Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = PsAID

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2739 KiB  
Article
Immunogenicity of DNA, mRNA and Subunit Vaccines Against Beak and Feather Disease Virus
by Buyani Ndlovu, Albertha R. van Zyl, Dirk Verwoerd, Edward P. Rybicki and Inga I. Hitzeroth
Vaccines 2025, 13(7), 762; https://doi.org/10.3390/vaccines13070762 - 17 Jul 2025
Viewed by 573
Abstract
Background/Objectives: Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), affecting psittacine birds. There is currently no commercial vaccine or treatment for this disease. This study developed a novel BFDV coat protein mRNA vaccine encapsidated [...] Read more.
Background/Objectives: Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), affecting psittacine birds. There is currently no commercial vaccine or treatment for this disease. This study developed a novel BFDV coat protein mRNA vaccine encapsidated by TMV coat protein to form pseudovirions (PsVs) and tested its immunogenicity alongside BFDV coat protein (CP) subunit and DNA vaccine candidates. Methods: mRNA and BFDV CP subunit vaccine candidates were produced in Nicotiana benthamiana and subsequently purified using PEG precipitation and gradient ultracentrifugation, respectively. The DNA vaccine candidate was produced in E. coli cells harbouring a plasmid with a BFDV1.1mer pseudogenome. Immunogenicity of the vaccine candidates was evaluated in African grey parrot chicks. Results: Successful purification of TMV PsVs harbouring the mRNA vaccine, and of the BFDV-CP subunit vaccine, was confirmed by SDS-PAGE and western blot analysis. TEM analyses confirmed formation of TMV PsVs, while RT-PCR and RT-qPCR cDNA amplification confirmed encapsidation of the mRNA vaccine candidate within TMV particles. Restriction digests verified presence of the BFDV1.1mer genome in the plasmid. Four groups of 5 ten-week-old African grey parrot (Psittacus erithacus) chicks were vaccinated and received two boost vaccinations 2 weeks apart. Blood samples were collected from all four groups on day 14, 28 and 42, and sera were analysed using indirect ELISA, which showed that all vaccine candidates successfully elicited specific anti-BFDV-CP immune responses. The subunit vaccine candidate showed the strongest immune response, indicated by higher binding titres (>6400), followed by the mRNA and DNA vaccine candidates. Conclusions: The candidate vaccines present an important milestone in the search for a protective vaccine against PBFD, and their inexpensive manufacture could considerably aid commercial vaccine development. Full article
(This article belongs to the Special Issue Innovations in Vaccine Technology)
Show Figures

Figure 1

14 pages, 1756 KiB  
Article
Perioperative and Follow-Up Analyses of Primary Posterior Stabilized and Cruciate Retaining Knee Arthroplasty
by Isabel Reckermann, Patrick Orth, Christian Götze, Filippo Migliorini, Cueneyt Sönmez and Julian Koettnitz
J. Clin. Med. 2025, 14(11), 3752; https://doi.org/10.3390/jcm14113752 - 27 May 2025
Viewed by 476
Abstract
Background: Total knee arthroplasty (TKA) is a widely performed procedure to alleviate pain and restore function in patients with advanced knee osteoarthritis. Two common implant designs are cruciate-retaining (CR) and posterior-stabilized (PS) knees. Despite extensive research, the superiority of one design over the [...] Read more.
Background: Total knee arthroplasty (TKA) is a widely performed procedure to alleviate pain and restore function in patients with advanced knee osteoarthritis. Two common implant designs are cruciate-retaining (CR) and posterior-stabilized (PS) knees. Despite extensive research, the superiority of one design over the other remains inconclusive. Methods: A prospective analysis was conducted on 123 patients who underwent total knee arthroplasty (TKA) between June 2022 and June 2023 at a university hospital. Demographic data, mobility, the use of walking aids, pre- and postoperative range of motion and leg axis as well as surgical and systemic complications were collected and compared between CR and PS-TKA. Results: The mean age of the patients was 67.94 ± 10.14 years and 65.9% were women. The time of operation was significantly different between PS- and CR-TKA (PS: 83.31 ± 25.65 min; CR: 95.26 ± 24.61 min; p = 0.011). The pre- to postoperative leg axis after six months was significantly different in both groups (PS: 7.06° ± 4.76°; CR: 6.25° ± 3.13°; p = 0.001). The range of motion (ROM) (PS: 105.19° ± 15.56°; CR: 93.29° ± 15.09°; p = 0.001) as well as the deficit after six months (PS: 23.56° ± 19.73°; CR: 37.57° ± 23.33°; p = 0.003) between patients with PS and CR-TKA were significantly different. Gender (male vs. female PS/CR) and age (<75 years vs. >75 years PS/CR) differences were shown for the ROM and flexion deficit after six months (p = 0.003; p = 0.005). For age, a significant difference was shown for the quality of life (mean ranks: <75 y: 47.96; >75 y: 31.03; p = 0.009) and WOMAC score (mean ranks: <75 y: 38.27; >75 y: 61.75; p = 0.001) after six months. Conclusions: This study shows the different outcomes for posterior-stabilized versus cruciate-retaining TKA with regard to time of surgery, range of motion, and flexion deficit after 6 months with PS-TKA yielding better results. The gender analyses revealed similar outcomes after six months between both arthroplasty groups, whereas the age analyses revealed significant differences. The standardized use of PS-TKA for the elderly is recommended. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

21 pages, 9022 KiB  
Article
Activation of Persulfates Using Alkali-Modified Activated Coke to Promote Phenol Removal
by Yan Zhang, Shuang Shi, Jianxiong Wei, Qiang Ma, Xiaoxue Wang, Xingyu Zhang, Huarui Hao and Chen Yang
Nanomaterials 2025, 15(10), 744; https://doi.org/10.3390/nano15100744 - 15 May 2025
Cited by 1 | Viewed by 301
Abstract
Coke (AC) was modified and activated with sodium hydroxide (NaOH) and potassium hydroxide (KOH) to produce AC-Na and AC-K, respectively, and applied as a persulfate (PS) activator to promote phenol (Ph) removal in water. Under the given experimental conditions, compared to AC/PS (Ph [...] Read more.
Coke (AC) was modified and activated with sodium hydroxide (NaOH) and potassium hydroxide (KOH) to produce AC-Na and AC-K, respectively, and applied as a persulfate (PS) activator to promote phenol (Ph) removal in water. Under the given experimental conditions, compared to AC/PS (Ph removal effect was 77.09%), the Ph removal effects were 94.46% and 88.73% for AC-K/PS and AC-Na/PS, respectively. AC-K proved to be a more effective activator than AC-Na and was used for all the subsequent experiments. When PS/phenol molar ratio was 6.26:1:00, the initial system pH was 7 and the system temperature was 25 °C; the AC-K/PS system could effectively remove Ph (98.75%) from the simulated wastewater. After that, the stability of AC-K was verified. Electron paramagnetic resonance (EPR) and quenching analysis confirmed the hydroxyl free radical (•OH) to be predominant within this system. EPR combined with X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared (FTIR) spectroscopy, and Raman spectroscopy indicated that the sulfate radical (SO4•−) and •OH were generated due to the defects in AC-K, thereby enhancing the PS activation potency of AC-K. Additionally, the radical quenching experiments showed that the superoxide (O2) radical is a key intermediate product promoting SO4•− and •OH, which aided Ph removal. Both radical (SO4•− and •OH) and non-radical (1O2) pathways were found to co-exist during the removal process. The Ph removal rate of the AC-K/PS system could still reach 29.50%, even after four repeated cycles. These results demonstrate that the unique AC-K/PS system has a potential removal effect on organic pollutants in water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

20 pages, 8412 KiB  
Article
Wastewater Treatment Using a Combination of Pumpkin seed Waste After Extraction of Essential Oils (Bio-Coagulant) and Ferric Chloride (Chemical Coagulant): Optimization and Modeling Using a Box–Behnken Design
by Abderrezzaq Benalia, Ouiem Baatache, Katr Enada Zerguine, Amel Khediri, Kerroum Derbal, Nawal Ferroudj, Amel Khalfaoui and Antonio Pizzi
Appl. Sci. 2025, 15(10), 5439; https://doi.org/10.3390/app15105439 - 13 May 2025
Viewed by 461
Abstract
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, [...] Read more.
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, bio-coagulant was extracted from pumpkin seed (PS) waste after extraction of the essential oils, and used with ferric chloride to treat wastewater from the plant of Chalghoum El Aid-Oued El Athmania Mila. In this study, the Box–Behnken design (BBD) with three factors was used to investigate the effect of pH, organic coagulant dosage Pumpkin seed extract (PSE), and chemical coagulant dosage (FeCl3) on coagulation–flocculation performance in relation to turbidity, chemical oxygen demand (COD), aromatic organic matter (UV 254), and phosphate. The main characteristics of the raw water were turbidity (250 NTU), COD (640 mg/L), UV 254 (0.893 cm−1), and phosphate (0.115 mg/L). The results obtained were very significant. All the statistical estimators (R2 ≥ 97% and p ≤ 0.05) reveal that the models developed are statistically validated for simulating the coagulation–flocculation process. It should be noted that the residual values of turbidity, COD, UV 254, and phosphate after treatment by this process were 0.754 NTU; 190.88 mg/L; 0.0028 cm−1; and 0.0149 mg/L, respectively. In this case, the pH, bio-coagulant dosage, and chemical coagulant dosage values were 4; 17.81 mL/L; and 10 mL/L, respectively. In this study, Fourier-transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) characterization of the bio-coagulant proved the presence of the active functional groups responsible for coagulation, namely carboxyl group. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

27 pages, 6077 KiB  
Article
Photodynamic Effectiveness of Copper-Iminopyridine Photosensitizers Coupled to Zinc Oxide Nanoparticles Against Klebsiella pneumoniae and the Bacterial Response to Oxidative Stress
by Dafne Berenice Hormazábal, Ángeles Beatriz Reyes, Matías Fabián Cuevas, Angélica R. Bravo, David Moreno-da Costa, Iván A. González, Daniel Navas, Iván Brito, Paulina Dreyse, Alan R. Cabrera and Christian Erick Palavecino
Int. J. Mol. Sci. 2025, 26(9), 4178; https://doi.org/10.3390/ijms26094178 - 28 Apr 2025
Viewed by 623
Abstract
One of the most urgent threats to public health worldwide is the ongoing rise of multidrug-resistant (MDR) bacterial strains. Among the most critical pathogens are MDR-Klebsiella pneumoniae strains. The lack of new antibiotics has led to an increased need for non-antibiotic antimicrobial [...] Read more.
One of the most urgent threats to public health worldwide is the ongoing rise of multidrug-resistant (MDR) bacterial strains. Among the most critical pathogens are MDR-Klebsiella pneumoniae strains. The lack of new antibiotics has led to an increased need for non-antibiotic antimicrobial therapies. Photodynamic therapy (PDT) has become increasingly significant in treating MDR bacteria. PDT uses photosensitizer compounds (PS) that generate reactive oxygen species (ROS) when activated by light. These ROS produce localized oxidative stress, damaging the bacterial envelope. A downside of PDT is the limited bioavailability of PSs in vivo, which can be enhanced by conjugating them with carriers like nanoparticles (NPs). Zinc nanoparticles possess antibacterial properties, decreasing the adherence and viability of microorganisms on surfaces. The additive or synergistic effect of the combined NP-PS could improve phototherapeutic action. Therefore, this study evaluated the effectiveness of the copper(I)-based PS CuC1 compound in combination with Zinc Oxide NP, ZnONP, to inhibit the growth of both MDR and sensitive K. pneumoniae strains. The reduction in bacterial viability after exposure to a PS/NP mixture activated by 61.2 J/cm2 of blue light photodynamic treatment was assessed. The optimal PS/NP ratio was determined at 2 µg/mL of CuC1 combined with 64 µg/mL of ZnONP as the minimum effective concentration (MEC). The bacterial gene response aligned with a mechanism of photooxidative stress induced by the treatment, which damages the bacterial cell envelope. Additionally, we found that the PS/NP mixture is not harmful to mammalian cells, such as Hep-G2 and HEK-293. In conclusion, the CuC1/ZnONP combination could effectively aid in enhancing the antimicrobial treatment of infections caused by MDR bacteria. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

9 pages, 1027 KiB  
Article
Impact of Different Occupational Noises on Static and Dynamic Postural Stability in Healthy Young Adults
by Kristy Gourley, Harish Chander, Asher Street Beam and Adam C. Knight
Int. J. Environ. Res. Public Health 2025, 22(5), 679; https://doi.org/10.3390/ijerph22050679 - 25 Apr 2025
Viewed by 846
Abstract
Background: Sounds that cause disturbances and perturbations to the vestibular (inner ear organ responses) and visual (acute oculomotor responses) systems can impact postural stability. The purpose of this study was to assess the impact of different types of sounds and noises on both [...] Read more.
Background: Sounds that cause disturbances and perturbations to the vestibular (inner ear organ responses) and visual (acute oculomotor responses) systems can impact postural stability. The purpose of this study was to assess the impact of different types of sounds and noises on both static and dynamic PS. Methods: A total of 20 participants (12 females and 8 males; age: 21.35 ± 1.79 years; height: 170.7 ± 9.3 cm; mass: 66.725 ± 14.1 kg) were tested using the limits of stability (LOS) test on the BTrackS™ balance plate and a Timed Up and Go (TUG) test, when exposed to four different sounds and occupational noises [construction noise (CN), white noise (WN), sirens (SRs), and nature sounds (NAs)] in a randomized order with a no sounds (NSs) control performed initially (intensity range of 70–80 dB). The center of pressure (COP) total sway area (cm2) from the LOS and the time to completion of the TUG (seconds) were analyzed using a one-way repeated measures of analysis of variance at an alpha level of 0.05. Results: The observations demonstrated significant differences between the sounds and noises for the TUG (p < 0.001) but not for the LOS test (p = 0.406). Pairwise comparisons for the significant main effect for the TUG revealed that NSs demonstrated significantly slower time to completion compared to CN, WN, and SRs but not NAs. Conclusions: The findings suggest that the different sounds and noises did not impact static PS during the LOS test, which involved the voluntary excursion of the COP while maintaining the same base of support (BOS). However, during dynamic PS with a changing BOS while walking in the TUG, exposure to CN, SRs, and WN demonstrated a faster completion time than NSs or NAs. This finding may be attributed to the anxiety induced by the noise immersion and perception of sounds, compared to calm NAs and no sounds. The findings can aid in better understanding the impact of different occupational noises on PS and emphasize the need for better noise protection and reduction in loud work environments. Full article
(This article belongs to the Special Issue Work Environment Effects on Health and Safety of Employees)
Show Figures

Figure 1

21 pages, 3618 KiB  
Article
Ternary Restoration Binders as Piezoresistive Sensors: The Effect of Superplasticizer and Graphene Nanoplatelets’ Addition
by Maria-Evangelia Stogia, Ermioni D. Pasiou, Zoi S. Metaxa, Stavros K. Kourkoulis and Nikolaos D. Alexopoulos
Nanomaterials 2025, 15(7), 538; https://doi.org/10.3390/nano15070538 - 2 Apr 2025
Viewed by 533
Abstract
The present article investigates the effect of superplasticizer and graphene nanoplatelet addition on the flexural and electrical behaviour of nanocomposites for applications related to the restoration/conservation of Cultural Heritage Monuments in laboratory scale. Graphene nanoplatelets’ addition is used to transform the matrix into [...] Read more.
The present article investigates the effect of superplasticizer and graphene nanoplatelet addition on the flexural and electrical behaviour of nanocomposites for applications related to the restoration/conservation of Cultural Heritage Monuments in laboratory scale. Graphene nanoplatelets’ addition is used to transform the matrix into a piezo-resistive self-sensor by efficiently dispersing electrically conductive graphene nanoplatelets (GnPs) in the material matrix to create electrically conductive paths. Nevertheless, the appropriate dispersion is difficult to be achieved as the GnPs tend to agglomerate due to Van der Waals forces. To this end, the effect of the addition of carboxyl-based superplasticizer (SP) is proposed in the present investigation to efficiently disperse the GnPs in the water mix of the binders. Five (5) different ratios of SP per GnPs addition were examined. The GnPs concentration was chosen to be within the range of 0.05 to 1.50 wt.% of the binder. The same ultrasonic energy was applied in all of the suspensions to further aid the dispersion process. The incorporation of graphene nanoplatelets at low concentrations (0.15 wt.%) significantly increases flexural strength when added in equal quantity to superplasticizer (SP1 series). The SP addition at higher concentrations does not enhance the mechanical properties through effective dispersion of the GnPs. Additionally, a correlation was established between the electrical resistivity (ρ) values of the produced nanocomposites and the modulus of elasticity as a function of the GnPs concentration. The functional correlation between these parameters was also confirmed by linear regression analysis, resulting from the experimental data fitting. Finally, the acoustic emission (AE) can effectively capture damage evolution in such lime-based composites, while the emitted cumulative energy rises as the GnPs concentration is increased. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

21 pages, 33924 KiB  
Article
Multiparameter Inversion of Seismic Pre-Stack Amplitude Variation with Angle Based on a New Propagation Matrix Method
by Qianlong Ding, Shuangquan Chen, Jinsong Shen, Zuzhi Hu and Guoquan Wang
Appl. Sci. 2025, 15(5), 2636; https://doi.org/10.3390/app15052636 - 28 Feb 2025
Cited by 1 | Viewed by 828
Abstract
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with [...] Read more.
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with angle (AVA) inversion based on the Zoeppritz equation has limitations regarding the accuracy. The AVA neglects transmission losses and the effects of multiple reflections during seismic wave propagation, resulting in reduced resolution. In contrast, the propagation matrix theory offers a comprehensive range of reflection coefficients for P- and S-waves in multilayered media at arbitrary incidence angles, thereby theoretically enhancing the inversion accuracy. However, the seismic responses obtained using this method exist in the slowness–frequency domain and require constant slowness for consistency along a profile. This assumption is violated when variations in the P-wave velocity occur within the subsurface, affecting the incidence angle of propagating seismic waves. This study modifies the propagation matrix theory to compute AVA seismic responses and applies it to pre-stack multiparameter inversion. The effectiveness of the modified method was validated by deriving theoretical AVA seismic responses and comparing them to solutions from a typical layered media model. The modified theory was also employed for seismic pre-stack inversion. Numerical simulations and field data tests demonstrated that the new propagation matrix method offers a high accuracy and stability. Full article
Show Figures

Figure 1

18 pages, 11216 KiB  
Article
Advanced Techniques for the Fabrication of Nanostructured Porous Silicon Using Photoelectrochemical Etching and Ultrasonic Vibration
by Chao-Ching Chiang and Philip Nathaniel Immanuel
Coatings 2025, 15(2), 179; https://doi.org/10.3390/coatings15020179 - 5 Feb 2025
Viewed by 1168
Abstract
This study presents a novel method combining photoelectrochemical etching with ultrasonic vibration for the formation of nanocrystalline porous silicon (NC-PS). This combined process enhances the band gap energy absorption (BEA) by reducing bubble accumulation in the etching area. It is found that laser [...] Read more.
This study presents a novel method combining photoelectrochemical etching with ultrasonic vibration for the formation of nanocrystalline porous silicon (NC-PS). This combined process enhances the band gap energy absorption (BEA) by reducing bubble accumulation in the etching area. It is found that laser irradiation can decrease the etching rate, while ultrasonic vibration aids with bubble expulsion, preventing accumulation in the etching area, resulting in more uniform etching and increasing the porosity of the porous silicon (PS). High porosity in NC-PS structures enhances the surface area, thereby increasing electron mobility and improving the electron energy distribution. Our experiments demonstrate that this combined process leads to more uniform and deeper etching and the creation of well-defined porous structures. The more uniform PS size distribution (8–14 nm) achieved by photoelectrochemical etching combined with ultrasonic vibration enhances the optical properties of the material due to quantum confinement effects. Porosity measurements provide essential surface characterization information that is crucial for determining the performance of PS diode components in various applications. Our findings demonstrate that this combination technique improves the uniformity, efficiency, and precision of porous silicon etching, producing material for high-performance applications, including sensors, catalysts, and photonic devices. Full article
Show Figures

Figure 1

17 pages, 3841 KiB  
Article
Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model
by Laiz Laura de Godoy, Archith Rajan, Amir Banihashemi, Thara Patel, Arati Desai, Stephen Bagley, Steven Brem, Sanjeev Chawla and Suyash Mohan
Brain Sci. 2025, 15(2), 146; https://doi.org/10.3390/brainsci15020146 - 31 Jan 2025
Viewed by 2087
Abstract
Purpose: Early treatment response assessments are crucial, and the results are known to better correlate with prognosis and survival outcomes. The present study was conducted to differentiate true progression (TP) from pseudoprogression (PsP) in long-term-surviving glioblastoma patients using our previously established multiparametric MRI-based [...] Read more.
Purpose: Early treatment response assessments are crucial, and the results are known to better correlate with prognosis and survival outcomes. The present study was conducted to differentiate true progression (TP) from pseudoprogression (PsP) in long-term-surviving glioblastoma patients using our previously established multiparametric MRI-based predictive model, as well as to identify clinical factors impacting survival outcomes in these patients. Methods: We report six patients with glioblastoma that had an overall survival longer than 5 years. When tumor specimens were available from second-stage surgery, histopathological analyses were used to classify between TP (>25% characteristics of malignant neoplasms; n = 2) and PsP (<25% characteristics of malignant neoplasms; n = 2). In the absence of histopathology, modified RANO criteria were assessed to determine the presence of TP (n = 1) or PsP (n = 1). The predictive probabilities (PPs) of tumor progression were measured from contrast-enhancing regions of neoplasms using a multiparametric MRI-based prediction model. Subsequently, these PP values were used to define each lesion as TP (PP ≥ 50%) or PsP (PP < 50%). Additionally, detailed clinical information was collected. Results: Our predictive model correctly identified all patients with TP (n = 3) and PsP (n = 3) cases, reflecting a significant concordance between histopathology/modified RANO criteria and PP values. The overall survival varied from 5.1 to 12.3 years. Five of the six glioblastoma patients were MGMT promoter methylated. All patients were female, with a median age of 56 years. Moreover, all six patients had a good functional status (KPS ≥ 70), underwent near-total/complete resection, and received alternative therapies. Conclusions: Multiparametric MRI can aid in assessing treatment response in long-term-surviving glioblastoma patients. Full article
Show Figures

Figure 1

22 pages, 19268 KiB  
Article
Key Characteristics and Controlling Factors of the Gas Reservoir in the Fourth Member of the Ediacaran Dengying Formation in the Penglai Gas Field, Sichuan Basin
by Hongwei Chen, Shilin Wang, Ahmed Mansour, Qirong Qin, Mohamed S. Ahmed, Yongjing Cen, Feng Liang, Yuan He, Yi Fan and Thomas Gentzis
Minerals 2025, 15(2), 98; https://doi.org/10.3390/min15020098 - 21 Jan 2025
Cited by 1 | Viewed by 880
Abstract
This study focuses on the PS8 well in the Penglai Gas Field (Sichuan Basin), a newly identified key exploration area, where high-yield gas testing has been achieved from the Ediacaran Fourth Member of the Dengying Formation. Comprehensive analyses of drilling cores, cuttings, thin [...] Read more.
This study focuses on the PS8 well in the Penglai Gas Field (Sichuan Basin), a newly identified key exploration area, where high-yield gas testing has been achieved from the Ediacaran Fourth Member of the Dengying Formation. Comprehensive analyses of drilling cores, cuttings, thin sections, analytical data, well logging, and production testing data were conducted to investigate the main characteristics of the gas reservoir and the factors controlling the formation model of the reservoir. The results reveal that the reservoir rocks in the Fourth Member of the Dengying Formation are primarily algal-clotted dolomite, algal-laminated dolomite, and arenaceous dolomite. The reservoir porosity is dominated by secondary pores, such as algal-bonded framework pores, intergranular dissolved pores, and intercrystalline dissolved pores, which contribute to the overall low porosity and extremely low permeability. The gas reservoir is classified as a unified structural–lithological reservoir, with the upper sub-member of the Fourth Member serving as a completely gas-bearing unit. This unit is characterized as an ultra-deep, dry gas reservoir with medium sulfur and medium CO2 contents. The development of this gas reservoir follows a “laterally generated and laterally stored, upper generation and lower storage” reservoir formation model. Regional unconformities and fracture systems developed during the Tongwan II Episode tectonic movement provide efficient pathways for hydrocarbon migration and accumulation. The high-quality source rocks in the lower Cambrian Qiongzhusi Formation serve as both the direct cap rock and lateral seal of the gas reservoir, creating an optimal source–reservoir spatial configuration. This study provides valuable insights into the giant gas reservoir of the Dengying Formation, which can aid in optimizing exploration activities in the Sichuan Basin. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Graphical abstract

11 pages, 2265 KiB  
Article
Graphene-Based, Flexible, Wearable Piezoresistive Sensors with High Sensitivity for Tiny Pressure Detection
by Rui Li, Jiahao Hu, Yalong Li, Yi Huang, Lin Wang, Mohan Huang, Zhikun Wang, Junlang Chen, Yan Fan and Liang Chen
Sensors 2025, 25(2), 423; https://doi.org/10.3390/s25020423 - 13 Jan 2025
Viewed by 2107
Abstract
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile [...] Read more.
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties. The microstructure has insulating polystyrene (PS) microspheres sandwiched between a graphene oxide (GO) film and a metallic nanocopper-graphene oxide (n-Cu/GO) film. The piezoresistive performance of the sensor can be modulated by controlling the size of the PS microspheres and doping degree of the copper nanoparticles. The sensor demonstrates a high sensitivity of 232.5 kPa−1 in a low-pressure range of 0 to 0.2 kPa, with a fast response of 45 ms and a recovery time of 36 ms, while also exhibiting excellent stability. The piezoresistive performance converts subtle laryngeal articulatory vibration into a stable, regular electrical signal; in addition, there is excellent real-time monitoring capability of human joint movements. This work provides a new idea for the development of wearable electronic devices, healthcare, and other fields. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

13 pages, 5715 KiB  
Article
Characterization and Rheological Properties of Ultra-High Molecular Weight Polyethylenes
by Alexander Ya. Malkin, Tatyana A. Ladygina, Sergey S. Gusarov, Dmitry V. Dudka and Anton V. Mityukov
Polymers 2024, 16(24), 3501; https://doi.org/10.3390/polym16243501 - 16 Dec 2024
Cited by 2 | Viewed by 1762
Abstract
The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS [...] Read more.
The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS data by linear and cubic polynomials, as well as on the data for linear PE. The assessment of the average MW and MWD depends on the choice of calibration method, so that different methods give different results. Only the results obtained using PS with cubic approximation are close to the characteristics offered by the manufacturer. It was also shown that the obtained MW characteristics depend on the dissolution time. The reason for this may be the presence of any processing-aid compounds or destruction of macromolecules. Measurements of the rheological properties were performed in creep modes for a wide range of shear stresses and harmonic oscillations. It was shown that even at 210 °C, UHMWPE does not flow, and the observed irreversible deformations are due to the plasticity of the polymer, i.e., UHMWPE is in an elastic–plastic state. The ultimate plastic deformations drop sharply with increasing MW of the polymer. The plasticity modulus for the highest molecular weight UHMWPE samples does not depend on stress. Measurements of viscoelastic characteristics confirmed that the terminal region of viscous flow cannot be reached under any conditions. Increasing the duration of holding the polymer at high temperature leads not to flow, but to the destruction of macromolecules. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 4174 KiB  
Article
Comparison of Writing Speed, Letter Size, and Upper Extremity Muscle Activation in Stroke Patients Using Two Writing Aids: Evaluation with the Jebsen–Taylor Hand Function Test
by Ji-Yong Jung and Jung-Ja Kim
Appl. Sci. 2024, 14(23), 11172; https://doi.org/10.3390/app142311172 - 29 Nov 2024
Viewed by 1277
Abstract
Currently, writing aids for upper extremity rehabilitation in stroke patients are not developed with consideration of biomechanical characteristics, making it difficult to achieve proper support effects. Therefore, in this study, we conducted a comparative analysis to examine how the use of two types [...] Read more.
Currently, writing aids for upper extremity rehabilitation in stroke patients are not developed with consideration of biomechanical characteristics, making it difficult to achieve proper support effects. Therefore, in this study, we conducted a comparative analysis to examine how the use of two types of writing aids affects writing speed, letter size, and upper extremity muscle activation based on hand function and electromyography assessments in 12 stroke patients. Hand function was assessed using the Jebsen–Taylor hand function test, while writing ability (writing speed and letter size) was measured using the Korean alphabet writing test. Muscle activity was recorded using surface electromyography from both the paralyzed side (PS) and nonparalyzed side (NPS). The results showed that writing speed was significantly slower and horizontal letter sizes were larger on the PS. Additionally, muscle activation patterns on the PS were significantly influenced by the design of the writing aids, suggesting that the aids’ design affects compensatory movements and muscle function. These findings emphasize the importance of personalized rehabilitation tools that cater to the individual needs of stroke patients. Future research will focus on developing customized writing aids based on biomechanical data to better support rehabilitation goals. Full article
Show Figures

Figure 1

15 pages, 325 KiB  
Review
Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets
by Rafał Bilski, Daria Kupczyk and Alina Woźniak
Molecules 2024, 29(22), 5460; https://doi.org/10.3390/molecules29225460 - 19 Nov 2024
Cited by 10 | Viewed by 2659
Abstract
Psoriasis and psoriatic arthritis (PsA) are chronic autoimmune diseases characterized by persistent inflammation and oxidative imbalance. Oxidative stress, caused by excessive production of reactive oxygen species (ROS) and dysfunction in antioxidant mechanisms, plays a critical role in the pathogenesis of both conditions, leading [...] Read more.
Psoriasis and psoriatic arthritis (PsA) are chronic autoimmune diseases characterized by persistent inflammation and oxidative imbalance. Oxidative stress, caused by excessive production of reactive oxygen species (ROS) and dysfunction in antioxidant mechanisms, plays a critical role in the pathogenesis of both conditions, leading to increased inflammatory processes and tissue damage. This study aims to review current antioxidant-based therapeutic options and analyze oxidative stress biomarkers in the context of psoriasis and PsA. Based on available literature, key biomarkers, such as malondialdehyde (MDA), advanced glycation end-products (AGEs), and advanced oxidation protein products (AOPP), were identified as being elevated in patients with psoriasis and PsA. Conversely, antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), showed reduced activity, correlating with symptom severity. The study also examines the efficacy of various antioxidant therapies, including curcumin, resveratrol, coenzyme Q10, and vitamins C and E, which may aid in reducing oxidative stress and alleviating inflammation. The findings indicated that antioxidants can play a significant role in alleviating symptoms and slowing the progression of psoriasis and PsA through modulation of redox mechanisms and reduction of ROS levels. Antioxidant-based therapies offer a promising direction in treating autoimmune diseases, highlighting the need for further research on their efficacy and potential clinical application. Full article
Back to TopTop