Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = QWIP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 6344 KB  
Review
IR Sensors, Related Materials, and Applications
by Nikolaos Argirusis, Achilleas Achilleos, Niyaz Alizadeh, Christos Argirusis and Georgia Sourkouni
Sensors 2025, 25(3), 673; https://doi.org/10.3390/s25030673 - 23 Jan 2025
Cited by 15 | Viewed by 10379
Abstract
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing [...] Read more.
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing aspects of thermal imaging being mid-wave infrared (MWIR) and long-wave infrared (LWIR). Infrared detectors for thermal imaging have many uses in industrial applications, security, search and rescue, surveillance, medical, research, meteorology, climatology, and astronomy. Presently, high-performance infrared imaging technology mostly relies on epitaxially grown structures of the small-bandgap bulk alloy mercury–cadmium–telluride (MCT), indium antimonide (InSb), and GaAs-based quantum well infrared photodetectors (QWIPs), contingent upon the application and wavelength range. Nanostructures and nanomaterials exhibiting appropriate electrical and mechanical properties including two-dimensional materials, graphene, quantum dots (QDs), quantum dot in well (DWELL), and colloidal quantum dot (CQD) will significantly enhance the electronic characteristics of infrared photodetectors, transition metal dichalcogenides, and metal oxides, which are garnering heightened interest. The present manuscript gives an overview of IR sensors, their types, materials commonly used in them, and examples of related applications. Finally, a summary of the manuscript and an outlook on prospects are given. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

12 pages, 6992 KB  
Article
High-Efficiency Long-Wave Infrared Quantum Well Photodetector Based on Cascaded Dielectric Metasurfaces with Almost 100% Absorption
by Zihui Ge, Bo Cheng, Kunpeng Zhai and Guofeng Song
Crystals 2024, 14(12), 1088; https://doi.org/10.3390/cryst14121088 - 18 Dec 2024
Viewed by 1756
Abstract
Quantum well infrared photodetectors (QWIPs) are popular due to their following advantages: low cost, maturity of manufacturing, high uniformity, ease of wavelength adjustment, resistance to heat, and resistance to ionizing radiation. However, their low absorption efficiency due to their unique anisotropic absorption properties [...] Read more.
Quantum well infrared photodetectors (QWIPs) are popular due to their following advantages: low cost, maturity of manufacturing, high uniformity, ease of wavelength adjustment, resistance to heat, and resistance to ionizing radiation. However, their low absorption efficiency due to their unique anisotropic absorption properties and ohmic loss of the metal grating severely limit their further adoption. We cleverly used cascaded dielectric metasurfaces to replace the traditional single-layer metal grating, which increased the absorption efficiency to near the upper limit of 100%. By analyzing the near-field profile of the electric field of the miniaturized device, we found that the upper grating, QWIP, and lower grating formed a high-efficiency FP cavity with a strong photon localization capability, allowing the microdevice to effectively achieve 99.3% absorption. In addition, QWIPs with cascade gratings can be incorporated into a polarimeter, allowing for the comprehensive detection of linear polarization information at a wavelength of 14 μm through rational rotations. Our proposed double-layer grating coupling method can be considered a technology that can effectively address the low-absorption problem associated with QWIPs. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 5250 KB  
Article
Multi-Mode Long-Wavelength GaAs/AlGaAs Quantum Well Infrared Photodetectors for Circular Polarization Detection
by Jianlin Feng, Hengrui Jiang, Jun Zhao and Dayuan Xiong
Photonics 2024, 11(4), 285; https://doi.org/10.3390/photonics11040285 - 22 Mar 2024
Cited by 1 | Viewed by 1922
Abstract
We present an integrated device combining a double L-shaped chiral metasurface with long-wavelength GaAs/AlGaAs quantum well infrared photodetectors (QWIPs), achieving a circular polarized extinction ratio (CPER) as high as 45 in the long-wavelength infrared range of 7–9 μm. The unit of the chiral [...] Read more.
We present an integrated device combining a double L-shaped chiral metasurface with long-wavelength GaAs/AlGaAs quantum well infrared photodetectors (QWIPs), achieving a circular polarized extinction ratio (CPER) as high as 45 in the long-wavelength infrared range of 7–9 μm. The unit of the chiral metasurface array consists of two structurally identical L-shaped gold structures with central symmetry. The CPER of the double L-shaped QWIPs is 14 times higher than that of a single L-shaped QWIP. The device operates in three modes within the detection band: the microcavity mode, the surface plasmon polariton (SPP) mode, and the hybrid mode. The double L-shaped chiral structure selects and reflects a small portion of left-handed circularly polarized light (LCP), while the majority enters the device and excites SPP modes with the bottom gold grating layer, leading to an absorption enhancement. In contrast, right-handed circularly polarized light (RCP) is mostly reflected with limited excitation of SPP waves. QWIPs exhibit a peak absorption of 0.8 and a coupling efficiency of 2700% in the active region of the quantum well due to the combined effects of the microcavity and SPP modes, in which the SPP mode plays a dominant role. The proposed device maintains high circular polarization discrimination capability under large incident angles and can be applied in spectral imaging. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement II)
Show Figures

Figure 1

12 pages, 3365 KB  
Article
Bias-Tunable Quantum Well Infrared Photodetector
by Gyana Biswal, Michael Yakimov, Vadim Tokranov, Kimberly Sablon, Sergey Tulyakov, Vladimir Mitin and Serge Oktyabrsky
Nanomaterials 2024, 14(6), 548; https://doi.org/10.3390/nano14060548 - 20 Mar 2024
Cited by 7 | Viewed by 2847
Abstract
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and [...] Read more.
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger–Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications. Full article
(This article belongs to the Special Issue Graphene-Based Optoelectronic and Plasmonic Devices)
Show Figures

Figure 1

15 pages, 3360 KB  
Article
Metasurface Enhanced Upconversion Efficiency for High-Performance Pixel-Less Thermal Imaging
by Yi Wang, Jing Zhang, Shangjie Han, Jiaxuan Cai, Peng Bai, Ning Yang, Weidong Chu, Hanbin Wang, Jiaying Li, Yan Xie, Meng Chen, Yingxin Wang and Ziran Zhao
Photonics 2023, 10(12), 1301; https://doi.org/10.3390/photonics10121301 - 24 Nov 2023
Cited by 5 | Viewed by 2513
Abstract
High-performance infrared thermal imaging devices are widely used in military, biomedical and other fields. Upconversion pixel-less imaging is promising for infrared imaging. In this paper, we propose a hybrid metasurface to achieve high upconversion efficiency of the integrated quantum well infrared photodetector and [...] Read more.
High-performance infrared thermal imaging devices are widely used in military, biomedical and other fields. Upconversion pixel-less imaging is promising for infrared imaging. In this paper, we propose a hybrid metasurface to achieve high upconversion efficiency of the integrated quantum well infrared photodetector and light-emitting diodes (QWIP-LED). Systematical investigations on the performance of the QWIP-LED, including optical coupling efficiency, light extraction efficiency, and upconversion efficiency, have been carried out via theoretical simulation. We also present the integration time for different devices with different optical coupling structures. Numerical results show that 45° edge-coupled QWIP-LED is not suitable for imaging applications for the low upconversion efficiency. Traditional grating-coupled QWIP-LED can be optimized for real-time thermal imaging. The hybrid-metasurface-based QWIP-LED can achieve a high frame rate above 300 Hz due to the enhanced upconversion efficiency. This work gives a precise description of QWIP-LED performance with different device structures and opens the way for large format upconversion pixel-less imaging. Full article
(This article belongs to the Special Issue Multifunctional Metasurfaces: Design Strategies and Applications)
Show Figures

Figure 1

14 pages, 3359 KB  
Article
Dark Current Measurement and Noise Correction Method for LWIR QWIP Detection System Based on Focal-Plane Temperature
by Haoting Du, Zhentao Gong, Dandan Li, Yun Wang, Yun Zhao, Jintong Xu and Dexin Sun
Appl. Sci. 2023, 13(9), 5549; https://doi.org/10.3390/app13095549 - 29 Apr 2023
Cited by 2 | Viewed by 3119
Abstract
The performance of long-wave infrared (LWIR) quantum well (QWIP) detection systems is seriously affected by the dark current of the detectors. Tiny variations in the focal-plane temperature of the devices cause fluctuations in the dark current, which in turn generate temporal noise. It [...] Read more.
The performance of long-wave infrared (LWIR) quantum well (QWIP) detection systems is seriously affected by the dark current of the detectors. Tiny variations in the focal-plane temperature of the devices cause fluctuations in the dark current, which in turn generate temporal noise. It is difficult to measure the dark current accurately after the detector assembly is packaged. To address the above problems, a QWIP dark current measurement method based on focal-plane temperature is proposed, as well as a method to reduce dark current noise. First, the response model of the LWIR QWIP detection system was established, and the dark current model was introduced. Then, the detection system components were introduced, chiller calibration experiments were carried out, and the dark current values of the QWIP at different temperatures were measured by combining the system design and parameters. Next, the dark current noise correction method was proposed, the target data were collected, and experiments were carried out to correct them. Finally, after the calculation, the temporal noise was reduced by 57.69% after the correction, which is proof of a significant effect. This method can obtain the real-time dark current value by collecting the focal-plane temperature data, and reduce the dark current temporal noise (difficult to eliminate using conventional methods), which is beneficial for promoting the application of QWIPs in LWIR remote sensing detection. Full article
Show Figures

Figure 1

11 pages, 2223 KB  
Article
Auto-Calibrated Charge-Sensitive Infrared Phototransistor at 9.3 µm
by Mohsen Bahrehmand, Djamal Gacemi, Angela Vasanelli, Lianhe Li, Alexander Giles Davies, Edmund Linfield, Carlo Sirtori and Yanko Todorov
Sensors 2023, 23(7), 3635; https://doi.org/10.3390/s23073635 - 31 Mar 2023
Cited by 4 | Viewed by 2612
Abstract
Charge-sensitive infrared photo-transistors (CSIP) are quantum detectors of mid-infrared radiation (λ=4 µm14 µm) which have been reported to have outstanding figures of merit and sensitivities that allow single photon detection. The typical absorbing [...] Read more.
Charge-sensitive infrared photo-transistors (CSIP) are quantum detectors of mid-infrared radiation (λ=4 µm14 µm) which have been reported to have outstanding figures of merit and sensitivities that allow single photon detection. The typical absorbing region of a CSIP consists of an AlxGa1-xAs quantum heterostructure, where a GaAs quantum well, where the absorption takes place, is followed by a triangular barrier with a graded x(Al) composition that connects the quantum well to a source-drain channel. Here, we report a CSIP designed to work for a 9.3 µm wavelength where the Al composition is kept constant and the triangular barrier is replaced by tunnel-coupled quantum wells. This design is thus conceptually closer to quantum cascade detectors (QCDs) which are an established technology for detection in the mid-infrared range. While previously reported structures use metal gratings in order to couple infrared radiation in the absorbing quantum well, here, we employ a 45° wedge facet coupling geometry that allows a simplified and reliable estimation of the incident photon flux Φ in the device. Remarkably, these detectors have an “auto-calibrated” nature, which enables the precise assessment of the photon flux Φ solely by measuring the electrical characteristics and from knowledge of the device geometry. We identify an operation regime where CSIP detectors can be directly compared to other unipolar quantum detectors such as quantum well infrared photodetectors (QWIPs) and QCDs and we estimate the corresponding detector figure of merit under cryogenic conditions. The maximum responsivity R = 720 A/W and a photoconductive gain G~2.7 × 104 were measured, and were an order of magnitude larger than those for QCDs and quantum well infrared photodetectors (QWIPs). We also comment on the benefit of nano-antenna concepts to increase the efficiency of CSIP in the photon-counting regime. Full article
(This article belongs to the Special Issue Sensing with Infrared and Terahertz Technologies)
Show Figures

Figure 1

12 pages, 2721 KB  
Communication
High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors
by Jinyong Shen, Tianyun Zhu, Jing Zhou, Zeshi Chu, Xiansong Ren, Jie Deng, Xu Dai, Fangzhe Li, Bo Wang, Xiaoshuang Chen and Wei Lu
Sensors 2023, 23(1), 168; https://doi.org/10.3390/s23010168 - 24 Dec 2022
Cited by 14 | Viewed by 4006
Abstract
Circular polarization detection enables a wide range of applications. With the miniaturization of optoelectronic systems, integrated circular polarization detectors with native sensitivity to the spin state of light have become highly sought after. The key issues with this type of device are its [...] Read more.
Circular polarization detection enables a wide range of applications. With the miniaturization of optoelectronic systems, integrated circular polarization detectors with native sensitivity to the spin state of light have become highly sought after. The key issues with this type of device are its low circular polarization extinction ratios (CPERs) and reduced responsivities. Metallic two-dimensional chiral metamaterials have been integrated with detection materials for filterless circular polarization detection. However, the CPERs of such devices are typically below five, and the light absorption in the detection materials is hardly enhanced and is even sometimes reduced. Here, we propose to sandwich multiple quantum wells between a dielectric two-dimensional chiral metamaterial and a metal grating to obtain both a high CPER and a photoresponse enhancement. The dielectric-metal-hybrid chiral metamirror integrated quantum well infrared photodetector (QWIP) exhibits a CPER as high as 100 in the long wave infrared range, exceeding all reported CPERs for integrated circular polarization detectors. The absorption efficiency of this device reaches 54%, which is 17 times higher than that of a standard 45° edge facet coupled device. The circular polarization discrimination is attributed to the interference between the principle-polarization radiation and the cross-polarization radiation of the chiral structure during multiple reflections and the structure-material double polarization selection. The enhanced absorption efficiency is due to the excitation of a surface plasmon polariton wave. The dielectric-metal-hybrid chiral mirror structure is compatible with QWIP focal plane arrays. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Sensors Technology in China)
Show Figures

Figure 1

14 pages, 5070 KB  
Article
Dark Current Noise Correction Method Based on Dark Pixels for LWIR QWIP Detection Systems
by Haoting Du, Jintong Xu, Zihao Yin, Mengyang Chai and Dexin Sun
Appl. Sci. 2022, 12(24), 12967; https://doi.org/10.3390/app122412967 - 16 Dec 2022
Cited by 3 | Viewed by 3328
Abstract
The long-wave infrared (LWIR) quantum-well photodetector (QWIP) operates at low temperatures, but is prone to focal plane temperature changes when imaging in complex thermal environments. This causes dark current changes and generates low-frequency temporal dark current noise. To address this, a dark current [...] Read more.
The long-wave infrared (LWIR) quantum-well photodetector (QWIP) operates at low temperatures, but is prone to focal plane temperature changes when imaging in complex thermal environments. This causes dark current changes and generates low-frequency temporal dark current noise. To address this, a dark current noise correction method based on dark pixels is proposed. First, dark pixels were constructed in a QWIP system and the response components of imaging pixels and dark pixels were analyzed. Next, the feature data of dark pixels and imaging pixels were collected and preprocessed, after which a recurrent neural network (RNN) was used to fit the dark current response model. Target data were collected and input into the dark current response model to obtain dark level correction values and correct the original data. Finally, after calculation and correction, temporal noise was reduced by 49.02% on average. The proposed method uses the characteristics of dark pixels to reduce dark current temporal noise, which is difficult using conventional radiation calibrations; this is helpful in promoting the application of QWIPs in LWIR remote sensing. Full article
Show Figures

Figure 1

12 pages, 5398 KB  
Article
Resonance-Enhanced Quantum Well Micropillar Array with Ultra-Narrow Bandwidth and Ultra-High Peak Quantum Efficiency
by Hanxiao Shao, Yun Xu, Longfeng Lv, Bo Cheng and Guofeng Song
Electronics 2022, 11(9), 1396; https://doi.org/10.3390/electronics11091396 - 27 Apr 2022
Viewed by 2289
Abstract
Infrared cameras with narrow-band detection capability are widely used for SF6 gas detection, which is an essential part of power equipment inspection. Narrow-band detection is usually achieved by a combination of quantum well infrared photodetectors (QWIPs) and narrow-band filters. Improving the quantum efficiency [...] Read more.
Infrared cameras with narrow-band detection capability are widely used for SF6 gas detection, which is an essential part of power equipment inspection. Narrow-band detection is usually achieved by a combination of quantum well infrared photodetectors (QWIPs) and narrow-band filters. Improving the quantum efficiency of QWIPs and reducing the detection bandwidth are important ways to improve camera performance. In this study, a back-incident-type device of quantum well micropillar array targeting at a 10.5 μm central wavelength is designed and studied by three-dimensional simulation. The operating mechanism of the device was determined by investigating the effect of the device geometry on the quantum efficiency. The enhanced absorption capability of the device mainly comes from the Fabry–Pérot resonance and the antireflection effect. The final device exhibits a remarkable peak quantum efficiency of 83% at 10.5 μm and an ultra-narrow spectral bandwidth of 0.2 μm. These excellent properties are achieved without an antireflective film and narrow-band filter, which can significantly improve the narrow-band capability and integration of the system; the dark current reduces to be 0.2762 times due to the low-duty cycle. These properties indicate that the structure of the quantum well micropillar array is of great significance to the development of QWIPs used in gas detection. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

10 pages, 3104 KB  
Article
Stacked Dual-Band Quantum Well Infrared Photodetector Based on Double-Layer Gold Disk Enhanced Local Light Field
by Chang Liu, Xuan Zuo, Shaohui Xu, Lianwei Wang and Dayuan Xiong
Nanomaterials 2021, 11(10), 2695; https://doi.org/10.3390/nano11102695 - 13 Oct 2021
Cited by 3 | Viewed by 2671
Abstract
We propose a stacked dual-band quantum well infrared photodetector (QWIP) integrated with a double-layer gold disk. Two 10-period quantum wells (QW) operating at different wavelengths are stacked together, and gold nano-disks are integrated on their respective surfaces. Numerical calculations by finite difference time [...] Read more.
We propose a stacked dual-band quantum well infrared photodetector (QWIP) integrated with a double-layer gold disk. Two 10-period quantum wells (QW) operating at different wavelengths are stacked together, and gold nano-disks are integrated on their respective surfaces. Numerical calculations by finite difference time domain (FDTD) showed that the best enhancement can be achieved at 13.2 and 11.0 µm. By integrating two metal disks, two plasmon microcavity structures can be formed with the substrate to excite localized surface plasmons (LSP) so that the vertically incident infrared light can be converted into electric field components perpendicular to the growth direction of the quantum well (EZ). The EZ electric field component can be enhanced up to 20 times compared to the incident light, and it is four times that of the traditional two-dimensional hole array (2DHA) grating. We calculated the enhancement factor and coupling efficiency of the device in the active region of the quantum well. The enhancement factor of the active region of the quantum well on the top layer remains above 25 at the wavelength of 13.2 μm, and the enhancement factor can reach a maximum of 45. Under this condition, the coupling efficiency of the device reaches 2800%. At the wavelength of 11.0 μm, the enhancement factor of the active region of the quantum well at the bottom is maintained above 6, and the maximum can reach about 16, and the coupling efficiency of the device reaches 800%. We also optimized the structural parameters and explored the influence of structural changes on the coupling efficiency. When the radius (r1, r2) of the two metal disks increases, the maximum coupling efficiency will be red-shifted as the wavelength increases. The double-layer gold disk structure we designed greatly enhances the infrared coupling of the two quantum well layers working at different wavelengths in the dual-band quantum well infrared photodetector. The structure we designed can be used in stacked dual-band quantum well infrared photodetectors, and the active regions of quantum wells working at two wavelengths can enhance the photoelectric coupling, and the enhancement effect is significant. Compared with the traditional optical coupling structure, the structure we proposed is simpler in process and has a more significant enhancement effect, which can meet the requirements of working in complex environments such as firefighting, night vision, and medical treatment. Full article
(This article belongs to the Special Issue State-of-the-Art Nanophotonics Materials and Devices in China)
Show Figures

Figure 1

26 pages, 6642 KB  
Article
Advancing Cave Detection Using Terrain Analysis and Thermal Imagery
by J. Judson Wynne, Jeff Jenness, Derek L. Sonderegger, Timothy N. Titus, Murzy D. Jhabvala and Nathalie A. Cabrol
Remote Sens. 2021, 13(18), 3578; https://doi.org/10.3390/rs13183578 - 8 Sep 2021
Cited by 6 | Viewed by 7073
Abstract
Since the initial experiments nearly 50 years ago, techniques for detecting caves using airborne and spacecraft acquired thermal imagery have improved markedly. These advances are largely due to a combination of higher instrument sensitivity, modern computing systems, and processor-intensive analytical techniques. Through applying [...] Read more.
Since the initial experiments nearly 50 years ago, techniques for detecting caves using airborne and spacecraft acquired thermal imagery have improved markedly. These advances are largely due to a combination of higher instrument sensitivity, modern computing systems, and processor-intensive analytical techniques. Through applying these advancements, our goals were to: (1) Determine the efficacy of methods designed for terrain analysis and applied to thermal imagery; (2) evaluate the usefulness of predawn and midday imagery for detecting caves; and (3) ascertain which imagery type (predawn, midday, or the difference between those two times) was most informative. Using forward stepwise logistic (FSL) and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses for model selection, and a thermal imagery dataset acquired from the Mojave Desert, California, we examined the efficacy of three well-known terrain descriptors (i.e., slope, topographic position index (TPI), and curvature) on thermal imagery for cave detection. We also included the actual, untransformed thermal DN values (hereafter “unenhanced thermal”) as a fourth dataset. Thereafter, we compared the thermal signatures of known cave entrances to all non-cave surface locations. We determined these terrain-based analytical methods, which described the “shape” of the thermal landscape, hold significant promise for cave detection. All imagery types produced similar results. Down-selected covariates per imagery type, based upon the FSL models, were: Predawn— slope, TPI, curvature at 0 m from cave entrance, as well as slope at 1 m from cave entrance; midday— slope, TPI, and unenhanced thermal at 0 m from cave entrance; and difference— TPI and slope at 0 m from cave entrance, as well as unenhanced thermal and TPI at 3.5 m from cave entrance. We provide recommendations for future research directions in terrestrial and planetary cave detection using thermal imagery. Full article
Show Figures

Graphical abstract

19 pages, 35913 KB  
Article
Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor
by Brian N. Wenny, Dennis Helder, Jungseok Hong, Larry Leigh, Kurtis J. Thome and Dennis Reuter
Remote Sens. 2015, 7(2), 1962-1980; https://doi.org/10.3390/rs70201962 - 11 Feb 2015
Cited by 35 | Viewed by 10775
Abstract
The Thermal Infrared Sensor (TIRS) for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC). TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat [...] Read more.
The Thermal Infrared Sensor (TIRS) for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC). TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm) pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs) arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF)/modulation transfer function (MTF) estimates towards poorer performance using this approach, it does have the ability to track relative changes for monitoring long-term instrument status. The results for both pre- and post-launch response analysis show general good agreement and consistency with edge slope along-track values of 0.53 and 0.58 pre- and post-launch and across-track values 0f 0.59 and 0.55 pre- and post-launch. Full article
(This article belongs to the Special Issue Landsat-8 Sensor Characterization and Calibration)
Show Figures

Graphical abstract

19 pages, 49936 KB  
Article
The Thermal Infrared Sensor (TIRS) on Landsat 8: Design Overview and Pre-Launch Characterization
by Dennis C. Reuter, Cathleen M. Richardson, Fernando A. Pellerano, James R. Irons, Richard G. Allen, Martha Anderson, Murzy D. Jhabvala, Allen W. Lunsford, Matthew Montanaro, Ramsey L. Smith, Zelalem Tesfaye and Kurtis J. Thome
Remote Sens. 2015, 7(1), 1135-1153; https://doi.org/10.3390/rs70101135 - 19 Jan 2015
Cited by 104 | Viewed by 18220
Abstract
The Thermal Infrared Sensor (TIRS) on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single-channel sensors, TIRS uses two channels to cover the 10–12.5 micron band. It is also a pushbroom imager; a departure from the [...] Read more.
The Thermal Infrared Sensor (TIRS) on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single-channel sensors, TIRS uses two channels to cover the 10–12.5 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheless, the instrument requirements are defined such that data continuity is maintained. This paper describes the design of the TIRS instrument, the results of pre-launch calibration measurements and shows an example of initial on-orbit science performance compared to Landsat 7. Full article
(This article belongs to the Special Issue Landsat-8 Sensor Characterization and Calibration)
Show Figures

Graphical abstract

45 pages, 701 KB  
Review
Progress in Infrared Photodetectors Since 2000
by Chandler Downs and Thomas E. Vandervelde
Sensors 2013, 13(4), 5054-5098; https://doi.org/10.3390/s130405054 - 16 Apr 2013
Cited by 226 | Viewed by 20232
Abstract
The first decade of the 21st-century has seen a rapid development in infrared photodetector technology. At the end of the last millennium there were two dominant IR systems, InSb- and HgCdTe-based detectors, which were well developed and available in commercial systems. While these [...] Read more.
The first decade of the 21st-century has seen a rapid development in infrared photodetector technology. At the end of the last millennium there were two dominant IR systems, InSb- and HgCdTe-based detectors, which were well developed and available in commercial systems. While these two systems saw improvements over the last twelve years, their change has not nearly been as marked as that of the quantum-based detectors (i.e., QWIPs, QDIPs, DWELL-IPs, and SLS-based photodetectors). In this paper, we review the progress made in all of these systems over the last decade plus, compare the relative merits of the systems as they stand now, and discuss where some of the leading research groups in these fields are going to take these technologies in the years to come. Full article
(This article belongs to the Special Issue Photodetectors)
Show Figures

Back to TopTop