Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = RF absorbing materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6277 KiB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Viewed by 378
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

17 pages, 6590 KiB  
Article
Machine-Learning-Based Characterization and Inverse Design of Metamaterials
by Wei Liu, Guxin Xu, Wei Fan, Muyun Lyu and Zhaowang Xia
Materials 2024, 17(14), 3512; https://doi.org/10.3390/ma17143512 - 16 Jul 2024
Cited by 7 | Viewed by 2713
Abstract
Metamaterials, characterized by unique structures, exhibit exceptional properties applicable across various domains. Traditional methods like experiments and finite-element methods (FEM) have been extensively utilized to characterize these properties. However, exploring an extensive range of structures using these methods for designing desired structures with [...] Read more.
Metamaterials, characterized by unique structures, exhibit exceptional properties applicable across various domains. Traditional methods like experiments and finite-element methods (FEM) have been extensively utilized to characterize these properties. However, exploring an extensive range of structures using these methods for designing desired structures with excellent properties can be time-intensive. This paper formulates a machine-learning-based approach to expedite predicting effective metamaterial properties, leading to the discovery of microstructures with diverse and outstanding characteristics. The process involves constructing 2D and 3D microstructures, encompassing porous materials, solid–solid-based materials, and fluid–solid-based materials. Finite-element methods are then employed to determine the effective properties of metamaterials. Subsequently, the Random Forest (RF) algorithm is applied for training and predicting effective properties. Additionally, the Aquila Optimizer (AO) method is employed for a multiple optimization task in inverse design. The regression model generates accurate estimation with a coefficient of determination higher than 0.98, a mean absolute percentage error lower than 0.088, and a root mean square error lower than 0.03, indicating that the machine-learning-based method can accurately characterize the metamaterial properties. An optimized structure with a high Young’s modulus and low thermal conductivity is designed by AO within the first 30 iterations. This approach accelerates simulating the effective properties of metamaterials and can design microstructures with multiple excellent performances. The work offers guidance to design microstructures in various practical applications such as vibration energy absorbers. Full article
Show Figures

Figure 1

17 pages, 6729 KiB  
Article
Characterization of NiCuOxNy Coatings Obtained via RF Sputtering: Structure, Morphology, and Optical Properties
by Karen Lizzette Velásquez-Méndez, José Edgar Alfonso, Manuel Bethencourt, Gustavo Cifredo and Gloria Ivonne Cubillos
Materials 2024, 17(13), 3264; https://doi.org/10.3390/ma17133264 - 2 Jul 2024
Cited by 1 | Viewed by 1199
Abstract
The rapid advancement of technology necessitates the continual development of versatile materials that can adapt to new electronic devices. Rare earth elements, which are scarce in nature, possess the set of properties required for use as semiconductors. Consequently, this research aims to achieve [...] Read more.
The rapid advancement of technology necessitates the continual development of versatile materials that can adapt to new electronic devices. Rare earth elements, which are scarce in nature, possess the set of properties required for use as semiconductors. Consequently, this research aims to achieve similar properties using materials that are abundant in nature and have a low commercial cost. To this end, nickel and copper were utilized to synthesize thin films of nickel–copper binary oxynitride via reactive RF sputtering. The influence of nitrogen flow on the structure, morphology, chemical composition, and optical properties of the films was investigated using various characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), as well as transmittance and absorbance measurements. The crystalline structure of the films shows that they can have preferential growth or be polycrystalline according to the nitrogen flow used during deposition and that both the oxides and oxynitrides of metals are formed. We identified unknown phases specific to this material, termed “NiCuOxNy”. The morphology revealed that the grain size of the coatings was dependent on the nitrogen flow rate, with grain size decreasing as the nitrogen flow rate increased. Notably, the coatings demonstrated transparency for wavelengths exceeding 1000 nm, with an optical band gap ranging from 1.21 to 1.86 eV. Full article
(This article belongs to the Special Issue Recent Progress on Thin 2D Materials)
Show Figures

Figure 1

11 pages, 3753 KiB  
Article
Effects of Heat Treatment on the Electromagnetic Wave Absorption Characteristics of Resorcinol Formaldehyde Silicon Dioxide Ceramic Particles
by Haiyang Zhang, Xinli Ye, Jianqing Xu, Shan Li, Xiaomin Ma, Wei Xu and Junxiong Zhang
Materials 2024, 17(10), 2376; https://doi.org/10.3390/ma17102376 - 15 May 2024
Cited by 2 | Viewed by 1297
Abstract
In light of the pressing environmental and health issues stemming from electromagnetic pollution, advanced electromagnetic wave absorbing materials are urgently sought to solve these problems. The present study delved into the fabrication of the resorcinol formaldehyde (RF)/SiO2 ceramic particles using the sol–gel [...] Read more.
In light of the pressing environmental and health issues stemming from electromagnetic pollution, advanced electromagnetic wave absorbing materials are urgently sought to solve these problems. The present study delved into the fabrication of the resorcinol formaldehyde (RF)/SiO2 ceramic particles using the sol–gel route. From SEM images and XRD and XPS analysis, it can be seen that the RF/SiO2 ceramic particles are successfully generated after heat treatment at 1500 °C. At room temperature, the sample treated at 1500 °C exhibited a minimum reflection loss of −47.6 dB in the range of 2–18 GHz when the matching thickness was 5.5 mm, showcasing strong attenuation capabilities. Moreover, these particles demonstrated a considerable effective electromagnetic wave absorption bandwidth of 3.14 GHz, evidencing their potential for wideband electromagnetic wave absorption. The temperature adjustment played a pivotal role in achieving optimal impedance matching. When the heat treatment temperature is increased from 800 °C to 1500 °C, the dielectric properties of the material are improved, thus achieving the best impedance matching, thereby optimizing the material’s absorption properties for specific frequency ranges, which makes it possible to customize the electromagnetic wave-absorbing characteristics to meet specific requirements across a range of applications. Full article
(This article belongs to the Special Issue Properties of Ceramic Composites)
Show Figures

Figure 1

12 pages, 3366 KiB  
Article
Influence of Sulfurization Time on Sb2S3 Synthesis Using a New Graphite Box Design
by Sheyda Uc-Canché, Eduardo Camacho-Espinosa, Ricardo Mis-Fernández, Mariely Loeza-Poot, Francisco Ceh-Cih and Juan Luis Peña
Materials 2024, 17(7), 1656; https://doi.org/10.3390/ma17071656 - 4 Apr 2024
Cited by 2 | Viewed by 1688
Abstract
In recent years, antimony sulfide (Sb2S3) has been investigated as a photovoltaic absorber material due to its suitable absorber coefficient, direct band gap, extinction coefficient, earth-abundant, and environmentally friendly constituents. Therefore, this work proposes Sb2S3 film [...] Read more.
In recent years, antimony sulfide (Sb2S3) has been investigated as a photovoltaic absorber material due to its suitable absorber coefficient, direct band gap, extinction coefficient, earth-abundant, and environmentally friendly constituents. Therefore, this work proposes Sb2S3 film preparation by an effective two-step process using a new graphite box design and sulfur distribution, which has a high repeatability level and can be scalable. First, an Sb thin film was deposited using the RF-Sputtering technique, and after that, the samples were annealed with elemental sulfur into a graphite box, varying the sulfurization time from 20 to 50 min. The structural, optical, morphological, and chemical characteristics of the resulting thin films were analyzed. Results reveal the method’s effectivity and the best properties were obtained for the sample sulfurized during 40 min. This Sb2S3 thin film presents an orthorhombic crystalline structure, elongated grains, a band gap of 1.69 eV, a crystallite size of 15.25 Å, and a nearly stoichiometric composition. In addition, the formation of a p-n junction was achieved by depositing silver back contact on the Glass/FTO/CdS/Sb2S3 structure. Therefore, the graphite box design has been demonstrated to be functional to obtain Sb2S3 by a two-step process. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

11 pages, 10583 KiB  
Communication
Mid-Infrared (MIR) Complex Refractive Index Spectra of Polycrystalline Copper-Nitride Films by IR-VASE Ellipsometry and Their FIB-SEM Porosity
by Emilio Márquez, Eduardo Blanco, José M. Mánuel, Manuel Ballester, Marcos García-Gurrea, María I. Rodríguez-Tapiador, Susana M. Fernández, Florian Willomitzer and Aggelos K. Katsaggelos
Coatings 2024, 14(1), 5; https://doi.org/10.3390/coatings14010005 - 19 Dec 2023
Cited by 7 | Viewed by 2196
Abstract
Copper-nitride (Cu3N) semiconductor material is attracting much attention as a potential, next-generation thin-film solar light absorber in solar cells. In this communication, polycrystalline covalent Cu3N thin films were prepared using reactive-RF-magnetron-sputtering deposition, at room temperature, onto glass and silicon [...] Read more.
Copper-nitride (Cu3N) semiconductor material is attracting much attention as a potential, next-generation thin-film solar light absorber in solar cells. In this communication, polycrystalline covalent Cu3N thin films were prepared using reactive-RF-magnetron-sputtering deposition, at room temperature, onto glass and silicon substrates. The very-broadband optical properties of the Cu3N thin film layers were studied by UV-MIR (0.2–40 μm) ellipsometry and optical transmission, to be able to achieve the goal of a low-cost absorber material to replace the conventional silicon. The reactive-RF-sputtered Cu3N films were also investigated by focused ion beam scanning electron microscopy and both FTIR and Raman spectroscopies. The less dense layer was found to have a value of the static refractive index of 2.304, and the denser film had a value of 2.496. The iso-absorption gap, E04, varied between approximately 1.3 and 1.8 eV and could be considered suitable as a solar light absorber. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Graphical abstract

19 pages, 19698 KiB  
Article
Machine Learning Algorithms for Predicting Mechanical Stiffness of Lattice Structure-Based Polymer Foam
by Mohammad Javad Hooshmand, Chowdhury Sakib-Uz-Zaman and Mohammad Abu Hasan Khondoker
Materials 2023, 16(22), 7173; https://doi.org/10.3390/ma16227173 - 15 Nov 2023
Cited by 16 | Viewed by 2727
Abstract
Polymer foams are extensively utilized because of their superior mechanical and energy-absorbing capabilities; however, foam materials of consistent geometry are difficult to produce because of their random microstructure and stochastic nature. Alternatively, lattice structures provide greater design freedom to achieve desired material properties [...] Read more.
Polymer foams are extensively utilized because of their superior mechanical and energy-absorbing capabilities; however, foam materials of consistent geometry are difficult to produce because of their random microstructure and stochastic nature. Alternatively, lattice structures provide greater design freedom to achieve desired material properties by replicating mesoscale unit cells. Such complex lattice structures can only be manufactured effectively by additive manufacturing or 3D printing. The mechanical properties of lattice parts are greatly influenced by the lattice parameters that define the lattice geometries. To study the effect of lattice parameters on the mechanical stiffness of lattice parts, 360 lattice parts were designed by varying five lattice parameters, namely, lattice type, cell length along the X, Y, and Z axes, and cell wall thickness. Computational analyses were performed by applying the same loading condition on these lattice parts and recording corresponding strain deformations. To effectively capture the correlation between these lattice parameters and parts’ stiffness, five machine learning (ML) algorithms were compared. These are Linear Regression (LR), Polynomial Regression (PR), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN). Using evaluation metrics such as mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE), all ML algorithms exhibited significantly low prediction errors during the training and testing phases; however, the Taylor diagram demonstrated that ANN surpassed other algorithms, with a correlation coefficient of 0.93. That finding was further supported by the relative error box plot and by comparing actual vs. predicted values plots. This study revealed the accurate prediction of the mechanical stiffness of lattice parts for the desired set of lattice parameters. Full article
Show Figures

Graphical abstract

27 pages, 4941 KiB  
Article
Towards Photothermal Acid Catalysts Using Eco-Sustainable Sulfonated Carbon Nanoparticles—Part I: Synthesis, Characterization and Catalytic Activity towards Fischer Esterification
by María Paula Militello, María Victoria Martínez, Luciano Tamborini, Diego F. Acevedo and Cesar A. Barbero
Catalysts 2023, 13(10), 1341; https://doi.org/10.3390/catal13101341 - 4 Oct 2023
Cited by 4 | Viewed by 1682
Abstract
The development of photothermal catalysts for biodiesel synthesis reaction (transesterification) requires the production of light-absorbing nanoparticles functionalized with catalytic (acid) groups. Using Stöber method, it is possible to produce resorcinol/formaldehyde resin (RF) nanoparticles, which can be carbonized (pyrolysis in an inert atmosphere) and [...] Read more.
The development of photothermal catalysts for biodiesel synthesis reaction (transesterification) requires the production of light-absorbing nanoparticles functionalized with catalytic (acid) groups. Using Stöber method, it is possible to produce resorcinol/formaldehyde resin (RF) nanoparticles, which can be carbonized (pyrolysis in an inert atmosphere) and sulfonated. In this work, vegetable tannins are used as a replacement for synthetic resorcinol in the Stöber synthesis of resin (TF) nanoparticles. The nanoparticles are characterized using DLS, FESEM, TEM and N2 adsorption-desorption isotherms. Both resin and carbon nanoparticles are sulfonated by reaction with concentrated sulfuric acid. The attachment of sulfonic groups is verified by FTIR and EDX. The number of sulfonic groups is measured by acid/base titration and TGA. All sulfonated nanoparticles show catalytic activities towards Fischer esterification of ethanoic acid with ethanol, and high (up to 70%) conversion is obtained. The conversion is lower with TF-based nanoparticles, but the turnover numbers are similar in the RF- and TF-based materials. Sulfonated carbon and resin nanoparticles show higher catalytic activity compared to commercial acidic catalysts (e.g., Nafion®). Photothermal heating of carbon nanoparticles is observed. In Part II, sunflower oil transesterification, catalyzed by sulfonated nanoparticles, is observed. Photothermal catalysis of acetic acid esterification and sunflower oil transesterification is demonstrated. Full article
(This article belongs to the Special Issue Catalysis and Carbon-Based Materials, 2nd Edition)
Show Figures

Figure 1

9 pages, 996 KiB  
Article
Shielding Effectiveness of Unmanned Aerial Vehicle Electronics with Graphene-Based Absorber
by Roman Kubacki, Rafał Przesmycki and Dariusz Laskowski
Electronics 2023, 12(18), 3973; https://doi.org/10.3390/electronics12183973 - 21 Sep 2023
Cited by 9 | Viewed by 2302
Abstract
Within this study, we explored the augmented security measures for the electronics of unmanned aerial vehicles (UAVs) within an RF environment. UAVs are commonly utilised across various sectors, and their use as auxiliary platforms for cellular networks, as parallel networks working in tandem [...] Read more.
Within this study, we explored the augmented security measures for the electronics of unmanned aerial vehicles (UAVs) within an RF environment. UAVs are commonly utilised across various sectors, and their use as auxiliary platforms for cellular networks, as parallel networks working in tandem with ground-based base stations, holds considerable promise. In this context, ensuring the uninterrupted operation of UAVs is a paramount objective. However, the considerable external electromagnetic interference emitted by existing base stations may jeopardise the functionality of UAV electronics. This could potentially lead to an unintended flight path and a sudden cessation of communication with the operator. To mitigate the detrimental impact of the RF field, we advocate covering the UAV casing with reduced graphene oxide (RGO). The efficacy of RGO’s shielding effectiveness (SE) was investigated over a frequency spectrum from 100 MHz to 10 GHz. Our scrutiny of this property was centred around the measurement of scattering matrix coefficients of the unadulterated material—without additives of any kind. Our findings show that this material is a favourable candidate for UAV absorbers due to its low reflection coefficient coupled with its high absorption capacity. The studied absorber ensures an SE value of 25 dB and 30 dB for a 3 mm layer at frequencies of 3.6 GHz (pertaining to the 5G system) and 5.8 GHz (pertaining to LTE), respectively. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

21 pages, 11978 KiB  
Article
Optical Properties of Reactive RF Magnetron Sputtered Polycrystalline Cu3N Thin Films Determined by UV/Visible/NIR Spectroscopic Ellipsometry: An Eco-Friendly Solar Light Absorber
by E. Márquez, E. Blanco, M. García-Gurrea, M. Cintado Puerta, M. Domínguez de la Vega, M. Ballester, J. M. Mánuel, M. I. Rodríguez-Tapiador and S. M. Fernández
Coatings 2023, 13(7), 1148; https://doi.org/10.3390/coatings13071148 - 25 Jun 2023
Cited by 8 | Viewed by 2692
Abstract
Copper nitride (Cu3N), a metastable poly-crystalline semiconductor material with reasonably high stability at room temperature, is receiving much attention as a very promising next-generation, earth-abundant, thin film solar light absorber. Its non-toxicity, on the other hand, makes it [...] Read more.
Copper nitride (Cu3N), a metastable poly-crystalline semiconductor material with reasonably high stability at room temperature, is receiving much attention as a very promising next-generation, earth-abundant, thin film solar light absorber. Its non-toxicity, on the other hand, makes it a very attractive eco-friendly (greener from an environmental standpoint) semiconducting material. In the present investigation, Cu3N thin films were successfully grown by employing reactive radio-frequency magnetron sputtering at room temperature with an RF-power of 50 W, total working gas pressure of 0.5Pa, and partial nitrogen pressures of 0.8 and 1.0, respectively, onto glass substrates. We investigated how argon affected the optical properties of the thin films of Cu3N, with the aim of achieving a low-cost solar light absorber material with the essential characteristics that are needed to replace the more common silicon that is currently in present solar cells. Variable angle spectroscopic ellipsometry measurements were taken at three different angles, 50, 60, and 70, to determine the two ellipsometric parameters psi, ψ, and delta, Δ. The bulk planar Cu3N layer was characterized by a one-dimensional graded index model together with the combination of a Tauc–Lorentz oscillator, while a Bruggeman effective medium approximation model with a 50% air void was adopted in order to account for the existing surface roughness layer. In addition, the optical properties, such as the energy band gap, refractive index, extinction coefficient, and absorption coefficient, were all accurately found to highlight the true potential of this particular material as a solar light absorber within a photovoltaic device. The direct and indirect band gap energies were precisely computed, and it was found that they fell within the useful energy ranges of 2.142.25 eV and 1.451.71 eV, respectively. The atomic structure, morphology, and chemical composition of the Cu3N thin films were analyzed using X-ray diffraction, atomic force microscopy, and energy-dispersive X-ray spectroscopy, respectively. The Cu3N thin layer thickness, profile texture, and surface topography of the Cu3N material were characterized using scanning electron microscopy. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

17 pages, 3867 KiB  
Article
Copper Nitride: A Versatile Semiconductor with Great Potential for Next-Generation Photovoltaics
by M. I. Rodríguez-Tapiador, J. M. Asensi, M. Roldán, J. Merino, J. Bertomeu and S. Fernández
Coatings 2023, 13(6), 1094; https://doi.org/10.3390/coatings13061094 - 13 Jun 2023
Cited by 12 | Viewed by 6239
Abstract
Copper nitride (Cu3N) has gained significant attention recently due to its potential in several scientific and technological applications. This study focuses on using Cu3N as a solar absorber in photovoltaic technology. Cu3N thin films were deposited on [...] Read more.
Copper nitride (Cu3N) has gained significant attention recently due to its potential in several scientific and technological applications. This study focuses on using Cu3N as a solar absorber in photovoltaic technology. Cu3N thin films were deposited on glass substrates and silicon wafers via radio-frequency magnetron sputtering at different nitrogen flow ratios with total pressures ranging from 1.0 to 5.0 Pa. The thin films’ structural, morphology, and chemical properties were determined using XRD, Raman, AFM, and SEM/EDS techniques. The results revealed that the Cu3N films exhibited a polycrystalline structure, with the preferred orientation varying from 100 to 111 depending on the working pressure employed. Raman spectroscopy confirmed the presence of Cu-N bonds in characteristic peaks observed in the 618–627 cm−1 range, while SEM and AFM images confirmed the presence of uniform and smooth surface morphologies. The optical properties of the films were investigated using UV-VIS-NIR spectroscopy and photothermal deflection spectroscopy (PDS). The obtained band gap, refractive index, and Urbach energy values demonstrated promising optical properties for Cu3N films, indicating their potential as solar absorbers in photovoltaic technology. This study highlights the favourable properties of Cu3N films deposited using the RF sputtering method, paving the way for their implementation in thin-film photovoltaic technologies. These findings contribute to the progress and optimisation of Cu3N-based materials for efficient solar energy conversion. Full article
(This article belongs to the Special Issue Advanced Materials for Energy Storage and Conversion)
Show Figures

Figure 1

23 pages, 895 KiB  
Article
Improved Dipper-Throated Optimization for Forecasting Metamaterial Design Bandwidth for Engineering Applications
by Amal H. Alharbi, Abdelaziz A. Abdelhamid, Abdelhameed Ibrahim, S. K. Towfek, Nima Khodadadi, Laith Abualigah, Doaa Sami Khafaga and Ayman EM Ahmed
Biomimetics 2023, 8(2), 241; https://doi.org/10.3390/biomimetics8020241 - 7 Jun 2023
Cited by 24 | Viewed by 2149
Abstract
Metamaterials have unique physical properties. They are made of several elements and are structured in repeating patterns at a smaller wavelength than the phenomena they affect. Metamaterials’ exact structure, geometry, size, orientation, and arrangement allow them to manipulate electromagnetic waves by blocking, absorbing, [...] Read more.
Metamaterials have unique physical properties. They are made of several elements and are structured in repeating patterns at a smaller wavelength than the phenomena they affect. Metamaterials’ exact structure, geometry, size, orientation, and arrangement allow them to manipulate electromagnetic waves by blocking, absorbing, amplifying, or bending them to achieve benefits not possible with ordinary materials. Microwave invisibility cloaks, invisible submarines, revolutionary electronics, microwave components, filters, and antennas with a negative refractive index utilize metamaterials. This paper proposed an improved dipper throated-based ant colony optimization (DTACO) algorithm for forecasting the bandwidth of the metamaterial antenna. The first scenario in the tests covered the feature selection capabilities of the proposed binary DTACO algorithm for the dataset that was being evaluated, and the second scenario illustrated the algorithm’s regression skills. Both scenarios are part of the studies. The state-of-the-art algorithms of DTO, ACO, particle swarm optimization (PSO), grey wolf optimizer (GWO), and whale optimization (WOA) were explored and compared to the DTACO algorithm. The basic multilayer perceptron (MLP) regressor model, the support vector regression (SVR) model, and the random forest (RF) regressor model were contrasted with the optimal ensemble DTACO-based model that was proposed. In order to assess the consistency of the DTACO-based model that was developed, the statistical research made use of Wilcoxon’s rank-sum and ANOVA tests. Full article
Show Figures

Figure 1

18 pages, 5030 KiB  
Article
Impact of the RF Power on the Copper Nitride Films Deposited in a Pure Nitrogen Environment for Applications as Eco-Friendly Solar Absorber
by M. I. Rodríguez-Tapiador, J. Merino, T. Jawhari, A. L. Muñoz-Rosas, J. Bertomeu and S. Fernández
Materials 2023, 16(4), 1508; https://doi.org/10.3390/ma16041508 - 10 Feb 2023
Cited by 14 | Viewed by 2521
Abstract
This material can be considered to be an interesting eco-friendly choice to be used in the photovoltaic field. In this work, we present the fabrication of Cu3N thin films by reactive radio-frequency (RF) magnetron sputtering at room temperature, using nitrogen as [...] Read more.
This material can be considered to be an interesting eco-friendly choice to be used in the photovoltaic field. In this work, we present the fabrication of Cu3N thin films by reactive radio-frequency (RF) magnetron sputtering at room temperature, using nitrogen as the process gas. Different RF power values ranged from 25 to 200 W and gas pressures of 3.5 and 5 Pa were tested to determine their impact on the film properties. The morphology and structure were exhaustively examined by Atomic Force Microscopy (AFM), Fourier Transform Infrared (FTIR) and Raman Spectroscopies and X-ray Diffraction (XRD), respectively. The AFM micrographs revealed different morphologies depending on the total pressure used, and rougher surfaces when the films were deposited at the lowest pressure; whereas FTIR and Raman spectra exhibited the characteristics bands related to the Cu-N bonds of Cu3N. Such bands became narrower as the RF power increased. XRD patterns showed the (100) plane as the preferred orientation, that changed to (111) with the RF power, revealing a worsening in structural quality. Finally, the band gap energy was estimated from transmission spectra carried out with a Perkin Elmer 1050 spectrophotometer to evaluate the suitability of Cu3N as a light absorber. The values obtained demonstrated the capability of Cu3N for solar energy conversion applications, indicating a better film performance under the sputtering conditions 5.0 Pa and RF power values ranged from 50 to 100 W. Full article
(This article belongs to the Special Issue Advanced Materials for Photonics and Photovoltaics Applications)
Show Figures

Figure 1

20 pages, 8497 KiB  
Article
Synthesis of Magnetron-Sputtered TiN Thin-Films on Fiber Structures for Pulsed-Laser Emission and Refractive-Index Sensing Applications at 1550 nm
by Omar Gaspar Ramírez, Manuel García Méndez, Ricardo Iván Álvarez Tamayo and Patricia Prieto Cortés
Coatings 2023, 13(1), 95; https://doi.org/10.3390/coatings13010095 - 4 Jan 2023
Cited by 3 | Viewed by 2413
Abstract
In this work, a set of titanium nitrides thin-films was synthesized with the technique of reactive RF and DC magnetron-sputtering. To demonstrate the versatility and effectiveness of the deposition technique, thin films were deposited onto different fiber structures varying the deposition parameters for [...] Read more.
In this work, a set of titanium nitrides thin-films was synthesized with the technique of reactive RF and DC magnetron-sputtering. To demonstrate the versatility and effectiveness of the deposition technique, thin films were deposited onto different fiber structures varying the deposition parameters for optical applications as saturable absorbers in passively q-switched fiber lasers and as lossy mode resonance fiber refractometers. After deposition, optical and electronical properties of samples were characterized by UV–Vis and XPS spectroscopies, respectively. Samples presented coexisting phases of Ti nitride and oxide, where the nitride phase was non-stoichiometric metallic-rich, with a band gap in the range of Eg = 3.4–3.7 eV. For all samples, glass substrates were used as templates, and on top of them, optical fibers were mounted to be covered with their respective titanium compounds. Full article
(This article belongs to the Special Issue Advances in Thin Film Fabrication by Magnetron Sputtering)
Show Figures

Figure 1

13 pages, 2389 KiB  
Article
Effect of Argon on the Properties of Copper Nitride Fabricated by Magnetron Sputtering for the Next Generation of Solar Absorbers
by C. A. Figueira, G. Del Rosario, D. Pugliese, M. I. Rodríguez-Tapiador and S. Fernández
Materials 2022, 15(24), 8973; https://doi.org/10.3390/ma15248973 - 15 Dec 2022
Cited by 12 | Viewed by 2131
Abstract
Copper nitride, a metastable semiconductor material with high stability at room temperature, is attracting considerable attention as a potential next-generation earth-abundant thin-film solar absorber. Moreover, its non-toxicity makes it an interesting eco-friendly material. In this work, copper nitride films were fabricated using reactive [...] Read more.
Copper nitride, a metastable semiconductor material with high stability at room temperature, is attracting considerable attention as a potential next-generation earth-abundant thin-film solar absorber. Moreover, its non-toxicity makes it an interesting eco-friendly material. In this work, copper nitride films were fabricated using reactive radio frequency (RF) magnetron sputtering at room temperature, 50 W of RF power, and partial nitrogen pressures of 0.8 and 1.0 on glass and silicon substrates. The role of argon in both the microstructure and the optoelectronic properties of the films was investigated with the aim of achieving a low-cost absorber material with suitable properties to replace the conventional silicon in solar cells. The results showed a change in the preferential orientation from (100) to (111) planes when argon was introduced in the sputtering process. Additionally, no structural changes were observed in the films deposited in a pure nitrogen environment. Fourier transform infrared (FTIR) spectroscopy measurements confirmed the presence of Cu–N bonds, regardless of the gas environment used, and XPS indicated that the material was mainly N-rich. Finally, optical properties such as band gap energy and refractive index were assessed to establish the capability of this material as a solar absorber. The direct and indirect band gap energies were evaluated and found to be in the range of 1.70–1.90 eV and 1.05–1.65 eV, respectively, highlighting a slight blue shift when the films were deposited in the mixed gaseous environment as the total pressure increased. Full article
(This article belongs to the Special Issue Emerging Materials for Energy Applications)
Show Figures

Figure 1

Back to TopTop