Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Rice black streaked dwarf virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 846 KiB  
Article
The Spread of Southern Rice Black-Streaked Dwarf Virus Was Not Caused by Biological Changes in Vector Sogatella furcifera
by Keiichiro Matsukura and Masaya Matsumura
Microorganisms 2024, 12(6), 1204; https://doi.org/10.3390/microorganisms12061204 - 14 Jun 2024
Cited by 1 | Viewed by 1619
Abstract
The pandemic of Southern rice black-streaked dwarf virus (SRBSDV) in and after the late 2000s caused serious yield losses in rice in Southeast and East Asia. This virus was first recorded in China in 2001, but its exclusive vector insect, Sogatella furcifera, [...] Read more.
The pandemic of Southern rice black-streaked dwarf virus (SRBSDV) in and after the late 2000s caused serious yield losses in rice in Southeast and East Asia. This virus was first recorded in China in 2001, but its exclusive vector insect, Sogatella furcifera, occurred there before then. To clarify the evolutionary origin of SRBSDV as the first plant virus transmitted by S. furcifera, we tested virus transmission using three chronological strains of S. furcifera, two of which were established before the first report of SRBSDV. When the strains fed on SRBSDV-infected rice plants were transferred to healthy rice plants, those established in 1989 and 1999 transmitted the virus to rice similarly to the strain established in 2010. SRBSDV quantification by RT-qPCR confirmed virus accumulation in the salivary glands of all three strains. Therefore, SRBSDV transmission by S. furcifera was not caused by biological changes in the vector, but probably by the genetic change of the virus from a closely related Fijivirus, Rice black-streaked dwarf virus, as suggested by ecological and molecular biological comparisons between the two viruses. This result will help us to better understand the evolutionary relationship between plant viruses and their vector insects and to better manage viral disease in rice cropping in Asia. Full article
(This article belongs to the Special Issue Interactions between Plant Pathogens and Insect Vectors)
Show Figures

Figure 1

12 pages, 1424 KiB  
Communication
Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera
by Jing-Na Yuan, Zhuang-Xin Ye, Meng-Nan Chen, Peng-Peng Ren, Chao Ning, Zong-Tao Sun, Jian-Ping Chen, Chuan-Xi Zhang, Jun-Min Li and Qianzhuo Mao
Insects 2024, 15(6), 394; https://doi.org/10.3390/insects15060394 - 28 May 2024
Cited by 5 | Viewed by 1636
Abstract
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice [...] Read more.
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host’s siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs’ hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

12 pages, 2161 KiB  
Article
MicroRNA750-3p Targets Processing of Precursor 7 to Suppress Rice Black-Streaked Dwarf Virus Propagation in Vector Laodelphax striatellus
by Haitao Wang, Yan Dong, Qiufang Xu, Man Wang, Shuo Li and Yinghua Ji
Viruses 2024, 16(1), 97; https://doi.org/10.3390/v16010097 - 8 Jan 2024
Cited by 2 | Viewed by 1686
Abstract
MicroRNAs (miRNAs) are non-coding RNAs, which, as members of the RNA interference pathway, play a pivotal role in antiviral infection. Almost 80% of plant viruses are transmitted by insect vectors; however, little is known about the interaction of the miRNAs of insect vectors [...] Read more.
MicroRNAs (miRNAs) are non-coding RNAs, which, as members of the RNA interference pathway, play a pivotal role in antiviral infection. Almost 80% of plant viruses are transmitted by insect vectors; however, little is known about the interaction of the miRNAs of insect vectors with plant viruses. Here, we took rice black-streaked dwarf virus (RBSDV), a devastating virus to rice production in eastern Asia, and the small brown planthopper, (SBPH, Laodelphax striatellus) as a model to investigate the role of microRNA750-3p (miR750-3p) in regulating viral transmission. Our results showed that Ls-miR750-3p was downregulated in RBSDV-infected SBPH and predominately expressed in the midgut of SBPH. Injection with miR750-3p agomir significantly reduced viral accumulation, and the injection with the miR750-3p inhibitor, antagomir-750-3p, dramatically promoted the viral accumulation in SBPH, as detected using RT-qPCR and Western blotting. The processing of precursor 7 (POP7), a subunit of RNase P and RNase MRP, was screened, identified, and verified using a dual luciferase reporter assay as one target of miR750-3p. Knockdown of POP7 notably increased RBSDV viral propagation in SBPH and then increased the viral transmission rate by SBPH. Taken together, our data indicate that miR750-3p targets POP7 to suppress RBSDV infection in its insect vector. These results enriched the role of POP7 in modulating virus infection in host insects and shared new insight into the function of miRNAs in plant virus and insect vector interaction. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

14 pages, 2915 KiB  
Article
Development of Polyclonal Antibodies and a Serological-Based Reverse-Transcription Loop-Mediated Isothermal Amplification (S-RT-LAMP) Assay for Rice Black-Streaked Dwarf Virus Detection in Both Rice and Small Brown Planthopper
by Yanhong Hua, Chenwei Feng, Tianxiao Gu, Haoyu Chen, Duxuan Liu, Kai Xu and Kun Zhang
Viruses 2023, 15(10), 2127; https://doi.org/10.3390/v15102127 - 20 Oct 2023
Cited by 5 | Viewed by 1948
Abstract
Rice black-streaked dwarf virus (RBSDV) infects rice and maize, and seriously affects rice yields in main rice-producing areas. It can be transmitted via small brown planthopper (SBPH: Laodelphax striatellus Fallén). To more rapidly, sensitively, and highly throughput diagnose RBSDV in the wild condition, [...] Read more.
Rice black-streaked dwarf virus (RBSDV) infects rice and maize, and seriously affects rice yields in main rice-producing areas. It can be transmitted via small brown planthopper (SBPH: Laodelphax striatellus Fallén). To more rapidly, sensitively, and highly throughput diagnose RBSDV in the wild condition, we first purified the recombinant His-CPRBSDV protein, and prepared the polyclonal antibodies against the His-CPRBSDV protein (PAb-CPRBSDV). Based on the PAb-CPRBSDV, we developed a series of serological detections, such as Western blot, an enzyme-linked immunosorbent assay (ELISA), and a dot immunoblotting assay (DIBA). Furthermore, we developed a serological-based reverse-transcription loop-mediated isothermal amplification assay (S-RT-LAMP) that could accurately detect RBSDV in the wild. Briefly, the viral genomic dsRNA together with viral CP were precipitated by co-immunoprecipitation using the PAb-CPRBSDV, then the binding RNAs were crudely isolated and used for RT-LAMP diagnosis. Using the prepared PAb-CPRBSDV, four serology-based detection methods were established to specifically detect RBSDV-infected rice plants or SBPHs in the wild. The method of S-RT-LAMP has also been developed to specifically, high-throughput, and likely detect RBSDV in rice seedlings and SBPHs simultaneously. The antiserum prepared here laid the foundation for the rapid and efficient detection of RBSDV-infected field samples, which will benefit for determination of the virulence rate of the transmission vector SBPH and outbreak and epidemic prediction of RBSDV in a rice production area. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

9 pages, 2580 KiB  
Communication
RT-RPA-PfAgo System: A Rapid, Sensitive, and Specific Multiplex Detection Method for Rice-Infecting Viruses
by Yan Liu, Wenqiang Xia, Wei Zhao, Peiying Hao, Zhengliang Wang, Xiaoping Yu, Xuping Shentu and Kai Sun
Biosensors 2023, 13(10), 941; https://doi.org/10.3390/bios13100941 - 20 Oct 2023
Cited by 16 | Viewed by 3221
Abstract
The advancement in CRISPR-Cas biosensors has transmuted the detection of plant viruses owing to their rapid and higher sensitivity. However, false positives and restricted multiplexing capabilities are still the challenges faced by this technology, demanding the exploration of novel methodologies. In this study, [...] Read more.
The advancement in CRISPR-Cas biosensors has transmuted the detection of plant viruses owing to their rapid and higher sensitivity. However, false positives and restricted multiplexing capabilities are still the challenges faced by this technology, demanding the exploration of novel methodologies. In this study, a novel detection system was developed by integrating reverse transcriptome (RT) techniques with recombinase polymerase isothermal amplification (RPA) and Pyrococcus furiosus Argonaute (PfAgo). The RT-RPA-PfAgo system enabled the simultaneous detection of rice ragged stunt virus (RRSV), rice grassy stunt virus (RGSV), and rice black streaked dwarf virus (RBSDV). Identifying targets via guide DNA without being hindered by protospacer adjacent motif sequences is the inherent merit of PfAgo, with the additional advantage of it being simple, cost-effective, and exceptionally sensitive, with detection limits between 3.13 and 5.13 copies/µL, in addition to it effectively differentiating between the three distinct viruses. The field evaluations were also in accordance with RT-PCR methods. The RT-RPA-PfAgo system proved to be a robust, versatile, highly specific, and sensitive method with great potential for practicality in future plant virus diagnostics. Full article
(This article belongs to the Special Issue Biosensing Technologies for Bacteria and Virus Detections)
Show Figures

Figure 1

14 pages, 3454 KiB  
Article
A Rice Receptor-like Protein Negatively Regulates Rice Resistance to Southern Rice Black-Streaked Dwarf Virus Infection
by Fengmin Wang, Weiqi Song, Chaorui Huang, Zhongyan Wei, Yanjun Li, Jianping Chen, Hehong Zhang and Zongtao Sun
Viruses 2023, 15(4), 973; https://doi.org/10.3390/v15040973 - 15 Apr 2023
Cited by 3 | Viewed by 2405
Abstract
Plants rely on various receptor-like proteins and receptor-like kinases to recognize and defend against invading pathogens. However, research on the role of receptor-like proteins in plant antiviral defense, particularly in rice–virus interactions, is limited. In this study, we identified a receptor-like gene, OsBAP1 [...] Read more.
Plants rely on various receptor-like proteins and receptor-like kinases to recognize and defend against invading pathogens. However, research on the role of receptor-like proteins in plant antiviral defense, particularly in rice–virus interactions, is limited. In this study, we identified a receptor-like gene, OsBAP1, which was significantly induced upon infection with southern rice black-streaked dwarf virus (SRBSDV) infection. A viral inoculation assay showed that the OsBAP1 knockout mutant exhibited enhanced resistance to SRBSDV infection, indicating that OsBAP1 plays a negatively regulated role in rice resistance to viral infection. Transcriptome analysis revealed that the genes involved in plant–pathogen interactions, plant hormone signal transduction, oxidation–reduction reactions, and protein phosphorylation pathways were significantly enriched in OsBAP1 mutant plants (osbap1-cas). Quantitative real-time PCR (RT-qPCR) analysis further demonstrated that some defense-related genes were significantly induced during SRBSDV infection in osbap1-cas mutants. Our findings provide new insights into the role of receptor-like proteins in plant immune signaling pathways, and demonstrate that OsBAP1 negatively regulates rice resistance to SRBSDV infection. Full article
(This article belongs to the Special Issue Next-Generation Sequencing in Plant Virology 2.0)
Show Figures

Figure 1

16 pages, 3008 KiB  
Article
Comparative Proteomic Analyses of Susceptible and Resistant Maize Inbred Lines at the Stage of Enations Forming following Infection by Rice Black-Streaked Dwarf Virus
by Rong Wang, Kaitong Du, Tong Jiang, Dianping Di, Zaifeng Fan and Tao Zhou
Viruses 2022, 14(12), 2604; https://doi.org/10.3390/v14122604 - 23 Nov 2022
Cited by 3 | Viewed by 1846
Abstract
Rice black-streaked dwarf virus (RBSDV) is the main pathogen causing maize rough dwarf disease (MRDD) in China. Typical enation symptoms along the abaxial leaf veins prevail in RBSDV-infected maize inbred line B73 (susceptible to RBSDV), but not in X178 (resistant to RBSDV). Observation [...] Read more.
Rice black-streaked dwarf virus (RBSDV) is the main pathogen causing maize rough dwarf disease (MRDD) in China. Typical enation symptoms along the abaxial leaf veins prevail in RBSDV-infected maize inbred line B73 (susceptible to RBSDV), but not in X178 (resistant to RBSDV). Observation of the microstructures of epidermal cells and cross section of enations from RBSDV-infected maize leaves found that the increase of epidermal cell and phloem cell numbers is associated with enation formation. To identify proteins associated with enation formation and candidate proteins against RBSDV infection, comparative proteomics between B73 and X178 plants were conducted using isobaric tags for relative and absolute quantitation (iTRAQ) with leaf samples at the enation forming stage. The proteomics data showed that 260 and 316 differentially expressed proteins (DEPs) were identified in B73 and X178, respectively. We found that the majority of DEPs are located in the chloroplast and cytoplasm. Moreover, RBSDV infection resulted in dramatic changes of DEPs enriched by the metabolic process, response to stress and the biosynthetic process. Strikingly, a cell number regulator 10 was significantly down-regulated in RBSDV-infected B73 plants. Altogether, these data will provide value information for future studies to analyze molecular events during both enation formation and resistance mechanism to RBSDV infection. Full article
(This article belongs to the Special Issue State-of-the-Art Plant Viruses Research in Asia)
Show Figures

Figure 1

23 pages, 1189 KiB  
Review
A Review of Vector-Borne Rice Viruses
by Pengyue Wang, Jianjian Liu, Yajing Lyu, Ziting Huang, Xiaoli Zhang, Bingjian Sun, Pengbai Li, Xinxin Jing, Honglian Li and Chao Zhang
Viruses 2022, 14(10), 2258; https://doi.org/10.3390/v14102258 - 14 Oct 2022
Cited by 39 | Viewed by 5251
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice [...] Read more.
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases. Full article
(This article belongs to the Special Issue State-of-the-Art Plant Viruses Research in Asia)
Show Figures

Figure 1

14 pages, 2763 KiB  
Article
The Entomopathogenic Fungus Metarhizium anisopliae Affects Feeding Preference of Sogatella furcifera and Its Potential Targets’ Identification
by Yirong Wang, Lijuan Han, Yuxian Xia and Jiaqin Xie
J. Fungi 2022, 8(5), 506; https://doi.org/10.3390/jof8050506 - 15 May 2022
Cited by 5 | Viewed by 3075
Abstract
The rice planthopper Sogatella furcifera is a unique vector of the southern rice black-streaked dwarf virus (SRBSDV). The feeding behavior of S. furcifera should directly affect the diffusion of this virus. In this study, we noted that the infection of Metarhizium anisopliae CQMa421 [...] Read more.
The rice planthopper Sogatella furcifera is a unique vector of the southern rice black-streaked dwarf virus (SRBSDV). The feeding behavior of S. furcifera should directly affect the diffusion of this virus. In this study, we noted that the infection of Metarhizium anisopliae CQMa421 on S. furcifera disturbed the feeding behavior of this pest to SRBSDV-infected rice, from preference to non-preference. Then, we further investigated the potential targets of M. anisopliae CQMa421 on the feeding behavior of S. furcifera after 0 h, 24 h and 48 h of infection by transcriptomic analysis via Illumina deep sequencing. A total of 93.27 GB of data was collected after sequencing, from which 91,125 unigenes were annotated, including 75 newly annotated genes. There were 1380 vs. 2187 and 137 vs. 106 upregulated and downregulated differentially expressed genes (DEGs) detected at 24 h and 48 h, respectively. The biological functions and associated metabolic processes of these genes were determined with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results suggested that major of DEGs are involved in energy metabolism, biosynthesis, immune response, the FoxO signaling pathway, the MAPK signaling pathway and apoptosis in response to the fungal infection. Noteworthily, several olfactory-related genes, including odorant receptors and odorant binding proteins, were screened from these differentially expressed genes, which played critical roles in regulating the olfactory behavior of insects. Taken together, these results provide new insights for understanding the molecular mechanisms underlying fungus and host insect interaction, especially for olfactory behavior regulated by fungus. Full article
(This article belongs to the Special Issue Interactions between Filamentous Fungal Pathogens and Hosts)
Show Figures

Figure 1

11 pages, 1451 KiB  
Article
Silencing the Autophagy-Related Genes ATG3 and ATG9 Promotes SRBSDV Propagation and Transmission in Sogatella furcifera
by Dandan Liu, Zhengxi Li and Maolin Hou
Insects 2022, 13(4), 394; https://doi.org/10.3390/insects13040394 - 18 Apr 2022
Cited by 7 | Viewed by 2645
Abstract
Autophagy plays diverse roles in the interaction among pathogen, vector, and host. In the plant virus and insect vector system, autophagy can be an antiviral/pro-viral factor to suppress/promote virus propagation and transmission. Here, we report the antiviral role of autophagy-related genes ATG3 and [...] Read more.
Autophagy plays diverse roles in the interaction among pathogen, vector, and host. In the plant virus and insect vector system, autophagy can be an antiviral/pro-viral factor to suppress/promote virus propagation and transmission. Here, we report the antiviral role of autophagy-related genes ATG3 and ATG9 in the white-backed planthopper (Sogatella furcifera) during the process of transmitting the southern rice black-streaked dwarf virus (SRBSDV). In this study, we annotated two autophagy-related genes, SfATG3 and SfATG9, from the female S. furcifera transcriptome. The cDNA of SfATG3 and SfATG9 comprised an open reading frame (ORF) of 999 bp and 2295 bp that encodes a protein of 332 and 764 amino acid residues, respectively. SfATG3 has two conserved domains and SfATG9 has one conserved domain. In S. furcifera females exposed to SRBSDV, expression of autophagy-related genes was significantly activated and shared similar temporal patterns to those of SRBSDV S9-1 and S10, all peaking at 4 d post viral exposure. Silencing the expression of SfATG3 and SfATG9 promoted SRBSDV propagation and transmission. This study provides evidence for the first time that S. furcifera autophagy-related genes ATG3 and ATG9 play an antiviral role to suppress SRBSDV propagation and transmission. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 2820 KiB  
Article
Genome-Wide Profiling of Alternative Splicing and Gene Fusion during Rice Black-Streaked Dwarf Virus Stress in Maize (Zea mays L.)
by Yu Zhou, Qing Lu, Jiayue Zhang, Simeng Zhang, Jianfeng Weng, Hong Di, Lin Zhang, Xin Li, Yuhang Liang, Ling Dong, Xing Zeng, Xianjun Liu, Pei Guo, Huilan Zhang, Xinhai Li and Zhenhua Wang
Genes 2022, 13(3), 456; https://doi.org/10.3390/genes13030456 - 2 Mar 2022
Cited by 12 | Viewed by 3902
Abstract
Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease (MRDD), which is a viral disease that significantly affects maize yields worldwide. Plants tolerate stress through transcriptional reprogramming at the alternative splicing (AS), transcriptional, and fusion gene (FG) levels. However, it is unclear [...] Read more.
Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease (MRDD), which is a viral disease that significantly affects maize yields worldwide. Plants tolerate stress through transcriptional reprogramming at the alternative splicing (AS), transcriptional, and fusion gene (FG) levels. However, it is unclear whether and how AS and FG interfere with transcriptional reprogramming in MRDD. In this study, we performed global profiling of AS and FG on maize response to RBSDV and compared it with transcriptional changes. There are approximately 1.43 to 2.25 AS events per gene in maize infected with RBSDV. GRMZM2G438622 was only detected in four AS modes (A3SS, A5SS, RI, and SE), whereas GRMZM2G059392 showed downregulated expression and four AS events. A total of 106 and 176 FGs were detected at two time points, respectively, including six differentially expressed genes and five differentially spliced genes. The gene GRMZM2G076798 was the only FG that occurred at two time points and was involved in two FG events. Among these, 104 GOs were enriched, indicating that nodulin-, disease resistance-, and chloroplastic-related genes respond to RBSDV stress in maize. These results provide new insights into the mechanisms underlying post-transcriptional and transcriptional regulation of maize response to RBSDV stress. Full article
(This article belongs to the Special Issue Maize Functional Genomics, Genetics and Breeding)
Show Figures

Figure 1

17 pages, 3783 KiB  
Article
Genome-Wide Identification and Gene Expression Analysis of the OTU DUB Family in Oryza sativa
by Qiannan Liu, Tingyun Yan, Xiaoxiang Tan, Zhongyan Wei, Yanjun Li, Zongtao Sun, Hehong Zhang and Jianping Chen
Viruses 2022, 14(2), 392; https://doi.org/10.3390/v14020392 - 14 Feb 2022
Cited by 7 | Viewed by 3268
Abstract
Ovarian tumor domain (OTU)-containing deubiquitinating enzymes (DUBs) are an essential DUB to maintain protein stability in plants and play important roles in plant growth development and stress response. However, there is little genome-wide identification and analysis of the OTU gene family in rice. [...] Read more.
Ovarian tumor domain (OTU)-containing deubiquitinating enzymes (DUBs) are an essential DUB to maintain protein stability in plants and play important roles in plant growth development and stress response. However, there is little genome-wide identification and analysis of the OTU gene family in rice. In this study, we identified 20 genes of the OTU family in rice genome, which were classified into four groups based on the phylogenetic analysis. Their gene structures, conserved motifs and domains, chromosomal distribution, and cis elements in promoters were further studied. In addition, OTU gene expression patterns in response to plant hormone treatments, including SA, MeJA, NAA, BL, and ABA, were investigated by RT-qPCR analysis. The results showed that the expression profile of OsOTU genes exhibited plant hormone-specific expression. Expression levels of most of the rice OTU genes were significantly changed in response to rice stripe virus (RSV), rice black-streaked dwarf virus (RBSDV), Southern rice black-streaked dwarf virus (SRBSDV), and Rice stripe mosaic virus (RSMV). These results suggest that the rice OTU genes are involved in diverse hormone signaling pathways and in varied responses to virus infection, providing new insights for further functional study of OsOTU genes. Full article
(This article belongs to the Special Issue Next-Generation Sequencing in Plant Virology)
Show Figures

Figure 1

14 pages, 3971 KiB  
Article
Comparison of Transcriptome Responses between Sogatella furcifera Females That Acquired Southern Rice Black-Streaked Dwarf Virus and Not
by Dandan Liu, Zhengxi Li and Maolin Hou
Insects 2022, 13(2), 182; https://doi.org/10.3390/insects13020182 - 9 Feb 2022
Cited by 1 | Viewed by 2279
Abstract
The southern rice black-streaked dwarf virus (SRBSDV) is transmitted horizontally by Sogatella furcifera in a persistent, propagative manner. Exposure of S. furcifera females to SRBSDV-infected rice plants may trigger transcriptomic changes in the insects, the transcriptomes of females that acquired SRBSDV and those [...] Read more.
The southern rice black-streaked dwarf virus (SRBSDV) is transmitted horizontally by Sogatella furcifera in a persistent, propagative manner. Exposure of S. furcifera females to SRBSDV-infected rice plants may trigger transcriptomic changes in the insects, the transcriptomes of females that acquired SRBSDV and those that failed to, as well as females fed on healthy rice plants as control, were sequenced and compared. Nine transcriptomic libraries were constructed, from which a total of 53,084 genes were assembled. Among the genes, 1043 and 2932 were differentially expressed genes (DEGs) in S. furcifera females that acquired SRBSDV and that failed to, in comparison with the control, respectively. Functional enrichment analysis showed that DEGs identified in S. furcifera females exposed to SRBSDV are primarily involved in diverse signaling pathways related to primary metabolism and innate immunity. The DEGs in the S. furcifera females that failed to acquire the virus significantly outnumbered that in the insects that acquired the virus, and the virus exposure activated the humoral and cellular immune responses of the vectors, especially the apoptosis. The key gene in apoptosis encoding caspase 1 was upregulated by SRBSDV exposure, especially in S. furcifera females that failed to acquire the virus. Analysis of caspase 1 activity validated that SRBSDV exposure induced caspase 1 accumulation. Surprisingly, the expression of six female-specific genes was also upregulated by SRBSDV exposure, which was confirmed by RT-qPCR analysis. This study provides evidence to explain the differential virus acquisition at the transcriptome level. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 2048 KiB  
Article
Analyses on the Infection Process of Rice Virus and the Spatiotemporal Expression Pattern of Host Defense Genes Based on a Determined-Part Inoculation Approach
by Wei Guo, Chenyang Li, Bo Zeng, Jie Li, Zhaoyun Wang, Shuhui Ma, Linlin Du, Ying Lan, Feng Sun, Chengye Lu, Shuo Li, Yijun Zhou, Yunyue Wang and Tong Zhou
Pathogens 2022, 11(2), 144; https://doi.org/10.3390/pathogens11020144 - 24 Jan 2022
Cited by 2 | Viewed by 3044
Abstract
Rice viral diseases adversely affect crop yield and quality. Most rice viruses are transmitted through insect vectors. However, the traditional whole-plant inoculation method cannot control the initial inoculation site in rice plants because the insect feeding sites in plants are random. To solve [...] Read more.
Rice viral diseases adversely affect crop yield and quality. Most rice viruses are transmitted through insect vectors. However, the traditional whole-plant inoculation method cannot control the initial inoculation site in rice plants because the insect feeding sites in plants are random. To solve this problem, we established a determined-part inoculation approach in this study that restricted the insect feeding sites to specific parts of the rice plant. Rice stripe virus (RSV) was used as the model virus and was inoculated at the bottom of the stem using our method. Quantitative real-time PCR and Western blot analyses detected RSV only present at the bottom of the Nipponbare (NPB) stem at 1 day post-inoculation (dpi), indicating that our method successfully controlled the inoculation site. With time, RSV gradually moved from the bottom of the stem to the leaf in NPB rice plants, indicating that systemic viral spread can also be monitored using this method. In addition, a cultivar resistant to RSV, Zhendao 88 (ZD88), was inoculated using this method. We found that RSV accumulation in ZD88 was significantly lower than in NPB. Additionally, the expression level of the resistant gene STV11 in ZD88 was highly induced at the initial invasion stage of RSV (1 dpi) at the inoculation site, whereas it remained relatively stable at non-inoculated sites. This finding indicated that STV11 directly responded to RSV invasion to inhibit virus accumulation at the invasion site. We also proved that this approach is suitable for other rice viruses, such as Rice black-streaked dwarf virus (RBSDV). Interestingly, we determined that systemic infection with RSV was faster than that with RBSDV in NPB, which was consistent with findings in field trails. In summary, this approach is suitable for characterizing the viral infection process in rice plants, comparing the local viral accumulation and spread among different cultivars, analyzing the spatiotemporal expression pattern of resistance-associated genes, and monitoring the infection rate for different viruses. Full article
(This article belongs to the Special Issue Mechanisms of Plant Resistance to Pathogens)
Show Figures

Figure 1

16 pages, 3720 KiB  
Article
Identification of Viruses Infecting Oats in Korea by Metatranscriptomics
by Na-Kyeong Kim, Hyo-Jeong Lee, Sang-Min Kim and Rae-Dong Jeong
Plants 2022, 11(3), 256; https://doi.org/10.3390/plants11030256 - 19 Jan 2022
Cited by 8 | Viewed by 2984
Abstract
Controlling infectious plant viruses presents a constant challenge in agriculture. As a source of valuable nutrients for human health, the cultivation of oats (Avena sativa L.) has recently been increased in Korea. To date, however, few studies have been undertaken to identify [...] Read more.
Controlling infectious plant viruses presents a constant challenge in agriculture. As a source of valuable nutrients for human health, the cultivation of oats (Avena sativa L.) has recently been increased in Korea. To date, however, few studies have been undertaken to identify the viruses infecting oats in this country. In this study, we carried out RNA-sequencing followed by bioinformatics analyses to understand the virosphere in six different geographical locations in Korea where oats are cultivated. We identified three different virus species, namely, barley yellow dwarf virus (BYDV) (BYDV-PAV and BYDV-PAS), cereal yellow dwarf virus (CYDV) (CYDV-RPS and CYDV-RPV), and rice black-streaked dwarf virus (RBSDV). Based on the number of virus-associated reads and contigs, BYDV-PAV was a dominant virus infecting winter oats in Korea. Interestingly, RBSDV was identified in only a single region, and this is the first report of this virus infecting oats in Korea. Single nucleotide polymorphisms analyses indicated that most BYDV, CYDV, and RBSDV isolates show considerable genetic variations. Phylogenetic analyses indicated that BYDVs and CYDVs were largely grouped in isolates from Asia and USA, whereas RBSDV was genetically similar to isolates from China. Overall, the findings of this study provide a preliminary characterization of the types of plant viruses infecting oats in six geographical regions of Korea. Full article
(This article belongs to the Special Issue Identification and Molecular Characterization of Plant Virus)
Show Figures

Graphical abstract

Back to TopTop