Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = REGN10933 and REGN10987

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4516 KiB  
Article
Mutational Scanning and Binding Free Energy Computations of the SARS-CoV-2 Spike Complexes with Distinct Groups of Neutralizing Antibodies: Energetic Drivers of Convergent Evolution of Binding Affinity and Immune Escape Hotspots
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley, Nishank Raisinghani and Gennady Verkhivker
Int. J. Mol. Sci. 2025, 26(4), 1507; https://doi.org/10.3390/ijms26041507 - 11 Feb 2025
Cited by 2 | Viewed by 1297
Abstract
The rapid evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. In this study, we conducted a comprehensive structural and energetic analysis of SARS-CoV-2 spike receptor-binding domain (RBD) complexes [...] Read more.
The rapid evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. In this study, we conducted a comprehensive structural and energetic analysis of SARS-CoV-2 spike receptor-binding domain (RBD) complexes with neutralizing antibodies from four distinct groups (A–D), including group A LY-CoV016, group B AZD8895 and REGN10933, group C LY-CoV555, and group D antibodies AZD1061, REGN10987, and LY-CoV1404. Using coarse-grained simplified simulation models, rapid energy-based mutational scanning, and rigorous MM-GBSA binding free energy calculations, we elucidated the molecular mechanisms of antibody binding and escape mechanisms, identified key binding hotspots, and explored the evolutionary strategies employed by the virus to evade neutralization. The residue-based decomposition analysis revealed energetic mechanisms and thermodynamic factors underlying the effect of mutations on antibody binding. The results demonstrate excellent qualitative agreement between the predicted binding hotspots and the latest experiments on antibody escape. These findings provide valuable insights into the molecular determinants of antibody binding and viral escape, highlighting the importance of targeting conserved epitopes and leveraging combination therapies to mitigate the risk of immune evasion. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

14 pages, 737 KiB  
Review
Anti-MET Antibody Therapies in Non-Small-Cell Lung Cancer: Current Progress and Future Directions
by Kinsley Wang and Robert Hsu
Antibodies 2024, 13(4), 88; https://doi.org/10.3390/antib13040088 - 18 Oct 2024
Cited by 2 | Viewed by 3342
Abstract
Background/Objectives: Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer mortality globally, though advances in targeted therapies have improved treatment outcomes. The mesenchymal–epithelial transition (MET) gene plays a significant role in NSCLC, often through protein overexpression, exon 14 skipping mutations, [...] Read more.
Background/Objectives: Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer mortality globally, though advances in targeted therapies have improved treatment outcomes. The mesenchymal–epithelial transition (MET) gene plays a significant role in NSCLC, often through protein overexpression, exon 14 skipping mutations, and gene amplification, many of which arise as resistance mechanisms to other oncogenic drivers like epidermal growth factor receptor (EGFR) mutations. This review examines the development and clinical efficacy of anti-MET antibody therapies. Methods: A comprehensive literature search was conducted using major medical databases looking at key relevant studies on anti-MET antibody studies. Both authors reviewed the literature, assessed study quality, and interpreted the results from each study. Results: Amivantamab, a bispecific EGFR/MET antibody was approved to treat EGFR exon 20 insertion and now has recently been extended to target classical EGFR mutations with progression on osimertinib. Other important anti-MET targeted therapies in development include antibody drug conjugates such as telisotuzumab vedotin, REGN5093-M114, and AZD9592 and emibetuzumab, which is a humanized immunoglobulin G4 monoclonal bivalent MET antibody. Conclusions: MET plays a significant role in NSCLC and amivantamab along with other anti-MET targeted therapies play a role in directly targeting MET and addressing acquired resistance to oncogenic drivers. Future research should focus on developing novel MET antibody drugs and exploring new therapeutic combinations to enhance treatment efficacy and overcome resistance in NSCLC. Refining biomarker-driven approaches to ensure precise patient selection is also critical to optimizing treatment outcomes. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

27 pages, 4899 KiB  
Article
IgG Fc-Binding Peptide-Conjugated Pan-CoV Fusion Inhibitor Exhibits Extended In Vivo Half-Life and Synergistic Antiviral Effect When Combined with Neutralizing Antibodies
by Xiaojie Su, Ziqi Huang, Wei Xu, Qian Wang, Lixiao Xing, Lu Lu, Shibo Jiang and Shuai Xia
Biomolecules 2023, 13(9), 1283; https://doi.org/10.3390/biom13091283 - 22 Aug 2023
Cited by 2 | Viewed by 2854
Abstract
The peptide-based pan-coronavirus fusion inhibitor EK1 is in phase III clinical trials, and it has, thus far, shown good clinical application prospects against SARS-CoV-2 and its variants. To further improve its in vivo long-acting property, we herein developed an Fc-binding strategy by conjugating [...] Read more.
The peptide-based pan-coronavirus fusion inhibitor EK1 is in phase III clinical trials, and it has, thus far, shown good clinical application prospects against SARS-CoV-2 and its variants. To further improve its in vivo long-acting property, we herein developed an Fc-binding strategy by conjugating EK1 with human immunoglobulin G Fc-binding peptide (IBP), which can exploit the long half-life advantage of IgG in vivo. The newly engineered peptide IBP-EK1 showed potent and broad-spectrum inhibitory activity against SARS-CoV-2 and its variants, including various Omicron sublineages and other human coronaviruses (HCoVs) with low cytotoxicity. In mouse models, IBP-EK1 possessed potent prophylactic and therapeutic efficacy against lethal HCoV-OC43 challenge, and it showed good safety profile and low immunogenicity. More importantly, IBP-EK1 exhibited a significantly extended in vivo half-life in rhesus monkeys of up to 37.7 h, which is about 20-fold longer than that reported for EK1. Strikingly, IBP-EK1 displayed strong in vitro or ex vivo synergistic anti-HCoV effect when combined with monoclonal neutralizing antibodies, including REGN10933 or S309, suggesting that IBP-conjugated EK1 can be further developed as a long-acting, broad-spectrum anti-HCoV agent, either alone or in combination with neutralizing antibodies, to combat the current COVID-19 pandemic or future outbreaks caused by emerging and re-emerging highly pathogenic HCoVs. Full article
(This article belongs to the Special Issue Molecular Virology: Mechanisms of Viral Entry and Antivirals)
Show Figures

Figure 1

20 pages, 2917 KiB  
Article
Effect of Double Mutation (L452R and E484Q) on the Binding Affinity of Monoclonal Antibodies (mAbs) against the RBD—A Target for Vaccine Development
by Deepali Gupta, Mukesh Kumar, Priyanka Sharma, Trishala Mohan, Amresh Prakash, Renu Kumari and Punit Kaur
Vaccines 2023, 11(1), 23; https://doi.org/10.3390/vaccines11010023 - 22 Dec 2022
Cited by 10 | Viewed by 3088
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, emerges as a global health problem, as the viral genome is evolving rapidly to form several variants. Advancement and progress in the development of effective vaccines and neutralizing monoclonal antibodies are promising to combat viral infections. In [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, emerges as a global health problem, as the viral genome is evolving rapidly to form several variants. Advancement and progress in the development of effective vaccines and neutralizing monoclonal antibodies are promising to combat viral infections. In the current scenario, several lineages containing “co-mutations” in the receptor-binding domain (RBD) region of the spike (S) protein are imposing new challenges. Co-occurrence of some co-mutations includes delta (L452R/T478K), kappa (L452R/E484Q), and a common mutation in both beta and gamma variants (E484K/N501Y). The effect of co-mutants (L452R/E484Q) on human angiotensin-converting enzyme 2 (hACE2) binding has already been elucidated. Here, for the first time, we investigated the role of these RBD co-mutations (L452R/E484Q) on the binding affinity of mAbs by adopting molecular dynamics (MD) simulation and free-energy binding estimation. The results obtained from our study suggest that the structural and dynamic changes introduced by these co-mutations reduce the binding affinity of the viral S protein to monoclonal antibodies (mAbs). The structural changes imposed by L452R create a charged patch near the interfacial surface that alters the affinity towards mAbs. In E484Q mutation, polar negatively charged E484 helps in the formation of electrostatic interaction, while the neutrally charged Q residue affects the interaction by forming repulsive forces. MD simulations along with molecular mechanics-generalized Born surface area (MMGBSA) studies revealed that the REGN 10933, BD-368-2, and S2M11 complexes have reduced binding affinity towards the double-mutant RBD. This indicates that their mutant (MT) structures have a stronger ability to escape from most antibodies than the wild type (WT). However, EY6A Ab showed higher affinity towards the double MT-RBD complex as compared to the WT. However, no significant effect of the per-residue contribution of double-mutated residues was observed, as this mAb does not interact with the region harboring L452 and E484 residues. Full article
Show Figures

Figure 1

10 pages, 2907 KiB  
Article
Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to Vaccine-Elicited Sera and Therapeutic Monoclonal Antibodies
by Hao Zhou, Belinda M. Dcosta, Nathaniel R. Landau and Takuya Tada
Viruses 2022, 14(6), 1334; https://doi.org/10.3390/v14061334 - 18 Jun 2022
Cited by 61 | Viewed by 5032
Abstract
The recent emergence of the Omicron BA.1 and BA.2 variants with heavily mutated spike proteins has posed a challenge to the effectiveness of current vaccines and to monoclonal antibody therapy for severe COVID-19. After two immunizations of individuals with no history of previous [...] Read more.
The recent emergence of the Omicron BA.1 and BA.2 variants with heavily mutated spike proteins has posed a challenge to the effectiveness of current vaccines and to monoclonal antibody therapy for severe COVID-19. After two immunizations of individuals with no history of previous SARS-CoV-2 infection with BNT162b2 vaccine, neutralizing titer against BA.1 and BA.2 were 20-fold decreased compared to titers against the parental D614G virus. A third immunization boosted overall neutralizing titers by about 5-fold but titers against BA.1 and BA.2 remained about 10-fold below that of D614G. Both Omicron variants were highly resistant to several of the emergency use authorized therapeutic monoclonal antibodies. The variants were highly resistant to Regeneron REGN10933 and REGN10987 and Lilly LY-CoV555 and LY-CoV016 while Vir-7831 and the mixture of AstraZeneca monoclonal antibodies AZD8895 and AZD1061 were significantly decreased in neutralizing titer. Strikingly, a single monoclonal antibody LY-CoV1404 potently neutralized both Omicron variants. Full article
(This article belongs to the Special Issue Basic Sciences for the Conquest of COVID-19)
Show Figures

Figure 1

10 pages, 1688 KiB  
Article
Developing Pseudovirus-Based Neutralization Assay against Omicron-Included SARS-CoV-2 Variants
by Hancong Sun, Jinghan Xu, Guanying Zhang, Jin Han, Meng Hao, Zhengshan Chen, Ting Fang, Xiangyang Chi and Changming Yu
Viruses 2022, 14(6), 1332; https://doi.org/10.3390/v14061332 - 18 Jun 2022
Cited by 19 | Viewed by 5060
Abstract
The global spread of SARS-CoV-2 and its variants poses a serious threat to human health worldwide. Recently, the emergence of Omicron has presented a new challenge to the prevention and control of the COVID-19 pandemic. A convenient and reliable in vitro neutralization assay [...] Read more.
The global spread of SARS-CoV-2 and its variants poses a serious threat to human health worldwide. Recently, the emergence of Omicron has presented a new challenge to the prevention and control of the COVID-19 pandemic. A convenient and reliable in vitro neutralization assay is an important method for validating the efficiency of antibodies, vaccines, and other potential drugs. Here, we established an effective assay based on a pseudovirus carrying a full-length spike (S) protein of SARS-CoV-2 variants in the HIV-1 backbone, with a luciferase reporter gene inserted into the non-replicate pseudovirus genome. The key parameters for packaging the pseudovirus were optimized, including the ratio of the S protein expression plasmids to the HIV backbone plasmids and the collection time for the Alpha, Beta, Gamma, Kappa, and Omicron pseudovirus particles. The pseudovirus neutralization assay was validated using several approved or developed monoclonal antibodies, underscoring that Omicron can escape some neutralizing antibodies, such as REGN10987 and REGN10933, while S309 and ADG-2 still function with reduced neutralization capability. The neutralizing capacity of convalescent plasma from COVID-19 convalescent patients in Wuhan was tested against these pseudoviruses, revealing the immune evasion of Omicron. Our work established a practical pseudovirus-based neutralization assay for SARS-CoV-2 variants, which can be conducted safely under biosafety level-2 (BSL-2) conditions, and this assay will be a promising tool for studying and characterizing vaccines and therapeutic candidates against Omicron-included SARS-CoV-2 variants. Full article
Show Figures

Figure 1

10 pages, 299 KiB  
Editorial
SARS-CoV-2 Variants: A Synopsis of In Vitro Efficacy Data of Convalescent Plasma, Currently Marketed Vaccines, and Monoclonal Antibodies
by Daniele Focosi, Marco Tuccori, Andreina Baj and Fabrizio Maggi
Viruses 2021, 13(7), 1211; https://doi.org/10.3390/v13071211 - 23 Jun 2021
Cited by 33 | Viewed by 5989
Abstract
We summarize here in vitro evidences of efficacy for convalescent plasma, currently approved vaccines and monoclonal antibodies against SARS-CoV-2 variants of concern (VOC: B.1.1.7, B.1.351, P.1, and B.1.617.2), variants of interest (VOI: B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526, and B.1.671.1), and other strains (B.1.1.298 [...] Read more.
We summarize here in vitro evidences of efficacy for convalescent plasma, currently approved vaccines and monoclonal antibodies against SARS-CoV-2 variants of concern (VOC: B.1.1.7, B.1.351, P.1, and B.1.617.2), variants of interest (VOI: B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526, and B.1.671.1), and other strains (B.1.1.298 and B.1.258delta). While waiting from real world clinical efficacy, these data provide guidance for the treating physician. Full article
11 pages, 1690 KiB  
Article
Successful Clearance of 300 Day SARS-CoV-2 Infection in a Subject with B-Cell Depletion Associated Prolonged (B-DEAP) COVID by REGEN-COV Anti-Spike Monoclonal Antibody Cocktail
by Arnaud C. Drouin, Marc W. Theberge, Sharon Y. Liu, Allison R. Smither, Shelby M. Flaherty, Mark Zeller, Gregory P. Geba, Peter Reynaud, W. Benjamin Rothwell, Alfred P. Luk, Di Tian, Matthew L. Boisen, Luis M. Branco, Kristian G. Andersen, James E. Robinson, Robert F. Garry and Dahlene N. Fusco
Viruses 2021, 13(7), 1202; https://doi.org/10.3390/v13071202 - 23 Jun 2021
Cited by 28 | Viewed by 6657
Abstract
A 59-year-old male with follicular lymphoma treated by anti-CD20-mediated B-cell depletion and ablative chemotherapy was hospitalized with a COVID-19 infection. Although the patient did not develop specific humoral immunity, he had a mild clinical course overall. The failure of all therapeutic options allowed [...] Read more.
A 59-year-old male with follicular lymphoma treated by anti-CD20-mediated B-cell depletion and ablative chemotherapy was hospitalized with a COVID-19 infection. Although the patient did not develop specific humoral immunity, he had a mild clinical course overall. The failure of all therapeutic options allowed infection to persist nearly 300 days with active accumulation of SARS-CoV-2 virus mutations. As a rescue therapy, an infusion of REGEN-COV (10933 and 10987) anti-spike monoclonal antibodies was performed 270 days from initial diagnosis. Due to partial clearance after the first dose (2.4 g), a consolidation dose (8 g) was infused six weeks later. Complete virus clearance could then be observed over the following month, after he was vaccinated with the Pfizer-BioNTech anti-COVID-19 vaccination. The successful management of this patient required prolonged enhanced quarantine, monitoring of virus mutations, pioneering clinical decisions based upon close consultation, and the coordination of multidisciplinary experts in virology, immunology, pharmacology, input from REGN, the FDA, the IRB, the health care team, the patient, and the patient’s family. Current decisions to take revolve around patient’s follicular lymphoma management, and monitoring for virus clearance persistence beyond disappearance of REGEN-COV monoclonal antibodies after anti-SARS-CoV-2 vaccination. Overall, specific guidelines for similar cases should be established. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

28 pages, 651 KiB  
Review
Clinical Management of COVID-19: A Review of Pharmacological Treatment Options
by Ashli M. Heustess, Melissa A. Allard, Dorothea K. Thompson and Pius S. Fasinu
Pharmaceuticals 2021, 14(6), 520; https://doi.org/10.3390/ph14060520 - 28 May 2021
Cited by 24 | Viewed by 9101
Abstract
Since the outbreak and subsequent declaration of COVID-19 as a global pandemic in March 2020, concerted efforts have been applied by the scientific community to curtail the spread of the disease and find a cure. While vaccines constitute a vital part of the [...] Read more.
Since the outbreak and subsequent declaration of COVID-19 as a global pandemic in March 2020, concerted efforts have been applied by the scientific community to curtail the spread of the disease and find a cure. While vaccines constitute a vital part of the public health strategy to reduce the burden of COVID-19, the management of this disease will continue to rely heavily on pharmacotherapy. This study aims to provide an updated review of pharmacological agents that have been developed and/or repurposed for the treatment of COVID-19. To this end, a comprehensive literature search was conducted using the PubMed, Google Scholar, and LitCovid databases. Relevant clinical studies on drugs used in the management of COVID-19 were identified and evaluated in terms of evidence of efficacy and safety. To date, the FDA has approved three therapies for the treatment of COVID-19 Emergency Use Authorization: convalescent plasma, remdesivir, and casirivimab/imdevimab (REGN-COV2). Drugs such as lopinavir/ritonavir, umifenovir, favipiravir, anakinra, chloroquine, hydroxychloroquine, tocilizumab, interferons, tissue plasminogen activator, intravenous immunoglobulins, and nafamosat have been used off-label with mixed therapeutic results. Adjunctive administration of corticosteroids is also very common. The clinical experience with these approved and repurposed drugs is limited, and data on efficacy for the new indication are not strong. Overall, the response of the global scientific community to the COVID-19 pandemic has been impressive, as evident from the volume of scientific literature elucidating the molecular biology and pathophysiology of SARS-CoV-2 and the approval of three new drugs for clinical management. Reviewed studies have shown mixed data on efficacy and safety of the currently utilized drugs. The lack of standard treatment for COVID-19 has made it difficult to interpret results from most of the published studies due to the risk of attribution error. The long-term effects of drugs can only be assessed after several years of clinical experience; therefore, the efficacy and safety of current COVID-19 therapeutics should continue to be rigorously monitored as part of post-marketing studies. Full article
(This article belongs to the Special Issue COVID-19 in Pharmaceuticals)
Show Figures

Figure 1

25 pages, 880 KiB  
Review
AAV Vectored Immunoprophylaxis for Filovirus Infections
by Amira D. Rghei, Laura P. van Lieshout, Lisa A. Santry, Matthew M. Guilleman, Sylvia P. Thomas, Leonardo Susta, Khalil Karimi, Byram W. Bridle and Sarah K. Wootton
Trop. Med. Infect. Dis. 2020, 5(4), 169; https://doi.org/10.3390/tropicalmed5040169 - 9 Nov 2020
Cited by 12 | Viewed by 5086
Abstract
Filoviruses are among the deadliest infectious agents known to man, causing severe hemorrhagic fever, with up to 90% fatality rates. The 2014 Ebola outbreak in West Africa resulted in over 28,000 infections, demonstrating the large-scale human health and economic impact generated by filoviruses. [...] Read more.
Filoviruses are among the deadliest infectious agents known to man, causing severe hemorrhagic fever, with up to 90% fatality rates. The 2014 Ebola outbreak in West Africa resulted in over 28,000 infections, demonstrating the large-scale human health and economic impact generated by filoviruses. Zaire ebolavirus is responsible for the greatest number of deaths to date and consequently there is now an approved vaccine, Ervebo, while other filovirus species have similar epidemic potential and remain without effective vaccines. Recent clinical success of REGN-EB3 and mAb-114 monoclonal antibody (mAb)-based therapies supports further investigation of this treatment approach for other filoviruses. While efficacious, protection from passive mAb therapies is short-lived, requiring repeat dosing to maintain therapeutic concentrations. An alternative strategy is vectored immunoprophylaxis (VIP), which utilizes an adeno-associated virus (AAV) vector to generate sustained expression of selected mAbs directly in vivo. This approach takes advantage of validated mAb development and enables vectorization of the top candidates to provide long-term immunity. In this review, we summarize the history of filovirus outbreaks, mAb-based therapeutics, and highlight promising AAV vectorized approaches to providing immunity against filoviruses where vaccines are not yet available. Full article
Show Figures

Figure 1

12 pages, 5753 KiB  
Review
Clinical Aspects and Current Therapeutic Approaches for FOP
by Hiroshi Kitoh
Biomedicines 2020, 8(9), 325; https://doi.org/10.3390/biomedicines8090325 - 2 Sep 2020
Cited by 31 | Viewed by 10151
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an extremely rare heritable disorder of connective tissues characterized by progressive heterotopic ossification in various skeletal sites. It is caused by gain-of-function mutations in the gene encoding activin A receptor type I (ACVR1)/activin-like kinase 2 ( [...] Read more.
Fibrodysplasia ossificans progressiva (FOP) is an extremely rare heritable disorder of connective tissues characterized by progressive heterotopic ossification in various skeletal sites. It is caused by gain-of-function mutations in the gene encoding activin A receptor type I (ACVR1)/activin-like kinase 2 (ALK2), a bone morphogenetic protein (BMP) type I receptor. Heterotopic ossification is usually progressive leading to severe deformities in the trunk and extremities. Early clinical diagnosis is important to prevent unnecessary iatrogenic harm or trauma. Clinicians should become aware of early detectable skeletal malformations, including great toe deformities, shortened thumb, neck stiffness associated with hypertrophy of the posterior elements of the cervical spine, multiple ossification centers in the calcaneus, and osteochondroma-like lesions of the long bones. Although there is presently no definitive medical treatment to prevent, stop or reverse heterotopic ossification in FOP, exciting advances of novel pharmacological drugs focusing on target inhibition of the activated ACVR1 receptor, including palovarotene, REGN 2477, rapamycin, and saracatinib, have developed and are currently in clinical trials. Full article
Show Figures

Figure 1

17 pages, 227 KiB  
Review
PCSK9 Antibodies for the Treatment of Hypercholesterolemia
by Ioanna Gouni-Berthold and Heiner K. Berthold
Nutrients 2014, 6(12), 5517-5533; https://doi.org/10.3390/nu6125517 - 1 Dec 2014
Cited by 26 | Viewed by 7698
Abstract
The serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein (LDL) receptor (LDLR) and directs it to lysosomes for intracellular degradation. This results in decreased numbers of LDLR available on the hepatic cell surface to bind LDL particles and [...] Read more.
The serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein (LDL) receptor (LDLR) and directs it to lysosomes for intracellular degradation. This results in decreased numbers of LDLR available on the hepatic cell surface to bind LDL particles and remove them from the circulation and therefore to a subsequent increase in circulating LDL-cholesterol (LDL-C) plasma levels. Since 2003, when the role of PCSK9 in LDL-C metabolism was discovered, there have been major efforts to develop efficient and safe methods to inhibit it. Amongst those, monoclonal antibodies against PCSK9 are the furthest in development, with multiple phase 3 trials already published and with cardiovascular endpoint trials currently underway. Two fully human monoclonal antibodies, evolocumab (AMG 145) and alirocumab (REGN727/SAR236553), have been extensively studied in a wide range of subjects, such as those with statin intolerance, as an add-on to statin therapy, as a monotherapy and in patients with familial hypercholesterolemia. PCSK9 antibodies result in a consistent and robust decrease in LDL-C plasma levels ranging from 40% to 70%, either on top of statins or as a monotherapy. If the safety data from the on-going phase 3 trials remain as reassuring as the data available till now, PCSK9 antibodies will offer a novel, powerful therapeutic option to decrease LDL-C plasma levels and, hopefully, cardiovascular risk. Full article
(This article belongs to the Special Issue Lipoprotein Metabolism and Atherosclerosis)
Back to TopTop