Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Ramón seed flour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3320 KiB  
Article
Ramon Flour (Brosimum alicastrum Swartz) Ameliorates Hepatic Lipid Accumulation, Induction of AMPK Phosphorylation, and Expression of the Hepatic Antioxidant System in a High-Fat-Diet-Induced Obesity Mouse Model
by Trinidad Eugenia Cu-Cañetas, Laura A. Velázquez-Villegas, Mariana Manzanilla-Franco, Teresa del Rosario Ayora-Talavera, Juan José Acevedo-Fernández, Enrique Barbosa-Martín, Claudia C. Márquez-Mota, Adriana M. López-Barradas, Lilia G. Noriega, Martha Guevara-Cruz, Ana Ligia Gutiérrez-Solís and Azalia Avila-Nava
Antioxidants 2023, 12(11), 1957; https://doi.org/10.3390/antiox12111957 - 2 Nov 2023
Cited by 1 | Viewed by 3085
Abstract
Excessive consumption of fat and carbohydrates, together with a decrease in traditional food intake, has been related to obesity and the development of metabolic alterations. Ramon seed is a traditional Mayan food used to obtain Ramon flour (RF) with high biological value in [...] Read more.
Excessive consumption of fat and carbohydrates, together with a decrease in traditional food intake, has been related to obesity and the development of metabolic alterations. Ramon seed is a traditional Mayan food used to obtain Ramon flour (RF) with high biological value in terms of protein, fiber, micronutrients, and bioactive compounds such as polyphenols. However, few studies have evaluated the beneficial effects of RF. Thus, we aimed to determine the metabolic effects of RF consumption on a high-fat-diet-induced obesity mouse model. We divided male BALB/c mice into four groups (n = 5 each group) and fed them for 90 days with the following diets: Control (C): control diet (AIN-93), C + RF: control diet adjusted with 25% RF, HFD: high-fat diet + 5% sugar in water, and HFD + RF: high-fat diet adjusted with 25% RF + 5% sugar in water. The RF prevented the increase in serum total cholesterol (TC) and alanine transaminase (ALT) that occurred in the C and HFD groups. Notably, RF together with HFD increased serum polyphenols and antioxidant activity, and it promoted a decrease in the adipocyte size in white adipose tissue, along with lower hepatic lipid accumulation than in the HFD group. In the liver, the HFD + RF group showed an increase in the expression of β-oxidation-related genes, and downregulation of the fatty acid synthase (Fas) gene compared with the HFD group. Moreover, the HFD + RF group had increased hepatic phosphorylation of AMP-activated protein kinase (AMPK), along with increased nuclear factor erythroid 2-related factor 2 (NRF2) and superoxide dismutase 2 (SOD2) protein expression compared with the HFD group. Thus, RF may be used as a nutritional strategy to decrease metabolic alterations during obesity. Full article
(This article belongs to the Special Issue Oxidative Stress in Metabolic Disease)
Show Figures

Figure 1

21 pages, 9634 KiB  
Article
Functionality of Bread and Beverage Added with Brosimum alicastrum Sw. Seed Flour on the Nutritional and Health Status of the Elderly
by Alejandra Rodríguez-Tadeo, Julio C. del Hierro-Ochoa, Jesús O. Moreno-Escamilla, Joaquín Rodrigo-García, Laura A. de la Rosa, Emilio Alvarez-Parrilla, José A. López-Díaz, María E. Vidaña-Gaytán, María N. González-Valles, Alfonso Larqué-Saavedra and Nina del Rocío Martínez-Ruiz
Foods 2021, 10(8), 1764; https://doi.org/10.3390/foods10081764 - 30 Jul 2021
Cited by 8 | Viewed by 3925
Abstract
Physiological changes in elderly individuals (EI) can contribute to nutritional deterioration and comorbidities that reduce their quality of life. Factors such as diet can modulate some of these effects. The aim was to evaluate the functionality of foods added with Brosimum alicastrum Sw. [...] Read more.
Physiological changes in elderly individuals (EI) can contribute to nutritional deterioration and comorbidities that reduce their quality of life. Factors such as diet can modulate some of these effects. The aim was to evaluate the functionality of foods added with Brosimum alicastrum Sw. seed flour in EI. EI (n = 23) living in nursing home conditions agreed to participate. A control stage was carried out (30 days) and subsequently, an intervention stage (30 days) was realized in which a muffin and a beverage, designed for EI, were added to the participants’ their usual diet. In both stages, anthropometric parameters, body composition, nutritional status, dietary intake, sarcopenic status, cognitive and affective states, biometric parameters, and total phenolic compounds (TPC), and antioxidant capacity in foods and plasma of EI were determined. The results showed that the consumption of the foods improved the energy intake and preserved the muscle reserves of the EI. The EI gained body weight (+1.1 kg), increased their protein (+18.6 g/day; 1.5 g/kg BW/day), dietary fiber (+13.4 g/day), iron (+4.4 mg/day), zinc (+1.8 mg/day), folic acid (+83.4 µg/day) consumption while reducing their cholesterol (−66 mg/day) and sodium (−319.5 mg/day) consumption. LDL-C lipoproteins reduced (14.8%) and urea (33.1%) and BUN (33.3%) increased. The TPC increased (7.8%) in the plasma, particularly in women (10.7%). The foods improve the EI nutritional status, and this has a cardiovascular protective effect that can benefit the health of the EI. Full article
(This article belongs to the Special Issue Unconventional Ingredients for Innovative Cereal-Based Products)
Show Figures

Graphical abstract

18 pages, 1603 KiB  
Article
Brosimum alicastrum Sw. (Ramón): An Alternative to Improve the Nutritional Properties and Functional Potential of the Wheat Flour Tortilla
by Rodrigo Subiria-Cueto, Alfonso Larqué-Saavedra, María L. Reyes-Vega, Laura A. de la Rosa, Laura E. Santana-Contreras, Marcela Gaytán-Martínez, Alma A. Vázquez-Flores, Joaquín Rodrigo-García, Alba Y. Corral-Avitia, José A. Núñez-Gastélum and Nina R. Martínez-Ruiz
Foods 2019, 8(12), 613; https://doi.org/10.3390/foods8120613 - 24 Nov 2019
Cited by 26 | Viewed by 6674
Abstract
The wheat flour tortilla (WFT) is a Mexican food product widely consumed in the world, despite lacking fiber and micronutrients. Ramón seed flour (RSF) is an underutilized natural resource rich in fiber, minerals and bioactive compounds that can be used to improve properties [...] Read more.
The wheat flour tortilla (WFT) is a Mexican food product widely consumed in the world, despite lacking fiber and micronutrients. Ramón seed flour (RSF) is an underutilized natural resource rich in fiber, minerals and bioactive compounds that can be used to improve properties of starchy foods, such as WFT. The study evaluated the impact of partial replacement of wheat flour with RSF on the physicochemical, sensory, rheological and nutritional properties and antioxidant capacity (AC) of RSF-containing flour tortilla (RFT). Results indicated that RFT (25% RSF) had higher dietary fiber (4.5 times) and mineral (8.8%; potassium 42.8%, copper 33%) content than WFT. Two sensory attributes were significantly different between RTF and WFT, color intensity and rollability. RFT was soft and it was accepted by the consumer. Phenolic compounds (PC) and AC were higher in RFT (11.7 times, 33%–50%, respectively) than WFT. PC identification by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) showed that phenolic acids esterified with quinic acid, such as chlorogenic and other caffeoyl and coumaroyl derivatives were the major PC identified in RSF, resveratrol was also detected. These results show that RSF can be used as an ingredient to improve nutritional and antioxidant properties of traditional foods, such as the WFT. Full article
Show Figures

Figure 1

16 pages, 3400 KiB  
Article
Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2
by Edgar Olguin-Maciel, Alfonso Larqué-Saavedra, Patricia E. Lappe-Oliveras, Luis F. Barahona-Pérez, Liliana Alzate-Gaviria, Rubí Chablé-Villacis, Jorge Domínguez-Maldonado, Daniella Pacheco-Catalán, Hector A. Ruíz and Raúl Tapia-Tussell
Microorganisms 2019, 7(11), 483; https://doi.org/10.3390/microorganisms7110483 - 23 Oct 2019
Cited by 23 | Viewed by 5199
Abstract
Consolidated bioprocessing (CBP), which integrates biological pretreatment, enzyme production, saccharification, and fermentation, is a promising operational strategy for cost-effective ethanol production from biomass. In this study, the use of a native strain of Trametes hirsuta (Bm-2) was evaluated for bioethanol production from Brosimum [...] Read more.
Consolidated bioprocessing (CBP), which integrates biological pretreatment, enzyme production, saccharification, and fermentation, is a promising operational strategy for cost-effective ethanol production from biomass. In this study, the use of a native strain of Trametes hirsuta (Bm-2) was evaluated for bioethanol production from Brosimum alicastrum in a CBP. The raw seed flour obtained from the ramon tree contained 61% of starch, indicating its potential as a raw material for bioethanol production. Quantitative assays revealed that the Bm-2 strain produced the amylase enzyme with activity of 193.85 U/mL. The Bm-2 strain showed high tolerance to ethanol stress and was capable of directly producing ethanol from raw flour at a concentration of 13 g/L, with a production yield of 123.4 mL/kg flour. This study demonstrates the potential of T. hirsuta Bm-2 for starch-based ethanol production in a consolidated bioprocess to be implemented in the biofuel industry. The residual biomass after fermentation showed an average protein content of 22.5%, suggesting that it could also be considered as a valuable biorefinery co-product for animal feeding. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Graphical abstract

10 pages, 5388 KiB  
Article
Brosimum Alicastrum as a Novel Starch Source for Bioethanol Production
by Edgar Olguin-Maciel, Alfonso Larqué-Saavedra, Daisy Pérez-Brito, Luis F. Barahona-Pérez, Liliana Alzate-Gaviria, Tanit Toledano-Thompson, Patricia E. Lappe-Oliveras, Emy G. Huchin-Poot and Raúl Tapia-Tussell
Energies 2017, 10(10), 1574; https://doi.org/10.3390/en10101574 - 12 Oct 2017
Cited by 12 | Viewed by 4777
Abstract
Ramon (Brosimum alicastrum) is a forest tree native to the Mesoamerican region and the Caribbean. The flour obtained from Ramon seeds is 75% carbohydrate, of which 63% is starch, indicating its potential as a novel raw material for bioethanol production. The [...] Read more.
Ramon (Brosimum alicastrum) is a forest tree native to the Mesoamerican region and the Caribbean. The flour obtained from Ramon seeds is 75% carbohydrate, of which 63% is starch, indicating its potential as a novel raw material for bioethanol production. The objective of this study was to produce ethanol from Ramon flour using a 90 °C thermic treatment for 30 min and a native yeast strain (Candida tropicalis) for the fermentation process. In addition, the structure of the flour and the effects of pretreatment were observed via scanning electron microscopy. The native yeast strain was superior to the commercial strain, fermenting 98.8% of the reducing sugar (RS) at 48 h and generating 31% more ethanol than commercial yeast. One ton of flour yielded 213 L of ethanol. These results suggest that Ramon flour is an excellent candidate for ethanol production. This is the first report on bioethanol production using the starch from Ramon seed flour and a native yeast strain isolated from this feedstock. This alternative material for bioethanol production minimizes the competition between food and energy production, a priority for Mexico that has led to significant changes in public policies to enhance the development of renewable energies. Full article
Show Figures

Graphical abstract

Back to TopTop