Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Populus ssp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5764 KiB  
Article
The Distribution Range of Populus euphratica Oliv. (Salicaceae) Will Decrease Under Future Climate Change in Northwestern China
by Xun Lei, Mengjun Qu, Jianming Wang, Jihua Hou, Yin Wang, Guanjun Li, Meiwen Luo, Zhijun Li and Jingwen Li
Forests 2024, 15(8), 1288; https://doi.org/10.3390/f15081288 - 24 Jul 2024
Cited by 3 | Viewed by 1275
Abstract
Climate change has been regarded as a primary threat to biodiversity at local, regional, and global scales. Populus euphratica Oliv. is one of the main constructive species in dryland regions and has a key role in regulating ecosystem processes and services. However, there [...] Read more.
Climate change has been regarded as a primary threat to biodiversity at local, regional, and global scales. Populus euphratica Oliv. is one of the main constructive species in dryland regions and has a key role in regulating ecosystem processes and services. However, there is a knowledge gap regarding the spatial distribution of habitat suitability of P. euphratica and how it will be affected by future climate change. Based on the distribution records collected from an online database and specialized literature, we applied an optimized MaxEnt model to predict the distribution range of P. euphratica in China under four climate change scenarios (SSP126, SSP245, SSP370, and SSP585) for both current and future (2090s) conditions. We found that (1) future climate change would reduce the adaptability of P. euphratica, resulting in a significant decrease in its distribution area; (2) water availability had the most important effect on P. euphratica distribution; (3) the habitat for P. euphratica would shift northwestward and contract towards lower elevations closer to rivers in the future. These findings can provide a reference for developing long-term biodiversity conservation and management strategies in arid regions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Graphical abstract

17 pages, 2401 KiB  
Article
Comparative Assessment of Habitat Suitability and Niche Overlap of Three Cytospora Species in China
by Chengcai Yan, Haiting Hao, Shuaishuai Sha, Zhe Wang, Lili Huang, Zhensheng Kang, Lan Wang and Hongzu Feng
J. Fungi 2024, 10(1), 38; https://doi.org/10.3390/jof10010038 - 3 Jan 2024
Cited by 5 | Viewed by 2350
Abstract
The plant pathogenic fungus Cytospora is notoriously known for causing woody plant canker diseases, resulting in substantial economic losses to biological forests and fruit trees worldwide. Despite their strong negative ecological impact, the existing and prospective distribution patterns of these plant pathogens in [...] Read more.
The plant pathogenic fungus Cytospora is notoriously known for causing woody plant canker diseases, resulting in substantial economic losses to biological forests and fruit trees worldwide. Despite their strong negative ecological impact, the existing and prospective distribution patterns of these plant pathogens in China, according to climate change, have received little attention. In this study, we chose three widely dispersed and seriously damaging species, namely, Cytospora chrysosperma, Cytospora mali, and Cytospora nivea, which are the most common species that damage the Juglans regia, Malus domestica, Eucalyptus, Pyrus sinkiangensis, Populus spp., and Salix spp. in China. We utilized ecological niche modeling to forecast their regional distribution in China under four climate change scenarios (present, SSP 126, SSP 370, and SSP 585). The results show that temperature-related climate factors limit the current distribution ranges of the three species. Currently, the three studied species are highly suitable for northeast, northwest, north, and southwest China. Under future climate scenarios, the distribution ranges of the three species are projected to increase, and the centers of the adequate distribution areas of the three species are expected to shift to high-latitude regions. The three species coexist in China, primarily in the northwest and north regions. The ecological niches of C. chrysosperma and C. nivea are more similar. The distribution range of C. mali can reach the warmer and wetter eastern region, whereas C. chrysosperma and C. nivea are primarily found in drought-prone areas with little rainfall. Our findings can help farmers and planners develop methods to avoid the spread of Cytospora spp. and calculate the costs of applying pesticides to reduce contamination and boost yields. Full article
(This article belongs to the Special Issue Modeling, Warning and Management Strategies of Crop Fungal Disease)
Show Figures

Figure 1

18 pages, 4386 KiB  
Technical Note
Mapping and Estimating Aboveground Biomass in an Alpine Treeline Ecotone under Model-Based Inference
by Ritwika Mukhopadhyay, Erik Næsset, Terje Gobakken, Ida Marielle Mienna, Jaime Candelas Bielza, Gunnar Austrheim, Henrik Jan Persson, Hans Ole Ørka, Bjørn-Eirik Roald and Ole Martin Bollandsås
Remote Sens. 2023, 15(14), 3508; https://doi.org/10.3390/rs15143508 - 13 Jul 2023
Cited by 1 | Viewed by 2072
Abstract
Due to climate change, treelines are moving to higher elevations and latitudes. The estimation of biomass of trees and shrubs advancing into alpine areas is necessary for carbon reporting. Remotely sensed (RS) data have previously been utilised extensively for the estimation of forest [...] Read more.
Due to climate change, treelines are moving to higher elevations and latitudes. The estimation of biomass of trees and shrubs advancing into alpine areas is necessary for carbon reporting. Remotely sensed (RS) data have previously been utilised extensively for the estimation of forest variables such as tree height, volume, basal area, and aboveground biomass (AGB) in various forest types. Model-based inference is found to be efficient for the estimation of forest attributes using auxiliary RS data, and this study focused on testing model-based estimations of AGB in the treeline ecotone using an area-based approach. Shrubs (Salix spp., Betula nana) and trees (Betula pubescens ssp. czerepanovii, Sorbus aucuparia, Populus tremula, Pinus sylvestris, Picea abies) with heights up to about five meters constituted the AGB components. The study was carried out in a treeline ecotone in Hol, southern Norway, using field plots and point cloud data obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP). The field data were acquired for two different strata: tall and short vegetation. Two separate models for predicting the AGB were constructed for each stratum based on metrics calculated from ALS and DAP point clouds, respectively. From the stratified predictions, mean AGB was estimated for the entire study area. Despite the prediction models showing a weak fit, as indicated by their R2-values, the 95% CIs were relatively narrow, indicating adequate precision of the AGB estimates. No significant difference was found between the mean AGB estimates for the ALS and DAP models for either of the strata. Our results imply that RS data from ALS and DAP can be used for the estimation of AGB in treeline ecotones. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

19 pages, 2775 KiB  
Article
The Effect of Biochar Amendment, Microbiome Inoculation, Crop Mixture and Planting Density on Post-Mining Restoration
by Degi Harja Asmara, Suzanne Allaire, Meine van Noordwijk and Damase P. Khasa
Forests 2023, 14(4), 856; https://doi.org/10.3390/f14040856 - 21 Apr 2023
Cited by 4 | Viewed by 2295
Abstract
Ecological restoration with a multispecies and multifunctional approach can accelerate the re-establishment of numerous ecosystem services. The challenges with land that is degraded, damaged, or destroyed post-mining are the low productivity of soil and the high potential for contaminants. Herein, we evaluated the [...] Read more.
Ecological restoration with a multispecies and multifunctional approach can accelerate the re-establishment of numerous ecosystem services. The challenges with land that is degraded, damaged, or destroyed post-mining are the low productivity of soil and the high potential for contaminants. Herein, we evaluated the multispecies and multifunctional approach to restoration strategy through a mixture of woody and herbaceous species, microsymbiont and biochar amendments, and plant spacing. The experiments were conducted using greenhouse and field trials located in Quebec, Canada. We used a mixture of tree species (Alnus viridis (Chaix) DC. ssp. crispa (Aiton) Turrill, Picea glauca (Moench) Voss, Populus tremuloides Michx. and Salix arbusculoides Andersson) and herbaceous species (Avena sativa L., Festuca rubra L. and Trifolium repens L.) on two types of gold-mine waste materials (fine tailing and waste rock). The biochar amendment and microbial inoculation were applied on both greenhouse and field trials. We found both positive and negative effects of plant spacing, biochar amendment and inoculation depending on their interactions. The net positive effect was shown by combining high plantation density, biochar, and inoculation factors on Alnus viridis ssp. crispa. Overall, plantation density was shown to be the most important factor in generating the net positive effect. We suggest that the mechanism was correlated with the improvement in microclimate through soil plant water conservation and microbial activity enhancement over soil temperature modification. Hence, we propose to put emphasis on microclimate improvement for accelerating the restoration processes, along with other combined factors, including microbial inoculation and biochar amendment. Full article
(This article belongs to the Special Issue Production in Forest Nurseries and Field Performance of Seedlings)
Show Figures

Figure 1

21 pages, 365 KiB  
Article
Effect of Supercritical Extract from Black Poplar and Basket Willow on the Quality of Natural and Probiotic Drinkable Yogurt
by Marcin Walter, Bartosz Brzozowski and Marek Adamczak
Animals 2021, 11(10), 2997; https://doi.org/10.3390/ani11102997 - 19 Oct 2021
Cited by 15 | Viewed by 2891
Abstract
Yogurt is a fermented milk drink produced by Streptococcus thermophilus, Lactobacillus delbrüeckii ssp. bulgaricus, or Lactobacillus rhamnosus, which can be enriched with polyphenolic compounds to enhance its antioxidant properties. Supercritical (scCO2/H2O) extracts obtained from the mixture [...] Read more.
Yogurt is a fermented milk drink produced by Streptococcus thermophilus, Lactobacillus delbrüeckii ssp. bulgaricus, or Lactobacillus rhamnosus, which can be enriched with polyphenolic compounds to enhance its antioxidant properties. Supercritical (scCO2/H2O) extracts obtained from the mixture of bark and wood of black poplar (Populus nigra) and basket willow (Salix viminalis) are the source of bioactive compounds. The aim of the study was to assess the effect of supercritical extracts from the P. nigra and S. viminalis on the fermentation, quality, and bioactive properties of drinkable natural and probiotic yogurts. The incorporation of scCO2/H2O extracts at a dose of 0.01% (w/v) into milk for the production of natural and probiotic yogurts increases their functional properties by enhancing the antioxidant activity without causing negative effects on the physicochemical and organoleptic properties of products. The antioxidant activity of yogurt with scCO2/H2O extract from P. nigra and S. viminalis was higher than control yogurts by 1.3–13.2% and 4.4–37.5%, respectively. The addition of a supercritical S. viminalis extract reduced the time of natural and probiotic yogurt fermentation. Natural and probiotic yogurt with scCO2/H2O extracts added was characterised by a bacterial population size of over 7 log cfu/g, and the microflora was active throughout the cold storage period. FTIR analysis confirmed the presence of scCO2/H2O extracts from P. nigra or S. viminalis in both types of yogurt. A secondary structure analysis confirmed interactions between compounds of scCO2/H2O extract from P. nigra and S. viminalis extract with milk proteins. These interactions affect the compounds’ structural and functional properties by changing, e.g., their digestibility and antioxidant properties. Full article
25 pages, 6268 KiB  
Article
Using Discrete-Point LiDAR to Classify Tree Species in the Riparian Pacific Northwest, USA
by Julia Tatum and David Wallin
Remote Sens. 2021, 13(14), 2647; https://doi.org/10.3390/rs13142647 - 6 Jul 2021
Cited by 8 | Viewed by 3591
Abstract
Practical methods for tree species identification are important for both land management and scientific inquiry. LiDAR has been widely used for species mapping due to its ability to characterize 3D structure, but in structurally complex Pacific Northwest forests, additional research is needed. To [...] Read more.
Practical methods for tree species identification are important for both land management and scientific inquiry. LiDAR has been widely used for species mapping due to its ability to characterize 3D structure, but in structurally complex Pacific Northwest forests, additional research is needed. To address this need and to determine the feasibility of species modeling in such forests, we compared six approaches using five algorithms available in R’s lidR package and Trimble’s eCognition software to determine which approach most consistently identified individual trees across a heterogenous riparian landscape. We then classified segments into Douglas fir (Pseudotsuga menziesii), black cottonwood (Populus balsamifera ssp. trichocarpa), and red alder (Alnus rubra). Classification accuracies based on the best-performing segmentation method were 91%, 92%, and 84%, respectively. To our knowledge, this is the first study to investigate tree species modeling from LiDAR in a natural Pacific Northwest forest, and the first to model Pacific Northwest species at the landscape scale. Our results suggest that LiDAR alone may provide enough information on tree species to be useful to land managers in limited applications, even under structurally challenging conditions. With slight changes to the modeling approach, even higher accuracies may be possible. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

11 pages, 1795 KiB  
Article
Growth Response of Aspen and Alder to Fresh and Stockpiled Reclamation Soils
by Kwadwo Omari, Sanatan Das Gupta and Bradley D. Pinno
Forests 2018, 9(12), 731; https://doi.org/10.3390/f9120731 - 22 Nov 2018
Cited by 3 | Viewed by 3399
Abstract
Soil stockpiling is a common reclamation practice used in oil sands mining in the boreal forest region of Canada to conserve soil resources; but stockpiling may have detrimental effects on soil quality and plant growth. We examined growth response of trembling aspen ( [...] Read more.
Soil stockpiling is a common reclamation practice used in oil sands mining in the boreal forest region of Canada to conserve soil resources; but stockpiling may have detrimental effects on soil quality and plant growth. We examined growth response of trembling aspen (Populus tremuloides Michx.), a fast-growing early successional tree, and green alder (Alnus viridis (Chaix) DC. ssp crispa (Ait.) Turrill), a nitrogen-fixing shrub, to stockpiling and fertilization treatments on two reclamation soils (forest floor mineral mix (FFMM) and peat mineral mix (PMM)). Aspen and alder seeds were planted and their growth monitored for four months in the greenhouse. We found that unfertilized stockpiled FFMM supported significantly higher aspen and alder aboveground biomass than the other fresh and stockpiled soils. Phosphorus and potassium supply rates were highest in stockpiled FFMM and were positively correlated with aboveground plant biomass. There was no significant difference in aspen and alder aboveground biomasses between unfertilized fresh FFMM and PMM soils. Aspen grown in combination with nitrogen-fixing alder did not experience competition or facilitation except on fresh PMM, where aspen height declined. Fertilization increased both aspen and alder growth and eliminated differences in growth between soil types and stockpiling treatments. Our study showed that individual soil properties are more important for revegetation purposes than type of soil or stockpiling treatment. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

29 pages, 3577 KiB  
Article
Allometries for Widely Spaced Populus ssp. and Betula ssp. in Nurse Crop Systems
by Hendrik Stark, Arne Nothdurft and Jürgen Bauhus
Forests 2013, 4(4), 1003-1031; https://doi.org/10.3390/f4041003 - 22 Nov 2013
Cited by 15 | Viewed by 7046
Abstract
Nurse crops of widely spaced pioneer trees are a silvicultural approach to protect the regeneration of frost sensitive target tree species. If overstorey nurse crops are harvested, they can provide additional short-term benefits through increased biomass production, e.g., for bioenergy. However, the intensification [...] Read more.
Nurse crops of widely spaced pioneer trees are a silvicultural approach to protect the regeneration of frost sensitive target tree species. If overstorey nurse crops are harvested, they can provide additional short-term benefits through increased biomass production, e.g., for bioenergy. However, the intensification of biomass exports from forests might impact negatively on ecosystem nutrient pools. Thus, precise allometric biomass equations are required to quantify biomass and nutrient removals. Since an analysis of published allometric equations developed for typical, dense aspen or birch forests showed that the tree height-to-diameter ratio correlated positively and the proportion of branch biomass negatively with stand density, we developed new allometric biomass equations for widely spaced aspen and birch growing at 4 x 4 m spacing. These equations yielded a root mean squared error of 13% when predicting total aboveground woody biomass for our sample trees. In contrast, the corresponding root mean squared error produced by allometric biomass equations from the literature ranged between 17% to 106% of actual dry biomass. Our results show that specific allometric biomass equations are needed for widely spaced pioneer trees both for accurate estimates of biomass and the nutrients contained within. Full article
Show Figures

Figure 1

Back to TopTop