Perioperative and Follow-Up Analyses of Primary Posterior Stabilized and Cruciate Retaining Knee Arthroplasty
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Exclusion Criteria
2.3. Inclusion Criteria
2.4. Perioperative Management
2.5. Blood Unit Supply
2.6. Appointment After Six Months
2.7. Statistical Analyses
3. Results
3.1. Recruitment Process
3.2. Patient Demographics
3.3. Mobility
3.4. Leg Axis Measurement
3.5. Range of Motion
3.6. Clinical Data
3.7. Blood Parameters
3.8. Gender Analyses
3.9. Age Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASA | The American Society of Anesthesiology |
BMI | Body mass index |
CRP | C reactive protein |
CR | Cruciate retaining |
Hb | Hemoglobin |
KOOS | Knee Injury and Osteoarthritis Outcome Score |
KWH | Kruskal–Wallis H |
η2p | Partial eta square |
PS | Posterior stabilized |
PROMs | Patient reported outcome measures |
QoL | Quality of life |
ROM | Range of motion |
TKA | Total knee arthroplasty |
WOMAC | Western Ontario and McMaster Universities Osteoarthritis Index |
References
- Singh, J.A.; Yu, S.; Chen, L.; Cleveland, J.D. Rates of Total Joint Replacement in the United States: Future Projections to 2020-2040 Using the National Inpatient Sample. J. Rheumatol. 2019, 46, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, M.; Bieniek, M.; Krakowski, P.; Karpiński, R. Cemented vs. Cementless Fixation in Primary Knee Replacement: A Narrative Review. Materials 2024, 17, 1136. [Google Scholar] [CrossRef]
- Cui, A.; Li, H.; Wang, D.; Zhong, J.; Chen, Y.; Lu, H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. eClinicalMedicine 2020, 29–30, 100587. [Google Scholar] [CrossRef]
- Singleton, N.; Nicholas, B.; Gormack, N.; Stokes, A. Differences in outcome after cruciate retaining and posterior stabilized total knee arthroplasty. J. Orthop. Surg. 2019, 27, 2309499019848154. [Google Scholar] [CrossRef]
- Purudappa, P.P.; Sharma, O.P.; Chandrasekharan, J.; Sudevan, P.J.; Mounasamy, V.; Sambandam, S.N. Clinical outcome, functional outcome and patient satisfaction after cruciate retaining total knee arthroplasty for stiff arthritic knee—A short term outcome study. J. Orthop. 2020, 20, 6–11. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nakajima, A.; Sonobe, M.; Akatsu, Y.; Yamada, M.; Nakagawa, K. A Comparative Study of Clinical Outcomes Between Cruciate-Retaining and Posterior-Stabilized Total Knee Arthroplasty: A Propensity Score-Matched Cohort Study. Cureus 2023, 15, e45775. [Google Scholar] [CrossRef]
- Koettnitz, J.; Isbeih, J.; Peterlein, C.D.; Migliorini, F.; Götze, C. A Comparative Analysis of Perioperative Complications in Octogenarians and Patients under 60 Years of Age after Primary Cemented Total Knee Arthroplasty. Clin. Med. Res. 2023, 21, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Koettnitz, J.; Jäcker, J.; Migliorini, F.; Trost, M.; Peterlein, C.D.; Götze, C. The risk analysis of perioperative complications of cementless hip arthroplasty in octogenarians. Arch. Orthop. Trauma. Surg. 2023, 143, 3551–3559. [Google Scholar] [CrossRef] [PubMed]
- Solarino, G.; Bizzoca, D.; Moretti, A.M.; D’Apolito, R.; Moretti, B.; Zagra, L. Sex and Gender-Related Differences in the Outcome of Total Hip Arthroplasty: A Current Concepts Review. Medicina 2022, 58, 1702. [Google Scholar] [CrossRef]
- Koettnitz, J.; Tigges, J.; Migliorini, F.; Peterlein, C.D.; Götze, C. Analysis of gender differences with traditional posterior stabilized versus kinematic designs in total knee arthroplasty. Arch. Orthop. Trauma. Surg. 2023, 143, 7153–7158. [Google Scholar] [CrossRef]
- Ayers, D.C.; Zheng, H.; Yang, W.; Yousef, M. Gender Differences in Pain, Function, and Quality of Life Five Years Following Primary Total Knee Arthroplasty. J. Arthroplasty 2024, 39, S100–S107. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.W.; Rowe, T.; Tersteeg, M.; Dombrowski, M.E.; Odum, S.; Otero, J.E. The Influence of Patient Sex on Outcomes Following One-Stage and Two-Stage Revision for Periprosthetic Joint Infection in Total Joint Arthroplasty. Antibiotics 2023, 12, 1392. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, D.; Mendonca, V.; Murthy, B.V.S. A review of ASA physical status—Historical perspectives and modern developments. Anaesthesia 2019, 74, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.L.; Stanworth, S.J.; Dennis, J.A.; Trivella, M.; Roubinian, N.; Fergusson, D.A.; Triulzi, D.; Dorée, C.; Hébert, P.C. Transfusion thresholds for guiding red blood cell transfusion. Cochrane Database Syst. Rev. 2021, 12, cd002042. [Google Scholar] [CrossRef]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar]
- Poilvache, P.L.; Insall, J.N.; Scuderi, G.R.; Font-Rodriguez, D.E. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin. Orthop. Relat. Res. 1996, 331, 35–46. [Google Scholar] [CrossRef]
- Tille, E.; Beyer, F.; Lützner, C.; Postler, A.; Lützner, J. Better Flexion but Unaffected Satisfaction After Treatment With Posterior Stabilized Versus Cruciate Retaining Total Knee Arthroplasty—2-year Results of a Prospective, Randomized Trial. J. Arthroplasty 2024, 39, 368–373. [Google Scholar] [CrossRef]
- Bernasek, T.L.; Stoops, T.K.; Gill, M.; Engel, C.; Simon, P. Comparison of Cruciate-Sacrificing vs Posterior-Stabilized Total Knee Replacement Using a Contemporary Total Knee System. J. Arthroplasty 2022, 37, 45–48. [Google Scholar] [CrossRef]
- LeDuc, R.C.; Upadhyay, D.; Brown, N.M. Cruciate-Retaining Versus Cruciate-Substituting Total Knee Arthroplasty: A Meta-Analysis. Indian. J. Orthop. 2023, 57, 1188–1195. [Google Scholar] [CrossRef]
- Longo, U.G.; Ciuffreda, M.; Mannering, N.; D’Andrea, V.; Locher, J.; Salvatore, G.; Denaro, V. Outcomes of Posterior-Stabilized Compared with Cruciate-Retaining Total Knee Arthroplasty. J. Knee Surg. 2018, 31, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Seon, J.K.; Cho, K.J.; Lee, N.H.; Song, E.K. Is Immediate Postoperative Mechanical Axis Associated with the Revision Rate of Primary Total Knee Arthroplasty? A 10-Year Follow-up Study. Clin. Orthop. Surg. 2018, 10, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Soong, J.; Ou Yang, Y.; Ling, Z.M.; Chia, S.L.; Lo, N.N.; Yeo, S.J. Cruciate retaining and posterior stabilized total knee arthroplasty in severe varus osteoarthritis knee: A match-pair comparative study in an Asian population. J. Orthop. Surg. 2021, 29, 23094990211055224. [Google Scholar] [CrossRef]
- Sorel, J.C.; Veltman, E.S.; Honig, A.; Poolman, R.W. The influence of preoperative psychological distress on pain and function after total knee arthroplasty: A systematic review and meta-analysis. Bone Jt. J. 2019, 101-B, 7–14. [Google Scholar] [CrossRef]
- Çalışkan, E.; Aksoy, N. The Relationship Between Preoperative Anxiety Level and Postoperative Pain Outcomes in Total Hip and Knee Replacement Surgery: A Cross-sectional Study. J. Perianesth Nurs. 2025, 40, 76–82. [Google Scholar] [CrossRef]
- Wagner, A.; Wittig, U.; Leitner, L.; Vielgut, I.; Hauer, G.; Ortmaier, R.; Leithner, A.; Sadoghi, P. Comparison of revision rates and epidemiological data of a single total knee arthroplasty system of different designs (cruciate retaining, posterior stabilized, mobile bearing, and fixed bearing): A meta-analysis and systematic review of clinical trials and national arthroplasty registries. Arch. Orthop. Trauma. Surg. 2024, 144, 1997–2006. [Google Scholar] [CrossRef]
- Perez, B.A.; Slover, J.; Edusei, E.; Horan, A.; Anoushiravani, A.; Kamath, A.F.; Nelson, C.L. Impact of gender and race on expectations and outcomes in total knee arthroplasty. World J. Orthop. 2020, 11, 265–277. [Google Scholar] [CrossRef]
- Ayers, D.C.; Yousef, M.; Yang, W.; Zheng, H. Age-Related Differences in Pain, Function, and Quality of Life Following Primary Total Knee Arthroplasty: Results From a FORCE-TJR (Function and Outcomes Research for Comparative Effectiveness in Total Joint Replacement) Cohort. J. Arthroplasty 2023, 38 (Suppl. S2), S169–S176. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, D.H.; Lee, Y.S. Is there an optimal age for total knee arthroplasty?: A systematic review. Knee Surg. Relat. Res. 2020, 32, 60. [Google Scholar] [CrossRef]
- Perdisa, F.; Bordini, B.; Salerno, M.; Traina, F.; Zaffagnini, S.; Filardo, G. Total Knee Arthroplasty (TKA): When Do the Risks of TKA Overcome the Benefits? Double Risk of Failure in Patients up to 65 Years Old. Cartilage 2023, 14, 305–311. [Google Scholar] [CrossRef]
Demographics | Hospitalization | Follow-Up |
---|---|---|
Age | 67.94 ± 10.14 years | 69.01 ± 8.9 years |
Men | 34.1% (42 of 123) | 30.7% (27 of 88) |
Women | 65.9% (81 of 123) | 69.3% (61 of 88) |
BMI | 32.09 ± 6.88 kg/m2 | 31.92 ± 6.50 kg/m2 |
ASA score | 1.95 ± 0.68 | 1.94 ± 0.73 |
Pre-diseases (median) | 2.00 | 2.50 |
None | Forearm Crutches | Walker | Wheelchair | (p); phi | |
---|---|---|---|---|---|
Preoperative | |||||
PS n = 69 | 73.9% | 11.59% | 13.0% | 1.4% | 0.891; 0.102 |
CR n = 51 | 80.4% | 9.8% | 9.8% | - | |
After six months | |||||
PS n = 52 | 63.4% | 19.2% | 17.3% | - | 1.000; 0.036 |
CR n = 34 | 64.7% | 20.5% | 14.7% | - |
Unlimited | Up to 500 m | Under 500 m | Room Mobility | Immobile | (p); phi | |
---|---|---|---|---|---|---|
Preoperative | ||||||
PS n = 70 | 5.7% | 61.3% | 30.0% | 1.5% | 1.5% | 0.692; 0.145 |
CR n = 51 | 5.8% | 58.8% | 29.4% | 5.8% | - | |
After six months | ||||||
PS n = 52 | 11.5% | 21.2% | 67.3% | - | - | 0.942; 0.043 |
CR n = 34 | 11.8% | 17.6% | 70.6% | - | - |
PS-TKA (±SD) | CR-TKA (±SD) | (p), 95%CI | |
---|---|---|---|
Range of motion ° preoperative | 100.29 ± 17.23 | 100.10 ± 18.01 | 0.954, [−6.270/−6.645] |
Range of motion ° during rehab | 76.31 ± 30.08 | 69.83 ± 40.75 | 0.492, [−12.218/−25.171] |
Range of motion ° after 6 months | 105.19 ± 15.56 | 93.29 ± 15.09 | * 0.001, [5.223/18.591] |
Extension deficits ° preoperative | 5.36 ± 6.95 | 4.41 ± 5.8 | 0.515, [−7.094/3.578] |
Extension deficits ° during rehab | 2.74 ± 9.76 | 4.17 ± 10.75 | 0.559, [−6.285/−3.428] |
Extension deficits ° after 6 months | 3.29 ± 6.62 | 5.14 ± 8.44 | 0.255, [−5.074/1.306] |
Flexion deficits ° preoperative | 23.93 ± 14.03 | 25.69 ± 15.42 | 0.404, [−7.094/3.578] |
Flexion deficits ° during rehab | 32.14 ± 23.89 | 28.00 ± 23.25 | 0.466, [−7.123/15.409] |
Flexion deficits ° after 6 months | 23.56 ± 19.73 | 37.57 ± 23.33 | * 0.003, [−23.252/−4.776] |
Leg axis ° (α) preoperative | 8.04 ± 4.52 | 6.99 ± 4.49 | 0.310, [−0.9990/3.1024] |
Leg axis ° (α) postoperative | 2.92 ± 2.17 | 2.57 ± 2.13 | 0.479, [−0.6288/1.3276] |
Leg axis ° (α) after six months | 2.80 ± 2.15 | 3.05 ± 2.11 | 0.729, [−1.2257/0.7363] |
PS-TKA (±SD) | CR-TKA (±SD) | (p), 95%CI | |
---|---|---|---|
Time of surgery (min) | 83.31 ± 25.65 | 95.26 ± 24.61 | [* 0.011, −0.837/−0.108] |
NRS pre-surgery rest | 3.81 ± 2.23 | 4.29 ± 2.61 | [0.147, −1.502/0.361] |
NRS pre-surgery mov | 7.44 ± 1.54 | 7.53 ± 1.75 | [0.808, −0.748/0.579] |
NRS post-surgery (6 mo) rest | 1.08 ± 2.06 | 0.97 ± 1.99 | [0.813, −0.780/0.991] |
NRS post-surgery (6 mo) mov | 2.48 ± 2.50 | 2.46 ± 2.99 | [0.968, −1.154/1.201] |
NRS (dpr) pre-post (6 mo) surgery | 2.51 ± 2.89 | 3.21 ± 2.48 | [0.329, −0.768/0.258] |
ANCOVA analysis | (p), η2p | ||
NRS pre-surgery rest | See above (s. a.) | 0.367, [0.009] | |
NRS pre-surgery mov | s. a. | 0.801, [0.001] | |
NRS post-surgery (6 mo) rest | s. a. | 0.813, [0.001] | |
NRS post-surgery (6 mo) mov | s. a. | 0.968, [0.000] | |
NRS (dpr) pre-post (6 mo) surgery | s. a. | 0.329, [0.015] |
PS-Male | CR-Male | PS-Female | CR-Female | (p), 95%CI | |
---|---|---|---|---|---|
Total ROM ° | 101.33 ± 16.39 | 102.27 ± 20.66 | 99.50 ± 18.00 | 99.50 ± 17.46 | 0.940, [0.000/0.015] |
Flexion deficit ° | 23.33 ± 12.95 | 22.27 ± 14.89 | 24.38 ± 14.94 | 26.63 ± 15.63 | 0.738, [0.000/0.047] |
Extension deficit ° | 5.33 ± 6.81 | 6.36 ± 7.10 | 5.38 ± 7.19 | 3.88 ± 5.48 | 0.605, [0.000/0.061] |
Total ROM ° 6 m | 108.75 ± 16.45 | 89.29 ± 15.66 | 102.97 ± 14.80 | 94.29 ± 15.07 | * 0.003, [0.21/0.271] |
Flexion deficit ° 6 m | 17.50 ± 14.46 | 36.43 ± 13.13 | 27.34 ± 21.77 | 37.86 ± 25.43 | 0.011, [0.008/0.239] |
Ext. deficit ° 6 m | 3.75 ± 6.43 | 4.29 ± 5.34 | 3.00 ± 6.81 | 5.36 ± 9.12 | 0.678, [0.000/0.073] |
PS- < 75 | CR- < 75 | PS- > 75 | CR- > 75 | (p), 95%CI | |
---|---|---|---|---|---|
Total ROM ° | 101.45 ± 17.18 | 101.07 ± 18.66 | 96.00 ± 17.34 | 95.56 ± 14.67 | 0.602, [0.000/0.061] |
Flexion deficit ° | 23.18 ± 14.39 | 24.88 ± 16.21 | 26.67 ± 12.91 | 29.44 ± 11.02 | 0.615, [0.000/0.060] |
Extension deficit ° | 4.82 ± 6.30 | 4.29 ± 5.79 | 7.33 ± 9.03 | 5.00 ± 6.61 | 0.489, [0.000/0.072] |
Total ROM ° 6 m | 105.13 ± 15.10 | 94.50 ± 15.98 | 105.38 ± 17.49 | 86.00 ± 4.18 | 0.005, [0.016/0.259] |
Flexion deficit ° 6 m | 24.74 ± 20.80 | 33.83 ± 20.83 | 20.00 ± 16.33 | 50 ± 27.86 | * 0.001, [0.000/0.086] |
Extension deficit ° 6 m | 2.85 ± 6.35 | 5.33 ± 8.99 | 4.62 ± 7.48 | 4.00 ± 4.18 | 0.580, [0.031/0.292] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reckermann, I.; Orth, P.; Götze, C.; Migliorini, F.; Sönmez, C.; Koettnitz, J. Perioperative and Follow-Up Analyses of Primary Posterior Stabilized and Cruciate Retaining Knee Arthroplasty. J. Clin. Med. 2025, 14, 3752. https://doi.org/10.3390/jcm14113752
Reckermann I, Orth P, Götze C, Migliorini F, Sönmez C, Koettnitz J. Perioperative and Follow-Up Analyses of Primary Posterior Stabilized and Cruciate Retaining Knee Arthroplasty. Journal of Clinical Medicine. 2025; 14(11):3752. https://doi.org/10.3390/jcm14113752
Chicago/Turabian StyleReckermann, Isabel, Patrick Orth, Christian Götze, Filippo Migliorini, Cueneyt Sönmez, and Julian Koettnitz. 2025. "Perioperative and Follow-Up Analyses of Primary Posterior Stabilized and Cruciate Retaining Knee Arthroplasty" Journal of Clinical Medicine 14, no. 11: 3752. https://doi.org/10.3390/jcm14113752
APA StyleReckermann, I., Orth, P., Götze, C., Migliorini, F., Sönmez, C., & Koettnitz, J. (2025). Perioperative and Follow-Up Analyses of Primary Posterior Stabilized and Cruciate Retaining Knee Arthroplasty. Journal of Clinical Medicine, 14(11), 3752. https://doi.org/10.3390/jcm14113752