Next Article in Journal
Xylitol Production: Identification and Comparison of New Producing Yeasts
Previous Article in Journal
Characteristics of Carbapenem-Resistant and Colistin-Resistant Escherichia coli Co-Producing NDM-1 and MCR-1 from Pig Farms in China
Open AccessArticle

Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2

1
Renewable Energy Department, Yucatan Center for Scientific Research, Merida 97302, Mexico
2
Natural Resource Department, Yucatan Center for Scientific Research, Merida 97205, Mexico
3
Mycology Laboratory, Biology Institute, National Autonomous University of Mexico, Mexico 04510, Mexico
4
Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo 25280, Mexico
*
Author to whom correspondence should be addressed.
Microorganisms 2019, 7(11), 483; https://doi.org/10.3390/microorganisms7110483
Received: 27 August 2019 / Revised: 23 September 2019 / Accepted: 7 October 2019 / Published: 23 October 2019
(This article belongs to the Section Microbial Biotechnology)
Consolidated bioprocessing (CBP), which integrates biological pretreatment, enzyme production, saccharification, and fermentation, is a promising operational strategy for cost-effective ethanol production from biomass. In this study, the use of a native strain of Trametes hirsuta (Bm-2) was evaluated for bioethanol production from Brosimum alicastrum in a CBP. The raw seed flour obtained from the ramon tree contained 61% of starch, indicating its potential as a raw material for bioethanol production. Quantitative assays revealed that the Bm-2 strain produced the amylase enzyme with activity of 193.85 U/mL. The Bm-2 strain showed high tolerance to ethanol stress and was capable of directly producing ethanol from raw flour at a concentration of 13 g/L, with a production yield of 123.4 mL/kg flour. This study demonstrates the potential of T. hirsuta Bm-2 for starch-based ethanol production in a consolidated bioprocess to be implemented in the biofuel industry. The residual biomass after fermentation showed an average protein content of 22.5%, suggesting that it could also be considered as a valuable biorefinery co-product for animal feeding. View Full-Text
Keywords: consolidated bioprocess; biofuels; starch; α-amylase; white rot fungi consolidated bioprocess; biofuels; starch; α-amylase; white rot fungi
Show Figures

Graphical abstract

MDPI and ACS Style

Olguin-Maciel, E.; Larqué-Saavedra, A.; Lappe-Oliveras, P.E.; Barahona-Pérez, L.F.; Alzate-Gaviria, L.; Chablé-Villacis, R.; Domínguez-Maldonado, J.; Pacheco-Catalán, D.; Ruíz, H.A.; Tapia-Tussell, R. Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2. Microorganisms 2019, 7, 483.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop