. Environ. Manag. 2021, 299, 113586. [Google Scholar] [CrossRef]
- Borges, C.K.; dos Santos, C.A.C.; Carneiro, R.G.; da Silva, L.L.; de Oliveira, G.; Mariano, D.; Silva, M.T.; da Silva, B.B.; Bezerra, B.G.; Perez-Marin, A.M.; et al. Seasonal Variation of Surface Radiation and Energy Balances over Two Contrasting Areas of the Seasonally Dry Tropical Forest (Caatinga) in the Brazilian Semi-Arid. Environ. Monit. Assess. 2020, 192, 524. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.N.; Huang, Y.M.; Li, E.G.; Li, X.Y.; Guo, W.H. Effects of Rainfall and Vegetation to Soil Water Input and Output Processes in the Mu Us Sandy Land, Northwest China. Catena 2018, 161, 96–103. [Google Scholar] [CrossRef]
- He, S.; Zhang, C.; Meng, F.R.; Bourque, C.P.A.; Huang, Z.; Li, X.; Han, Y.; Feng, S.; Miao, L.; Liu, C. Vegetation-Cover Control of between-Site Soil Temperature Evolution in a Sandy Desertland. Sci. Total Environ. 2024, 908, 168372. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.R.; Dotto, M.; Xavier, E.; Giarola, C.M.; Pirola, K. Balanço Hídrico Climatológico E Classificação Climática Para O Município de Paranavaí, Paraná. Rev. Bras. Eng. Biossistemas 2021, 15, 367–380. [Google Scholar] [CrossRef]
- Lozano-Parra, J.; Schnabel, S.; Pulido, M.; Gómez-Gutiérrez, Á.; Lavado-Contador, F. Effects of Soil Moisture and Vegetation Cover on Biomass Growth in Water-Limited Environments. Land. Degrad. Dev. 2018, 29, 4405–4414. [Google Scholar] [CrossRef]
- Fernandes, M.M.; Fernandes, M.R.d.M.; Garcia, J.R.; Matricardi, E.A.T.; de Almeida, A.Q.; Pinto, A.S.; Menezes, R.S.C.; Silva, A.d.J.; Lima, A.H.d.S. Assessment of Land Use and Land Cover Changes and Valuation of Carbon Stocks in the Sergipe Semiarid Region, Brazil: 1992–2030. Land. Use Policy 2020, 99, 104795. [Google Scholar] [CrossRef]
- Heffernan, E.; Epstein, H.; Declan, T.; Chen, J.; Lei, C.; Chu, H.; Li, X.; Torn, M.; Wang, Y.-P.; Sciusco, P.; et al. Overlooked Cooling Effects of Albedo in Terrestrial Ecosystems. Environ. Res. Lett. 2024, 19, 093001. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Liu, S.; Yang, Z.; Guluzade, R.; Liu, Y.; Yuan, J.; Yang, Y. The Impact of Clear-Sky Biases of Land Surface Temperature on Monthly Evapotranspiration Estimation. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103811. [Google Scholar] [CrossRef]
- Saha, K. The Earth’s Atmosphere: Its Physics and Dynamics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Li, H.; Yang, B.; Meng, Y.; Liu, K.; Wang, S.; Wang, D.; Zhang, H.; Huang, Y.; Liu, X.; Li, D.; et al. Relationship between Carbon Pool Changes and Environmental Changes in Arid and Semi-Arid Steppe—A Two Decades Study in Inner Mongolia, China. Sci. Total Environ. 2023, 893, 164930. [Google Scholar] [CrossRef]
- Cunha, J.; Nóbrega, R.L.B.; Rufino, I.; Erasmi, S.; Galvão, C.; Valente, F. Surface Albedo as a Proxy for Land-Cover Clearing in Seasonally Dry Forests: Evidence from the Brazilian Caatinga. Remote Sens. Environ. 2020, 238, 111250. [Google Scholar] [CrossRef]
Indices/Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
MBR | 367.1 | 394.2 | 397.1 | 391.9 | 400.9 | 395.2 | 396.2 | 385.4 | 371.4 | 354.5 |
Resampled MBR | 366.4 | 391.1 | 393.6 | 389.7 | 398.2 | 390.6 | 392.5 | 378.6 | 368.4 | 349.3 |
AWEInsh | 405.3 | 415.7 | 415.3 | 407.3 | 432.2 | 399.7 | 424.9 | 396.8 | 406.5 | 399.7 |
MNDWI | 342.4 | 423.4 | 346.6 | 317.2 | 367.9 | 337.0 | 349.3 | 315.0 | 338.0 | 270.0 |
NDWI | 309.9 | 319.2 | 260.9 | 239.4 | 259.9 | 244.5 | 252.8 | 205.4 | 218.1 | 200.0 |
Indices/Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
MBR | 332.2 | 324.2 | 317.1 | 308.6 | 312.3 | 313.3 | 309.0 | 314.1 | 304.8 | 376.0 |
MBR resampled | 324.3 | 317.5 | 310.9 | 303.3 | 309.7 | 310.7 | 305.3 | 311.4 | 303.1 | 371.8 |
AWEInsh | 375.8 | 377.7 | 371.3 | 413.0 | 330.0 | 333.2 | 342.2 | 371.8 | 358.4 | 426.1 |
MNDWI | 270.0 | 286.4 | 235.2 | 226.7 | 235.5 | 222.8 | 220.1 | 246.7 | 262.2 | 409.8 |
NDWI | 200.0 | 196.1 | 191.7 | 189.2 | 183.8 | 168.9 | 165.5 | 162.5 | 165.0 | 200.5 |
Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
Mean | 358.22 | 388.72 | 362.70 | 349.10 | 371.81 | 353.41 | 363.15 | 336.23 | 340.48 | 314.70 |
SD | 35.18 | 41.25 | 62.30 | 70.58 | 66.56 | 65.95 | 67.33 | 79.77 | 72.58 | 79.32 |
CV | 9.82% | 10.61% | 17.18% | 20.22% | 17.90% | 18.66% | 18.54% | 23.72% | 21.32% | 25.20% |
Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Mean | 300.45 | 300.37 | 285.25 | 288.17 | 274.26 | 269.77 | 268.41 | 281.31 | 278.69 | 356.84 |
SD | 67.59 | 66.92 | 71.30 | 86.32 | 62.22 | 70.66 | 73.12 | 79.79 | 72.17 | 90.34 |
CV | 22.50% | 22.28% | 24.99% | 29.95% | 22.69% | 26.19% | 27.24% | 28.36% | 25.89% | 25.32% |
2003 | 2005 | 2007 | 2009 | 2011 | 2013 | 2015 | 2017 | 2019 | 2021 | 2022 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AWEInsh | Min | 28,205.5 | −25,077.1 | −24,856.9 | −25,479.0 | −25,338.9 | −27,527.0 | −27,082.6 | −26,662.3 | −27,287.6 | −25,368.6 | −23,910.0 |
Max | −131.4 | 83.9 | 547.5 | 58.9 | 947.4 | 97.1 | −1152.0 | 88.6 | −24.9 | 106.0 | 649.0 | |
Mean | −19,412.3 | −18,940.8 | −18,678.8 | −18,771.3 | −18,519.4 | −19,459.1 | −19,603.2 | −19,657.9 | −19,555.3 | −19,054.0 | −18,439.7 | |
MED | −19,038.4 | −18,955.6 | −18,740.5 | −18,849.6 | −18,671.6 | −19,300.0 | −19,510.6 | −19,633.8 | −19,408.9 | −19,051.1 | −18,582.0 | |
SD | 3119.1 | 2645.6 | 2497.6 | 2607.4 | 2325.6 | 2838.6 | 3014.7 | 2633.2 | 2760.5 | 2391.0 | 2268.1 | |
CV | 16.07% | 13.97% | 13.37% | 13.89% | 12.56% | 14.59% | 15.38% | 13.40% | 14.12% | 12.55% | 12.30% | |
NDWI | Min | −0.726 | −0.695 | −0.705 | −0.702 | −0.700 | −0.706 | −0.719 | −0.683 | −0.734 | −0.708 | −0.692 |
Max | 0.239 | 0.204 | 0.272 | 0.245 | 0.207 | 0.191 | 0.149 | 0.175 | 0.203 | 0.232 | 0.201 | |
Mean | −0.518 | −0.529 | −0.542 | −0.537 | −0.546 | −0.515 | −0.511 | −0.510 | −0.551 | −0.535 | −0.545 | |
MED | −0.530 | −0.533 | −0.545 | −0.541 | −0.551 | −0.522 | −0.514 | −0.513 | −0.555 | −0.537 | −0.548 | |
SD | 0.083 | 0.066 | 0.068 | 0.064 | 0.064 | 0.070 | 0.072 | 0.067 | 0.072 | 0.064 | 0.064 | |
CV | 16.05% | 12.54% | 12.61% | 11.90% | 11.72% | 13.54% | 14.12% | 13.21% | 13.05% | 12.00% | 11.69% | |
MNDWI | Min | −0.636 | −0.595 | −0.593 | −0.613 | −0.599 | −0.629 | −0.645 | −0.607 | −0.642 | −0.638 | −0.600 |
Max | 0.277 | 0.337 | 0.384 | 0.271 | 0.395 | 0.337 | 0.133 | 0.331 | 0.249 | 0.312 | 0.393 | |
Mean | −0.503 | −0.483 | −0.465 | −0.484 | −0.473 | −0.488 | −0.517 | −0.479 | −0.514 | −0.487 | −0.458 | |
MED | −0.516 | −0.497 | −0.480 | −0.501 | −0.482 | −0.499 | −0.527 | −0.489 | −0.527 | −0.501 | −0.470 | |
SD | 0.080 | 0.074 | 0.079 | 0.080 | 0.075 | 0.075 | 0.073 | 0.068 | 0.071 | 0.084 | 0.081 | |
CV | 15.87% | 15.23% | 16.92% | 16.52% | 15.91% | 15.33% | 14.10% | 14.28% | 13.89% | 17.16% | 17.78% |
2003 | 2005 | 2007 | 2009 | 2011 | 2013 | 2015 | 2017 | 2019 | 2021 | 2022 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Albedo | Min | 0.057 | 0.074 | 0.066 | 0.059 | 0.080 | 0.072 | 0.060 | 0.073 | 0.049 | 0.060 | 0.082 |
Max | 0.259 | 0.251 | 0.228 | 0.226 | 0.207 | 0.258 | 0.241 | 0.242 | 0.234 | 0.216 | 0.209 | |
Mean | 0.164 | 0.166 | 0.166 | 0.163 | 0.163 | 0.169 | 0.162 | 0.174 | 0.162 | 0.164 | 0.166 | |
MED | 0.162 | 0.165 | 0.166 | 0.163 | 0.163 | 0.169 | 0.161 | 0.173 | 0.161 | 0.165 | 0.167 | |
SD | 0.021 | 0.017 | 0.016 | 0.016 | 0.015 | 0.018 | 0.019 | 0.019 | 0.017 | 0.015 | 0.015 | |
CV | 12.64% | 10.09% | 9.43% | 9.69% | 9.05% | 10.77% | 11.77% | 10.70% | 10.80% | 9.27% | 9.33% | |
Tsup (°C) | Min | 25.470 | 25.050 | 25.140 | 25.960 | 25.140 | 25.690 | 25.710 | 25.740 | 25.570 | 25.270 | 25.310 |
Max | 41.170 | 39.130 | 37.820 | 40.610 | 37.420 | 41.390 | 43.390 | 40.840 | 42.150 | 39.930 | 35.650 | |
Mean | 32.596 | 31.560 | 29.790 | 32.861 | 30.295 | 32.409 | 34.355 | 31.555 | 32.336 | 31.607 | 30.064 | |
MED | 31.560 | 31.080 | 29.410 | 32.040 | 29.850 | 31.120 | 33.530 | 30.870 | 31.690 | 30.930 | 29.750 | |
SD | 3.849 | 2.481 | 2.034 | 3.223 | 2.136 | 3.783 | 3.813 | 2.927 | 3.081 | 3.196 | 2.119 | |
CV | 11.81% | 7.86% | 6.83% | 9.81% | 7.05% | 11.67% | 11.10% | 9.28% | 9.53% | 10.11% | 7.05% | |
Annual total precipitation (mm) | Min | 329.6 | 467.3 | 226.9 | 489.4 | 211.7 | 238.1 | 316.3 | 456.8 | 404.0 | 478.7 | 598.7 |
Max | 1856.7 | 2018.0 | 2133.3 | 2468.3 | 2564.5 | 2305.8 | 1902.5 | 2574.4 | 1895.5 | 2358.8 | 3093.3 | |
Mean | 905.8 | 1077.5 | 1116.0 | 1188.4 | 1191.8 | 1044.1 | 926.5 | 1413.6 | 1028.0 | 1197.4 | 1749.4 | |
MED | 850.6 | 1028.1 | 1125.0 | 1128.7 | 1197.2 | 1033.0 | 878.7 | 1380.9 | 952.5 | 1141.7 | 1804.2 | |
SD | 304.9 | 301.7 | 343.8 | 369.4 | 467.3 | 420.4 | 329.4 | 500.6 | 342.0 | 335.8 | 581.8 | |
CV | 33.66% | 28.00% | 30.81% | 31.09% | 39.21% | 40.26% | 35.55% | 35.41% | 33.27% | 28.04% | 33.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheibel, C.H.; Nascimento, A.B.d.; Júnior, G.d.N.A.; Almeida, A.C.d.S.; Silva, T.G.F.d.; Silva, J.L.P.d.; Junior, F.B.d.S.; Farias, J.A.d.; Santos, J.P.A.d.S.; Oliveira-Júnior, J.F.d.; et al. Characterization of Water Bodies through Hydro-Physical Indices and Anthropogenic Effects in the Eastern Northeast of Brazil. Climate 2024, 12, 150. https://doi.org/10.3390/cli12090150
Scheibel CH, Nascimento ABd, Júnior GdNA, Almeida ACdS, Silva TGFd, Silva JLPd, Junior FBdS, Farias JAd, Santos JPAdS, Oliveira-Júnior JFd, et al. Characterization of Water Bodies through Hydro-Physical Indices and Anthropogenic Effects in the Eastern Northeast of Brazil. Climate. 2024; 12(9):150. https://doi.org/10.3390/cli12090150
Chicago/Turabian StyleScheibel, Christopher Horvath, Astrogilda Batista do Nascimento, George do Nascimento Araújo Júnior, Alexsandro Claudio dos Santos Almeida, Thieres George Freire da Silva, José Lucas Pereira da Silva, Francisco Bento da Silva Junior, Josivalter Araújo de Farias, João Pedro Alves de Souza Santos, José Francisco de Oliveira-Júnior, and et al. 2024. "Characterization of Water Bodies through Hydro-Physical Indices and Anthropogenic Effects in the Eastern Northeast of Brazil" Climate 12, no. 9: 150. https://doi.org/10.3390/cli12090150
APA StyleScheibel, C. H., Nascimento, A. B. d., Júnior, G. d. N. A., Almeida, A. C. d. S., Silva, T. G. F. d., Silva, J. L. P. d., Junior, F. B. d. S., Farias, J. A. d., Santos, J. P. A. d. S., Oliveira-Júnior, J. F. d., Silva, J. L. B. d., João, F. M., Deus, A. S. d., Teodoro, I., Oliveira, H. F. E. d., & Silva, M. V. d. (2024). Characterization of Water Bodies through Hydro-Physical Indices and Anthropogenic Effects in the Eastern Northeast of Brazil. Climate, 12(9), 150. https://doi.org/10.3390/cli12090150