Golden 2-like Transcription Factors Regulate Photosynthesis under UV-B Stress by Regulating the Calvin Cycle
Abstract
:1. Introduction
2. Results
2.1. UV-B Stress Impairs the Donor Side of Photosystem II in R. chrysanthum
2.2. UV-B Stress Affects Photosynthesis in Leaves of R. chrysanthum
2.3. UV-B Stress Can Affect the Content of Photosynthesis-Related Proteins
2.4. UV-B Stress Affects the Calvin Cycle in Leaves of R. chrysanthum
2.5. The G2-like Transcription Factor Family Is Able to Respond to UV-B Stress in R. chrysanthum Leaves
2.6. Intergroup Correlation Analysis
2.7. Comprehensive Multi-Omics Demonstrates the Photosynthetic Response to UV-B Stress in Leaves of R. chrysanthum
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Detection of Chlorophyll Fluorescence
4.2.1. Rapid Chlorophyll Fluorescence Induction Curve Determination
4.2.2. Slow-Phase Fluorescence Induction Curve Measurement
4.3. Multi-Omics Assay of the Leaves of R. chrysanthum
4.3.1. Widely Targeted Metabolomics Assays
4.3.2. Transcriptomics Assays
4.3.3. Proteomics Assays
4.4. Bioinformatics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liaqat, W.; Altaf, M.T.; Barutçular, C.; Nawaz, H.; Ullah, I.; Basit, A.; Mohamed, H.I. Ultraviolet-B radiation in relation to agriculture in the context of climate change: A review. Cereal Res. Commun. 2023, 52, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.W.; Robson, T.M.; Neale, P.J.; Williamson, C.E.; Zepp, R.G.; Madronich, S.; Wilson, S.R.; Andrady, A.L.; Heikkilä, A.M.; Bernhard, G.H.; et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2021. Photochem. Photobiol. Sci. 2022, 21, 275–301. [Google Scholar] [CrossRef]
- Robson, T.M.; Klem, K.; Urban, O.; Jansen, M.A. Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ. 2015, 38, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Dong, Y.; Huang, X. Plant responses to UV-B radiation: Signaling, acclimation and stress tolerance. Stress Biol. 2022, 2, 51. [Google Scholar] [CrossRef] [PubMed]
- Kataria, S.; Jajoo, A.; Guruprasad, K.N. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J. Photochem. Photobiology. B Biol. 2014, 137, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Giuriani, G.; Havlikova, A.; Li, D.; Lamont, D.J.; Neugart, S.; Velanis, C.N.; Petersen, J.; Hoecker, U.; Christie, J.M.; et al. Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation. Nat. Commun. 2024, 15, 1221. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, S.; Wu, H.; Yang, Y.; Xu, H. Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall. Biol. Direct 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Yu, W.; Zeng, Q.; Dong, J.; Cao, K.; Xu, H.; Zhou, X. Rhododendron chrysanthum’s primary metabolites are converted to phenolics more quickly when exposed to UV-B radiation. Biomolecules 2023, 13, 1700. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, Q.; Cao, K.; Xu, H.; Zhou, X. Acetylated proteomics of UV-B stress-responsive in Photosystem II of Rhododendron chrysanthum. Cells 2023, 12, 478. [Google Scholar] [CrossRef]
- Kirchhoff, H. Chloroplast ultrastructure in plants. New Phytol. 2019, 223, 565–574. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Y.; Han, G.; Zhou, L.; Ali, A.; Zhu, S.; Li, X. Molecular evolution and genetic variation of G2-like transcription factor genes in maize. PLoS ONE 2016, 11, e0161763. [Google Scholar] [CrossRef] [PubMed]
- Waters, M.T.; Wang, P.; Korkaric, M.; Capper, R.G.; Saunders, N.J.; Langdale, J.A. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 2009, 21, 1109–1128. [Google Scholar] [CrossRef] [PubMed]
- Waters, M.T.; Langdale, J.A. The making of a chloroplast. EMBO J. 2009, 28, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Baslam, M.; Mitsui, T.; Hodges, M.; Priesack, E.; Herritt, M.T.; Aranjuelo, I.; Sanz-Sáez, Á. Photosynthesis in a changing global climate: Scaling up and scaling down in crops. Front. Plant Sci. 2020, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hu, J.; Wang, L.; Zhao, L.; Ma, F. Responses of Phragmites australis to copper stress: A combined analysis of plant morphology, physiology and proteomics. Plant Biol. 2021, 23, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.R.; Patel-Tupper, D.; Cole, B.J.; Ching, L.G.; Dautermann, O.; Kelikian, A.C.; Allison, C.; Pedraza, J.; Sievert, J.; Bilbao, A.; et al. Metabolomic, photoprotective, and photosynthetic acclimatory responses to post-flowering drought in sorghum. Plant Direct 2023, 7, e545. [Google Scholar] [CrossRef] [PubMed]
- Strauss, A.J.; Krüger, G.H.J.; Strasser, R.J.; Heerden, P.D.R.V. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ. Exp. Bot. 2006, 56, 147–157. [Google Scholar] [CrossRef]
- Ren, H.; Lu, Y.; Tang, Y.; Ren, P.; Tang, H.; Chen, Q.; Kuang, P.; Huang, R.; Zhu, W.; Chen, K. Photosynthetic responses of Racomitrium japonicum L. to Strontium Stress evaluated through chlorophyll a fluorescence OJIP transient analysis. Plants 2024, 13, 591. [Google Scholar] [CrossRef] [PubMed]
- Shapiguzov, A.; Kangasjärvi, J. Studying plant stress reactions in vivo by PAM Chlorophyll Fluorescence Imaging. Methods Mol. Biol. 2022, 2526, 43–61. [Google Scholar] [CrossRef]
- Dotto, M.; Casati, P. Developmental reprogramming by UV-B radiation in plants. Plant Sci. 2017, 264, 96–101. [Google Scholar] [CrossRef]
- Gill, S.S.; Anjum, N.A.; Gill, R.; Jha, M.; Tuteja, N. DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci. World J. 2015, 2015, 250158. [Google Scholar] [CrossRef] [PubMed]
- Tossi, V.E.; Regalado, J.J.; Iannicelli, J.; Laino, L.E.; Burrieza, H.P.; Escandón, A.S.; Pitta-Álvarez, S.I. Beyond Arabidopsis: Differential UV-B response mediated by UVR8 in diverse species. Front. Plant Sci. 2019, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, Y.; Cong, Y.; Zhu, P.; Xing, J.; Cui, J.; Xu, W.; Shi, Q.; Diao, M.; Liu, H.Y. Ascorbic acid-induced photosynthetic adaptability of processing tomatoes to salt stress probed by fast OJIP fluorescence rise. Front. Plant Sci. 2021, 12, 594400. [Google Scholar] [CrossRef]
- Küpper, H.; Benedikty, Z.; Morina, F.; Andresen, E.; Mishra, A.; Trtílek, M. Analysis of OJIP chlorophyll fluorescence kinetics and Q(A) reoxidation kinetics by direct fast imaging. Plant Physiol. 2019, 179, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Song, B.; Riaz, M.; Song, X.; Li, J.; Liu, H.; Huang, W.; Jia, Q.; Wu, W. High boron stress leads to sugar beet (Beta vulgaris L.) toxicity by disrupting photosystem II. Ecotoxicol. Environ. Saf. 2022, 248, 114295. [Google Scholar] [CrossRef]
- Pandey, J.; Devadasu, E.; Saini, D.; Dhokne, K.; Marriboina, S.; Raghavendra, A.S.; Subramanyam, R. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. Plant J. Cell Mol. Biol. 2023, 113, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Paredes, M.; Quiles, M.J. The effects of cold stress on photosynthesis in Hibiscus plants. PLoS ONE 2015, 10, e0137472. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Xu, J.; Zhang, X.; Xie, Z.; Li, Z. Effect of cold stress on photosynthetic physiological characteristics and molecular mechanism analysis in cold-resistant cotton (ZM36) seedlings. Front. Plant Sci. 2024, 15, 1396666. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhang, X.; Yan, Y.; Wang, N.; Ge, W.; Zhou, Q.; Yang, Y. Unravelling the molecular mechanisms of abscisic acid-mediated drought-stress alleviation in pomegranate (Punica granatum L.). Plant Physiol. Biochem. PPB 2020, 157, 211–218. [Google Scholar] [CrossRef]
- Rochaix, J.D. Regulation of photosynthetic electron transport. Biochim. Et Biophys. Acta 2011, 1807, 375–383. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, M.; Cao, K.; Xu, H.; Zhou, X. UV-B irradiation to amino acids and carbohydrate metabolism in Rhododendron chrysanthum leaves by coupling deep transcriptome and metabolome analysis. Plants 2022, 11, 2730. [Google Scholar] [CrossRef] [PubMed]
- Fitter, D.W.; Martin, D.J.; Copley, M.J.; Scotland, R.W.; Langdale, J.A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J. Cell Mol. Biol. 2002, 31, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Cole-Osborn, L.F.; McCallan, S.A.; Prifti, O.; Abu, R.; Sjoelund, V.; Lee-Parsons, C.W.T. The role of the Golden2-like (GLK) transcription factor in regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Cell Rep. 2024, 43, 141. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mehari, T.G.; Xu, Y.; Umer, M.J.; Hou, Y.; Wang, Y.; Peng, R.; Wang, K.; Cai, X.; Zhou, Z.; et al. GhGLK1 a key candidate gene from GARP family enhances cold and drought stress tolerance in cotton. Front. Plant Sci. 2021, 12, 759312. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Li, M.; Su, L.; Lian, S.; Zhang, B.; Li, X.; Ge, K.; Li, L. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci. Rep. 2018, 8, 2250. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.J.; Tsimilli-Michael, M.; Qiang, S.; Goltsev, V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Et Biophys. Acta 2010, 1797, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gong, F.; Dong, J.; Lin, X.; Cao, K.; Xu, H.; Zhou, X. Abscisic acid affects phenolic acid content to increase tolerance to UV-B stress in Rhododendron chrysanthum Pall. Int. J. Mol. Sci. 2024, 25, 1234. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 2018, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
Parameter | Biological Significance |
---|---|
Wk | Relative variable fluorescence intensity at point K |
ψ0 | Probability of captured energy transferring electrons after QA |
M0 | Maximum rate at which QA is reduced |
RC/CS0 | Number of reaction centers per unit area (at t = 0) |
ΨE0 | Probability of absorbed light energy transferring electrons beyond QA |
TR0/CS0 | Light energy captured per unit area (at t = 0) |
ET0/CS0 | Quantum yield of electron transfer per unit area (at t = 0) |
TR0/RC | Energy captured by unit reaction center for reduction of QA (at t = 0) |
ET0/RC | Energy captured for electron transfer per unit reaction center (at t = 0) |
Sm | Area under the OJIP curve |
PIabs | Composite performance index (absorption-based) |
F0 | Minimum fluorescence intensity |
Fm | Maximum fluorescence intensity |
Y(NO) | The part of the excitation energy absorbed by photosystem II that is passively dissipated as heat and emits fluorescence is mainly contributed by the photosystem II reaction center in the closed state |
ΦPSII | Actual light energy conversion efficiency of photosystem II |
ETRmax | Potential maximum relative electron transfer rate |
α | Initial slope of the fast light curve |
Ek | Ability to withstand bright light |
NPQ | Non-photochemical quenching |
qP | Photochemical quenching |
Fv/Fm | Maximum photosynthetic efficiency of photosystem II |
Gene ID | Qvalue (AvsB) | log2 (B/A) | Pvalue (AvsB) | Kegg Orthology |
---|---|---|---|---|
TRINITY_DN26985_c0_g1_i1-A1 | 0.002654807 | 1.513842229 | 0.0000299 | EC:4.1.2.13 |
TRINITY_DN64_c0_g1_i1-A1 | 0.026921138 | 0.738460022 | 0.0007902 | EC:4.1.2.13 |
TRINITY_DN64_c0_g1_i2-A1 | 0.005398428 | 1.417834419 | 0.0000761 | EC:4.1.2.13 |
TRINITY_DN1200_c0_g1_i1-A1 | 0.038090126 | 0.992662495 | 0.0013437 | EC:5.3.1.6 |
TRINITY_DN5382_c0_g1_i1-A1 | 0.029219008 | 0.728632982 | 0.0008935 | EC:5.3.1.6 |
TRINITY_DN163_c0_g1_i2-A1 | 0.033252883 | −0.716435144 | 0.0010878 | EC:4.1.1.39 |
TRINITY_DN7631_c0_g3_i2-A1 | 0.005903226 | 1.076873143 | 0.0000853 | EC:3.1.3.11 |
Gene ID | log2 (B/A) | Qvalue (AvsB) | log2 (C/D) | Qvalue (DvsC) | log2 (C/A) | Qvalue (AvsC) |
---|---|---|---|---|---|---|
TRINITY_DN1877_c1_g1_i1-A1 | 0.86039 | 0.01941 | 1.19700 | 0.00000 | 1.29359 | 0.00000 |
TRINITY_DN2953_c0_g2_i1-A1 | −0.60210 | 0.03757 | −0.73871 | 0.00001 | −0.64054 | 0.00066 |
TRINITY_DN19661_c0_g1_i1-A1 | - | - | −1.75354 | 0.00001 | - | - |
TRINITY_DN2735_c0_g1_i1-A1 | - | - | −0.72304 | 0.02554 | - | - |
TRINITY_DN8140_c0_g2_i1-A1 | - | - | −1.04692 | 0.00724 | - | - |
TRINITY_DN8663_c0_g1_i1-A1 | - | - | −0.87317 | 0.00001 | - | - |
TRINITY_DN1054_c1_g2_i2-A1 | - | - | - | - | −0.56104 | 0.00050 |
TRINITY_DN19661_c0_g1_i1-A1 | - | - | - | - | −1.13608 | 0.00476 |
TRINITY_DN2735_c0_g1_i1-A1 | - | - | - | - | −0.87518 | 0.00190 |
TRINITY_DN8140_c0_g2_i1-A1 | - | - | - | - | −0.79315 | 0.04115 |
G2-like TF Family Members | DEGs in the Calvin Cycle Pathway | PCC | p-Value |
---|---|---|---|
TRINITY_DN1877_c1_g1_i1-A1 | TRINITY_DN1200_c0_g1_i1-A1 | 0.933296371 | 0.006525666 |
TRINITY_DN163_c0_g1_i2-A1 | −0.963016176 | 0.002026412 | |
TRINITY_DN26985_c0_g1_i1-A1 | 0.976969538 | 0.000789496 | |
TRINITY_DN64_c0_g1_i1-A1 | 0.988595464 | 0.000194354 | |
TRINITY_DN64_c0_g1_i2-A1 | 0.964488272 | 0.001869233 | |
TRINITY_DN2953_c0_g2_i1-A1 | TRINITY_DN1200_c0_g1_i1-A1 | −0.951440039 | 0.003479851 |
TRINITY_DN163_c0_g1_i2-A1 | 0.958290919 | 0.002573192 | |
TRINITY_DN26985_c0_g1_i1-A1 | −0.982354731 | 0.000464286 | |
TRINITY_DN64_c0_g1_i1-A1 | −0.968181729 | 0.001502497 | |
TRINITY_DN64_c0_g1_i2-A1 | −0.971121463 | 0.001238913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yu, W.; Gong, F.; Xu, H.; Lyu, J.; Zhou, X. Golden 2-like Transcription Factors Regulate Photosynthesis under UV-B Stress by Regulating the Calvin Cycle. Plants 2024, 13, 1856. https://doi.org/10.3390/plants13131856
Zhou X, Yu W, Gong F, Xu H, Lyu J, Zhou X. Golden 2-like Transcription Factors Regulate Photosynthesis under UV-B Stress by Regulating the Calvin Cycle. Plants. 2024; 13(13):1856. https://doi.org/10.3390/plants13131856
Chicago/Turabian StyleZhou, Xiangru, Wang Yu, Fushuai Gong, Hongwei Xu, Jie Lyu, and Xiaofu Zhou. 2024. "Golden 2-like Transcription Factors Regulate Photosynthesis under UV-B Stress by Regulating the Calvin Cycle" Plants 13, no. 13: 1856. https://doi.org/10.3390/plants13131856
APA StyleZhou, X., Yu, W., Gong, F., Xu, H., Lyu, J., & Zhou, X. (2024). Golden 2-like Transcription Factors Regulate Photosynthesis under UV-B Stress by Regulating the Calvin Cycle. Plants, 13(13), 1856. https://doi.org/10.3390/plants13131856