Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = R. chrysanthum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4362 KiB  
Article
Integrating Transcriptomics and Metabolomics to Comprehensively Analyze Phytohormone Regulatory Mechanisms in Rhododendron chrysanthum Pall. Under UV-B Radiation
by Wang Yu, Qi Sun, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2025, 26(4), 1545; https://doi.org/10.3390/ijms26041545 - 12 Feb 2025
Cited by 1 | Viewed by 1046
Abstract
In order to fully elucidate the roles and systems of phytohormones in UV-B radiation (UV-B) leaves of the Rhododendron chrysanthum Pall. (R. chrysanthum), we conducted a comprehensive analysis of how R. chrysanthum protects itself against UV-B using transcriptomic and metabolomic data. [...] Read more.
In order to fully elucidate the roles and systems of phytohormones in UV-B radiation (UV-B) leaves of the Rhododendron chrysanthum Pall. (R. chrysanthum), we conducted a comprehensive analysis of how R. chrysanthum protects itself against UV-B using transcriptomic and metabolomic data. Transcript and metabolite profiles were generated by a combination of deep sequencing and LC-MS/MS (liquid chromatography–tandem mass spectrometry), respectively. Combined with physiological and biochemical assays, we studied compound accumulation, biosynthesis and expression of signaling genes of seven hormones and the effects of hormones on plant photosynthesis. The findings indicate that during leaf defense against UV-B, photosynthesis declined, the photosynthetic system was impaired and the concentration of salicylic acid (SA) hormones increased, whereas the contents of cytokinin (CK), abscisic acid (ABA), ethylene, auxin, jasmonic acid (JA) and gibberellins (GAs) continued to decrease. Finally, correlation tests between hormone content and genes were analyzed, and genes closely related to leaf resistance to UV-B were identified in seven pathways. These results will expand our understanding of the hormonal regulatory mechanisms of plant resistance to UV-B and at the same time lay the foundation for plant resistance to adversity stress. Full article
(This article belongs to the Special Issue Radiation Hormesis in Plants)
Show Figures

Figure 1

23 pages, 10756 KiB  
Article
WRKY Transcription Factors Modulate the Flavonoid Pathway of Rhododendron chrysanthum Pall. Under UV-B Stress
by Wang Yu, Xiangru Zhou, Jinhao Meng, Hongwei Xu and Xiaofu Zhou
Plants 2025, 14(1), 133; https://doi.org/10.3390/plants14010133 - 4 Jan 2025
Cited by 3 | Viewed by 1118
Abstract
The depletion of the ozone layer has resulted in elevated ultraviolet-B (UV-B) radiation levels, posing a significant risk to terrestrial plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum), adapted to high-altitude and high-irradiation environments, has developed unique adaptive mechanisms. This study exposed [...] Read more.
The depletion of the ozone layer has resulted in elevated ultraviolet-B (UV-B) radiation levels, posing a significant risk to terrestrial plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum), adapted to high-altitude and high-irradiation environments, has developed unique adaptive mechanisms. This study exposed R. chrysanthum to UV-B radiation for two days, with an 8 h daily treatment, utilizing metabolomic and transcriptomic analyses to explore the role of WRKY transcription factors in the plant’s UV-B stress response and their regulation of flavonoid synthesis. UV-B stress resulted in a significant decrease in rETR and Ik and a significant increase in 1-qP. These chlorophyll fluorescence parameters indicate that UV-B stress impaired photosynthesis in R. chrysanthum. Faced with the detrimental impact of UV-B radiation, R. chrysanthum is capable of mitigating its effects by modulating its flavonoid biosynthetic pathways to adapt positively to the stress. This study revealed changes in the expression of 113 flavonoid-related metabolites and 42 associated genes, with WRKY transcription factors showing significant correlation with these alterations. WRKY transcription factors can influence the expression of key enzyme genes in the flavonoid metabolic pathway, thereby affecting metabolite production. A theoretical reference for investigating plant stress physiology is provided in this work, which also offers insights into the stress responses of alpine plants under adverse conditions. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

24 pages, 10194 KiB  
Article
Multi-Omics Research Reveals the Effects of the ABA-Regulated Phenylpropanoid Biosynthesis Pathway on the UV-B Response in Rhododendron chrysanthum Pall.
by Wang Yu, Xiangru Zhou, Jinhao Meng, Xiaofu Zhou and Hongwei Xu
Plants 2025, 14(1), 101; https://doi.org/10.3390/plants14010101 - 1 Jan 2025
Cited by 3 | Viewed by 1208
Abstract
The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Rhododendron chrysanthum Pall. (R. chrysanthum) to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences R. [...] Read more.
The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Rhododendron chrysanthum Pall. (R. chrysanthum) to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences R. chrysanthum’s metabolic responses under UV-B stress. R. chrysanthum was treated with UV-B radiation and exogenous ABA for widely targeted metabolomics, transcriptomics, and proteomics assays, and relevant chlorophyll fluorescence parameters were also determined. It was observed that UV-B stress negatively impacts the plant’s photosynthetic machinery, disrupting multiple metabolic processes. Multi-omics analysis revealed that ABA application mitigates the detrimental effects of UV-B on photosynthesis and bolsters the plant’s antioxidant defenses. Additionally, both UV-B exposure and ABA treatment significantly influenced the phenylpropanoid biosynthesis pathway, activating key enzyme genes, such as 4CL, CCR, and HCT. The study also highlighted the MYB–bHLH–WD40 (MBW) complex’s role in regulating this pathway and its interaction with ABA signaling components. These findings underscore ABA’s crucial function in improving plant resistance to UV-B stress and offer novel insights into plant stress biology. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

24 pages, 14115 KiB  
Article
Regulatory Mechanism of Exogenous ABA on Gibberellin Signaling and Antioxidant Responses in Rhododendron chrysanthum Pall. Under UV-B Stress
by Wang Yu, Kun Cao, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2024, 25(24), 13651; https://doi.org/10.3390/ijms252413651 - 20 Dec 2024
Viewed by 832
Abstract
In the present work, we examined the effects of exogenous abscisic acid (ABA) under ultraviolet B (UV-B) exposure on gibberellin (GA) production, signaling, and antioxidant-related genes in Rhododendron chrysanthum Pall (R. chrysanthum). Using transcriptomics, acetylated proteomics, and widely targeted metabolomics, the [...] Read more.
In the present work, we examined the effects of exogenous abscisic acid (ABA) under ultraviolet B (UV-B) exposure on gibberellin (GA) production, signaling, and antioxidant-related genes in Rhododendron chrysanthum Pall (R. chrysanthum). Using transcriptomics, acetylated proteomics, and widely targeted metabolomics, the effects of UV-B stress on R. chrysanthum and the regulatory effects of exogenous ABA on it were revealed from multiple perspectives. The findings revealed that R. chrysanthum’s antioxidant enzyme genes were differentially expressed by UV-B radiation and were substantially enriched in the glutathione metabolic pathway. Exogenous ABA supplementation boosted plant resistance to UV-B damage and further enhanced the expression of antioxidant enzyme genes. Furthermore, under UV-B stress, glutathione reductase, glutathione peroxidase, and L-ascorbate peroxidase were found to be the primary antioxidant enzymes controlled by exogenous ABA. In addition, gibberellin content was altered due to UV-B and exogenous ABA treatments, with greater effects on GA3 and GA53. The acetylation proteomics study’s outcomes disclosed that the three main oxidative enzymes’ acetylation modifications were dramatically changed during UV-B exposure, which may have an impact on the antioxidant enzymes’ functions and activities. The protective impact of exogenous ABA and gibberellin on R. chrysanthum’s photosynthetic system was further established by measuring the parameters of chlorophyll fluorescence. This research offers a theoretical foundation for the development of breeding highly resistant plant varieties as well as fresh insights into how hormone levels and antioxidant systems are regulated by plants in response to UV-B damage. Full article
(This article belongs to the Special Issue Transcriptional Regulation in Plant Development: 2nd Edition)
Show Figures

Figure 1

18 pages, 3388 KiB  
Article
The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5
by Fushuai Gong, Jinhao Meng, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2024, 25(24), 13383; https://doi.org/10.3390/ijms252413383 - 13 Dec 2024
Cited by 2 | Viewed by 906
Abstract
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the [...] Read more.
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids. The v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF) may participate in a plant’s response to UV-B damage through its regulation of flavonoid biosynthesis. In this study, we discovered that the photosynthetic activity of Rhododendron chrysanthum Pall. (R. chrysanthum) decreased when assessing parameters of chlorophyll (PSII) fluorescence parameters under UV-B stress. Concurrently, antioxidant system enzyme expression increased under UV-B exposure. A multi-omics data analysis revealed that acetylation at the K68 site of the RcTRP5 (telomeric repeat binding protein of Rhododendron chrysanthum Pall.) transcription factor was upregulated. This acetylation modification of RcTRP5 activates the antioxidant enzyme system, leading to elevated expression levels of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Upregulation is also observed at the K95 site of the chalcone isomerase (CHI) enzyme and the K178 site of the anthocyanidin synthase (ANS) enzyme. We hypothesize that RcTRP5 influences acetylation modifications of CHI and ANS in flavonoid biosynthesis, thereby indirectly regulating flavonoid production. This study demonstrates that R. chrysanthum can be protected from UV-B stress by accumulating flavonoids. This could serve as a useful strategy for enhancing the plant’s flavonoid content and provide a valuable reference for research on the metabolic regulation mechanisms of other secondary substances. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

17 pages, 8090 KiB  
Article
Multi-Omics Analysis Reveals the Molecular Mechanisms of the Glycolysis and TCA Cycle Pathways in Rhododendron chrysanthum Pall. under UV-B Stress
by Wang Yu, Fushuai Gong, Kun Cao, Xiaofu Zhou and Hongwei Xu
Agronomy 2024, 14(9), 1996; https://doi.org/10.3390/agronomy14091996 - 2 Sep 2024
Cited by 5 | Viewed by 1334
Abstract
UV-B radiation is becoming a bigger threat to plants as a result of the ozone layer’s depletion. As an alpine plant, Rhododendron chrysanthum Pall. (R. chrysanthum) may grow regularly under UV-B radiation throughout its lengthy acclimatization period, although the mechanism of [...] Read more.
UV-B radiation is becoming a bigger threat to plants as a result of the ozone layer’s depletion. As an alpine plant, Rhododendron chrysanthum Pall. (R. chrysanthum) may grow regularly under UV-B radiation throughout its lengthy acclimatization period, although the mechanism of acclimatization is still poorly understood. The current investigation uncovered a number of adaptation strategies that R. chrysanthum has developed in reaction to UV-B rays. UV-B radiation impeded photosynthesis and damaged the photosystem, according to OJIP testing. Through transcriptomics and proteomics analyses, this study found that the differential proteins and differential genes of R. chrysanthum were significantly enriched in glycolysis and tricarboxylic acid (TCA) cycle pathways after UV-B treatment. The metabolomics results showed that a total of eight differential metabolites were detected in the glycolytic and TCA cycle pathways, and the changes in the expression of these metabolites reflected the final outcome of gene regulation in the glycolytic and TCA cycle pathways. The combined experimental results demonstrated that R. chrysanthum’s photosynthetic system was impacted by UV-B stress and, concurrently, the plant activated an adaptation mechanism in response to the stress. To maintain its energy supply for growth, R. chrysanthum adapts to UV-B stress by adjusting the expression of the relevant proteins, genes, and metabolites in the glycolytic and TCA cycling pathways. This study provides a new perspective for understanding the changes in the carbon metabolism of R. chrysanthum under UV-B stress and its mechanisms for UV-B resistance, and provides an important theoretical basis for the study of enhancing plant resistance to stress. Full article
(This article belongs to the Special Issue New Insights into Plants’ Defense Mechanisms against Stresses)
Show Figures

Figure 1

18 pages, 10086 KiB  
Article
RcTRP5 Transcription Factor Mediates the Molecular Mechanism of Lignin Biosynthesis Regulation in R. chrysanthum against UV-B Stress
by Fushuai Gong, Wang Yu, Kun Cao, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2024, 25(17), 9205; https://doi.org/10.3390/ijms25179205 - 24 Aug 2024
Cited by 5 | Viewed by 1221
Abstract
UV-B stress destroys the photosynthetic system of Rhododendron chrysanthum Pall. (R. chrysanthum), as manifested by the decrease of photosynthetic efficiency and membrane fluidity, and also promotes the accumulation of lignin. The MYB (v-myb avian myeloblastosis viral oncogene homolog) family of transcription [...] Read more.
UV-B stress destroys the photosynthetic system of Rhododendron chrysanthum Pall. (R. chrysanthum), as manifested by the decrease of photosynthetic efficiency and membrane fluidity, and also promotes the accumulation of lignin. The MYB (v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors can be involved in the response to UV-B stress through the regulation of lignin biosynthesis. This study indicated that both the donor and recipient sides of the R. chrysanthum were significantly damaged based on physiological index measurements made using OJIP curves under UV-B stress. The analysis of bioinformatics data revealed that the RcTRP5 transcription factor exhibits upregulation of acetylation at the K68 site, directly regulating the biosynthesis of lignin. Additionally, there was upregulation of the K43 site and downregulation of the K83 site of the CAD enzyme, as well as upregulation of the K391 site of the PAL enzyme. Based on these findings, we conjectured that the RcTRP5 transcription factor facilitates acetylation modification of both enzymes, thereby indirectly influencing the biosynthesis of lignin. This study demonstrated that lignin accumulation can alleviate the damage caused by UV-B stress to R. chrysanthum, which provides relevant ideas for improving lignin content in plants, and also provides a reference for the study of the metabolic regulation mechanism of other secondary substances. Full article
(This article belongs to the Special Issue Physiology and Molecular Biology of Plant Stress Tolerance)
Show Figures

Figure 1

23 pages, 5735 KiB  
Article
UV-B Stress-Triggered Amino Acid Reprogramming and ABA-Mediated Hormonal Crosstalk in Rhododendron chrysanthum Pall.
by Wang Yu, Xiangru Zhou, Hongwei Xu and Xiaofu Zhou
Plants 2024, 13(16), 2232; https://doi.org/10.3390/plants13162232 - 12 Aug 2024
Cited by 2 | Viewed by 2082
Abstract
Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA [...] Read more.
Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC−MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

23 pages, 7132 KiB  
Article
Golden 2-like Transcription Factors Regulate Photosynthesis under UV-B Stress by Regulating the Calvin Cycle
by Xiangru Zhou, Wang Yu, Fushuai Gong, Hongwei Xu, Jie Lyu and Xiaofu Zhou
Plants 2024, 13(13), 1856; https://doi.org/10.3390/plants13131856 - 5 Jul 2024
Cited by 5 | Viewed by 1698
Abstract
UV-B stress can affect plant growth at different levels, and although there is a multitude of evidence confirming the effects of UV-B radiation on plant photosynthesis, there are fewer studies using physiological assays in combination with multi-omics to investigate photosynthesis in alpine plants [...] Read more.
UV-B stress can affect plant growth at different levels, and although there is a multitude of evidence confirming the effects of UV-B radiation on plant photosynthesis, there are fewer studies using physiological assays in combination with multi-omics to investigate photosynthesis in alpine plants under stressful environments. Golden 2-like (G2-like/GLK) transcription factors (TFs) are highly conserved during evolution and may be associated with abiotic stress. In this paper, we used Handy-PEA and Imaging-PAM Maxi to detect chlorophyll fluorescence in leaves of Rhododendron chrysanthum Pall. (R. chrysanthum) after UV-B stress, and we also investigated the effect of abscisic acid (ABA) on photosynthesis in plants under stress environments. We used a combination of proteomics, widely targeted metabolomics, and transcriptomics to study the changes of photosynthesis-related substances after UV-B stress. The results showed that UV-B stress was able to impair the donor side of photosystem II (PSII), inhibit electron transfer and weaken photosynthesis, and abscisic acid was able to alleviate the damage caused by UV-B stress to the photosynthetic apparatus. Significant changes in G2-like transcription factors occurred in R. chrysanthum after UV-B stress, and differentially expressed genes localized in the Calvin cycle were strongly correlated with members of the G2-like TF family. Multi-omics assays and physiological measurements together revealed that G2-like TFs can influence photosynthesis in R. chrysanthum under UV-B stress by regulating the Calvin cycle. This paper provides insights into the study of photosynthesis in plants under stress, and is conducive to the adoption of measures to improve photosynthesis in plants under stress to increase yield. Full article
Show Figures

Figure 1

17 pages, 8312 KiB  
Article
The Rhododendron Chrysanthum Pall.s’ Acetylation Modification of Rubisco Enzymes Controls Carbon Cycling to Withstand UV−B Stress
by Meiqi Liu, Fushuai Gong, Wang Yu, Kun Cao, Hongwei Xu and Xiaofu Zhou
Biomolecules 2024, 14(6), 732; https://doi.org/10.3390/biom14060732 - 20 Jun 2024
Cited by 3 | Viewed by 1432
Abstract
Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular [...] Read more.
Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular mechanisms of photosynthesis and stress resistance in R. chrysanthum under UV−B stress. We measured chlorophyll fluorescence parameters of R. chrysanthum under UV−B stress and performed a multi−omics analysis. Based on the determination of chlorophyll fluorescence parameters, R. chrysanthum Y(NO) (Quantum yield of non−photochemical quenching) increased under UV−B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that R. chrysanthum has decreased photosynthesis and impaired photosystems under UV−B stress, but NPQ shows that plants are resistant to UV−B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of R. chrysanthum. Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV−B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV−B stress. Full article
Show Figures

Figure 1

25 pages, 5084 KiB  
Article
Molecular Mechanism of Exogenous ABA to Enhance UV-B Resistance in Rhododendron chrysanthum Pall. by Modulating Flavonoid Accumulation
by Wang Yu, Fushuai Gong, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2024, 25(10), 5248; https://doi.org/10.3390/ijms25105248 - 11 May 2024
Cited by 9 | Viewed by 1509
Abstract
With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth’s surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to [...] Read more.
With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth’s surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to investigate the mechanism of response to UV-B radiation in the endemic species of Rhododendron chrysanthum Pall. (R. chrysanthum) in the Changbai Mountains and to study how exogenous ABA regulates the response of R. chrysanthum to UV-B stress. The results of chlorophyll fluorescence images and OJIP kinetic curves showed that UV-B radiation damaged the PSII photosystem of R. chrysanthum, and exogenous ABA could alleviate this damage to some extent. A total of 2148 metabolites were detected by metabolomics, of which flavonoids accounted for the highest number (487, or 22.67%). KEGG enrichment analysis of flavonoids that showed differential accumulation by UV-B radiation and exogenous ABA revealed that flavonoid biosynthesis and flavone and flavonol biosynthesis were significantly altered. GO analysis showed that most of the DEGs produced after UV-B radiation and exogenous ABA were distributed in the cellular process, cellular anatomical entity, and catalytic activity. Network analysis of key DFs and DEGs associated with flavonoid synthesis identified key flavonoids (isorhamnetin-3-O-gallate and dihydromyricetin) and genes (TRINITY_DN2213_c0_g1_i4-A1) that promote the resistance of R. chrysanthum to UV-B stress. In addition, multiple transcription factor families were found to be involved in the regulation of the flavonoid synthesis pathway under UV-B stress. Overall, R. chrysanthum actively responded to UV-B stress by regulating changes in flavonoids, especially flavones and flavonols, while exogenous ABA further enhanced its resistance to UV-B stress. The experimental results not only provide a new perspective for understanding the molecular mechanism of the response to UV-B stress in the R. chrysanthum, but also provide a valuable theoretical basis for future research and application in improving plant adversity tolerance. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

21 pages, 5594 KiB  
Article
Carotenoid Accumulation in the Rhododendron chrysanthum Is Mediated by Abscisic Acid Production Driven by UV-B Stress
by Fushuai Gong, Xiangru Zhou, Wang Yu, Hongwei Xu and Xiaofu Zhou
Plants 2024, 13(8), 1062; https://doi.org/10.3390/plants13081062 - 9 Apr 2024
Cited by 4 | Viewed by 1409
Abstract
Rhododendron chrysanthum (R. chrysanthum) development is hampered by UV-B sunlight because it damages the photosynthetic system and encourages the buildup of carotenoids. Nevertheless, it is still unclear how R. chrysanthum repairs the photosynthetic system to encourage the formation of carotenoid pigments. [...] Read more.
Rhododendron chrysanthum (R. chrysanthum) development is hampered by UV-B sunlight because it damages the photosynthetic system and encourages the buildup of carotenoids. Nevertheless, it is still unclear how R. chrysanthum repairs the photosynthetic system to encourage the formation of carotenoid pigments. The carotenoid and abscisic acid (ABA) concentrations of the R. chrysanthum were ascertained in this investigation. Following UV-B stress, the level of carotenoids was markedly increased, and there was a strong correlation between carotenoids and ABA. The modifications of R. chrysanthum’s OJIP transient curves were examined in order to verify the regulatory effect of ABA on carotenoid accumulation. It was discovered that external application of ABA lessened the degree of damage on the donor side and lessened the damage caused by UV-B stress on R. chrysanthum. Additionally, integrated metabolomics and transcriptomics were used to examine the changes in differentially expressed genes (DEGs) and differential metabolites (DMs) in R. chrysanthum in order to have a better understanding of the role that ABA plays in carotenoid accumulation. The findings indicated that the majority of DEGs were connected to carotenoid accumulation and ABA signaling sensing. To sum up, we proposed a method for R. chrysanthum carotenoid accumulation. UV-B stress activates ABA production, which then interacts with transcription factors to limit photosynthesis and accumulate carotenoids, such as MYB-enhanced carotenoid biosynthesis. This study showed that R. chrysanthum’s damage from UV-B exposure was lessened by carotenoid accumulation, and it also offered helpful suggestions for raising the carotenoid content of plants. Full article
Show Figures

Figure 1

24 pages, 6244 KiB  
Article
Comparative Metabolomics and Transcriptome Studies of Two Forms of Rhododendron chrysanthum Pall. under UV-B Stress
by Wang Yu, Fushuai Gong, Xiangru Zhou, Hongwei Xu, Jie Lyu and Xiaofu Zhou
Biology 2024, 13(4), 211; https://doi.org/10.3390/biology13040211 - 24 Mar 2024
Cited by 8 | Viewed by 2325
Abstract
Rhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the [...] Read more.
Rhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the same origin were migrated to different culture environments (artificial climate chamber and intelligent artificial incubator) to obtain two forms of R. chrysanthum. After UV-B irradiation, 404 metabolites and 93,034 unigenes were detected. Twenty-six of these different metabolites were classified as UV-B-responsive metabolites. Glyceric acid is used as a potential UV-B stress biomarker. The domesticated Rhododendron chrysanthum Pall. had high amino acid and SOD contents. The study shows that the domesticated Rhododendron chrysanthum Pall. has significant UV-B resistance. The transcriptomics results show that the trends of DEGs after UV-B radiation were similar for both forms of R. chrysanthum: cellular process and metabolic process accounted for a higher proportion in biological processes, cellular anatomical entity accounted for the highest proportion in the cellular component, and catalytic activity and binding accounted for the highest proportion in the molecular function category. Through comparative study, the forms of metabolites resistant to UV-B stress in plants can be reflected, and UV-B radiation absorption complexes can be screened for application in future specific practices. Moreover, by comparing the differences in response to UV-B stress between the two forms of R. chrysanthum, references can be provided for cultivating domesticated plants with UV-B stress resistance characteristics. Research on the complex mechanism of plant adaptation to UV-B will be aided by these results. Full article
(This article belongs to the Collection Abiotic Stress in Plants and Resilience: Recent Advances)
Show Figures

Figure 1

27 pages, 19893 KiB  
Article
Abscisic Acid Affects Phenolic Acid Content to Increase Tolerance to UV-B Stress in Rhododendron chrysanthum Pall.
by Xiangru Zhou, Fushuai Gong, Jiawei Dong, Xiaoru Lin, Kun Cao, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2024, 25(2), 1234; https://doi.org/10.3390/ijms25021234 - 19 Jan 2024
Cited by 13 | Viewed by 1943
Abstract
The presence of the ozone hole increases the amount of UV radiation reaching a plant’s surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation [...] Read more.
The presence of the ozone hole increases the amount of UV radiation reaching a plant’s surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-β-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism. Full article
Show Figures

Figure 1

22 pages, 7459 KiB  
Article
Rhododendron chrysanthum’s Primary Metabolites Are Converted to Phenolics More Quickly When Exposed to UV-B Radiation
by Fushuai Gong, Wang Yu, Qingpan Zeng, Jiawei Dong, Kun Cao, Hongwei Xu and Xiaofu Zhou
Biomolecules 2023, 13(12), 1700; https://doi.org/10.3390/biom13121700 - 24 Nov 2023
Cited by 18 | Viewed by 1773
Abstract
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of [...] Read more.
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants’ resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant’s phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation. Full article
Show Figures

Figure 1

Back to TopTop