Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = Polystyrene nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 26296 KB  
Article
Gamma Radiation Shielding Efficiency of Cross-Linked Polystyrene-b-Polyethyleneglycol Block Copolymer Nanocomposites Doped Arsenic (III) Oxide and Boron Nitride Nanoparticles
by Bülend Ortaç, Taylan Baskan, Saliha Mutlu, Sevil Savaskan Yilmaz and Ahmet Hakan Yilmaz
Polymers 2025, 17(24), 3330; https://doi.org/10.3390/polym17243330 - 17 Dec 2025
Viewed by 201
Abstract
In recent years, polymer-based hybrid nanocomposites have emerged as promising alternatives to traditional heavy metal shields due to their low density, flexibility, and environmental safety. In this study, the synthesis of PS-PEG copolymers and the gamma radiation-shielding properties of PS-PEG/As2O3 [...] Read more.
In recent years, polymer-based hybrid nanocomposites have emerged as promising alternatives to traditional heavy metal shields due to their low density, flexibility, and environmental safety. In this study, the synthesis of PS-PEG copolymers and the gamma radiation-shielding properties of PS-PEG/As2O3, PS-PEG/BN, and PS-PEG/As2O3/BN nanocomposites with different compositions are investigated. The goal is to find the optimal nanocomposite composition for gamma radiation shielding and dosimetry. Therefore, the mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), half-value layer (HVL), tenth-value layer (TVL), effective atomic number, mean free path (MFP), radiation shielding efficiency (RPE), electron density, and specific gamma-ray constant were presented. Gamma rays emitted by the Eu source were detected by a high-purity germanium (HPGe) detector device. GammaVision was used to analyze the given data. Photon energy was in the vicinity of 121.8–1408.0 keV. The MAC values in XCOM simulation tools were used to compute. Gamma-shielding efficiency was increased by an increased number of NPs at a smaller photon energy. At 121.8 keV, the HVL of a composite with 70 wt% As2O3 NPs is 2.00 cm, which is comparable to the HVL of lead (0.56 cm) at the same energy level. Due to the increasing need for lightweight, flexible, and lead-free shielding materials, PS-b-PEG copolymer-based nanocomposites reinforced with arsenic oxide and BN NPs will be materials of significant interest for next-generation radiation protection applications. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

21 pages, 2201 KB  
Review
The Future of Sustainable Packaging: Exploring Biodegradable Solutions Through Extrusion, Thermo-Expansion, 3D Printing and Supercritical Fluid from Agro-Industry Waste
by Lacan S. Rabelo, Fabrício C. Tanaka, Sidney S. dos Santos, Fauze A. Aouada and Márcia R. de Moura
Foods 2025, 14(23), 4027; https://doi.org/10.3390/foods14234027 - 24 Nov 2025
Viewed by 689
Abstract
Due to environmental disasters caused by the use of plastic packaging, particularly expanded polystyrene (EPS), there is an urgent need to identify sustainable alternatives. Biodegradable foams derived from renewable polysaccharides have emerged as highly promising candidates to replace EPS, given their comparable cushioning [...] Read more.
Due to environmental disasters caused by the use of plastic packaging, particularly expanded polystyrene (EPS), there is an urgent need to identify sustainable alternatives. Biodegradable foams derived from renewable polysaccharides have emerged as highly promising candidates to replace EPS, given their comparable cushioning and barrier properties. However, despite the rapid growth of research in this area, there has not yet been a comprehensive review addressing biodegradable foams as a specific class of packaging materials, particularly regarding their processing routes, raw materials, and functionalization. This work discusses conventional techniques for producing biodegradable foams, such as thermoforming and extrusion, as well as innovative methods, including supercritical fluids and 3D printing. It also examines key renewable polysaccharides and the incorporation of agro-industrial residues into foam matrices, aiming to improve performance and reduce costs. Furthermore, the article highlights advances in composite and nanocomposite foams, with particular emphasis on active properties such as ethylene absorption and antimicrobial activity capable of extending food shelf life. By directing attention to biodegradable foams as substitutes for expanded polystyrene, this review provides a unique contribution, filling a critical gap in the field and offering a foundation for future studies aimed at developing scalable, low-cost, and eco-friendly alternatives to plastics. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 1714 KB  
Article
Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films
by Ayman A. A. Ismail, Henryk Bednarski and Andrzej Marcinkowski
Materials 2025, 18(19), 4569; https://doi.org/10.3390/ma18194569 - 1 Oct 2025
Viewed by 594
Abstract
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping [...] Read more.
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping or modifying the physical conditions of the layer deposition. Despite many years of intensive research on the relationship between the microstructure and properties of these layers, there are still gaps in our knowledge, especially with respect to the detailed understanding of the charge carrier transport mechanism in organic semiconductor thin films. In this work, we investigate the effect of acid doping of PEDOT:PSS thin films on the intra-chain and inter-chain conductivity by developing a model that treats PEDOT:PSS as a nanocomposite material. This model is based on the effective medium theory and uses the percolation theory equation for the electrical conductivity of a mixture of two materials. Here its implementation assumes that the role of the highly conductive material is attributed to the intra-chain conductivity of PEDOT and its quantitative contribution is determined based on the optical Drude–Lorentz model. While the weaker inter-chain conductivity is assumed to originate from the weakly conductive material and is determined based on electrical measurements using the van der Pauw method and coherent nanostructure-dependent analysis. Our studies show that doping with methanesulfonic acid significantly affects both types of conductivity. The intra-chain conductivity of PEDOT increases from 260 to almost 400 Scm−1. Meanwhile, the inter-chain conductivity increases by almost three orders of magnitude, reaching a critical state, i.e., exceeding the percolation threshold. The observed changes in electrical conductivity due to acid doping are attributed to the flattening of the PEDOT/PSS gel nanoparticles. In the model developed here, this flattening is accounted for by the inclusion shape factor. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Graphical abstract

13 pages, 4343 KB  
Article
Interfacial Engineering of Hydrophobic Montmorillonite for High-Energy-Capability Polypropylene Nanocomposite Dielectrics
by Shiheng Li, Guangsen Zheng, Chu Cao, Chaoqiong Zhu, Baojing Zhang, Ziming Cai and Peizhong Feng
Crystals 2025, 15(9), 786; https://doi.org/10.3390/cryst15090786 - 31 Aug 2025
Viewed by 738
Abstract
Polypropylene (PP) dielectric capacitors are crucial for electronics and electric power systems due to their high power density. However, their relatively low energy density limits their practical application in energy storage devices, presenting a long-standing challenge. Montmorillonite (MMT), a natural phyllosilicate mineral abundantly [...] Read more.
Polypropylene (PP) dielectric capacitors are crucial for electronics and electric power systems due to their high power density. However, their relatively low energy density limits their practical application in energy storage devices, presenting a long-standing challenge. Montmorillonite (MMT), a natural phyllosilicate mineral abundantly found on earth, features a two-dimensional nanosheet structure and excellent insulating properties. MMT nanosheets have shown promise in enhancing the breakdown strength and energy storage capability of PP dielectric, but compatibility issues with the PP matrix remain a challenge. In this study, we propose a novel surface modification strategy in which polystyrene (PS)-capped MMT (PCM) nanosheets are synthesized through a polymerization–dissolution process. The modified PCM nanosheets demonstrate improved compatibility and are well dispersed within the PP matrix. Optimal loading of the PCM nanosheets effectively dissipate charge energy and hinder the growth of electric trees in the PP matrix. As a result, the PP nanocomposite with 0.2 wt% PCM nanosheets exhibits an enhanced breakdown strength of 619 MV m−1 and a discharged energy density of 4.23 J cm−3, with an energy storage efficiency exceeding 90%. These findings provide a promising strategy for the development of high-energy-density dielectric capacitors in an economical manner. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

31 pages, 7787 KB  
Review
Global Research Trends in Photocatalytic Degradation of Microplastics: A Bibliometric Perspective
by Robert O. Gembo, Zebron Phiri, Lawrence M. Madikizela, Ilunga Kamika, Lueta-Ann de Kock and Titus A. M. Msagati
Microplastics 2025, 4(3), 35; https://doi.org/10.3390/microplastics4030035 - 21 Jun 2025
Cited by 3 | Viewed by 4862
Abstract
Microplastics have emerged as pervasive contaminants in various ecosystems, raising considerable concerns regarding their impact on environmental health and public safety. The degradation of microplastics is thus recognized as a pressing global challenge. Photocatalytic degradation has emerged as a promising approach due to [...] Read more.
Microplastics have emerged as pervasive contaminants in various ecosystems, raising considerable concerns regarding their impact on environmental health and public safety. The degradation of microplastics is thus recognized as a pressing global challenge. Photocatalytic degradation has emerged as a promising approach due to its potential for efficiency and environmental sustainability. Nevertheless, there remains a need to investigate emerging trends and advancements to understand and fully optimize this technique. Consequently, PRISMA guidelines were employed to define the search parameters, enable the identification of pertinent scholarly articles, and systematically gather bibliographic data from the published literature from 2005 to October 2024. A bibliometric analysis of 204 research articles derived from merged Scopus and Web of Science datasets was conducted to map the field’s research landscape. The analysis showed a robust annual publication growth rate of 17.94%, with leading contributions from China, India, Mexico, and the United Kingdom. Keyword analysis revealed that the commonly applied photocatalysts are titanium dioxide and zinc oxide in the photocatalytic degradation of polyethylene terephthalate, polypropylene, polystyrene, polyvinyl chloride, high-density polyethylene, and low-density polyethylene. Advances in collaboration across Asia and Europe have bolstered the research landscape. However, challenges persist in achieving cost-effective scalability, ensuring the safety of degradation byproducts, and translating laboratory findings into real-world applications. Emerging trends include the development of visible-light-responsive catalysts, advanced nanocomposites, and sustainable photocatalytic technologies. This study underscores the utility of bibliometric tools in identifying knowledge gaps and guiding the development of innovative approaches for microplastic degradation as part of environmental remediation efforts. Full article
Show Figures

Figure 1

18 pages, 10080 KB  
Article
SCC Susceptibility of Polystyrene/TiO2 Nanocomposite-Coated Thin-Sheet Aluminum Alloy 2024—T3 in 3.5% NaCl
by Cheng-fu Chen, Brian Baart, John Halford and Junqing Zhang
Eng 2025, 6(4), 83; https://doi.org/10.3390/eng6040083 - 21 Apr 2025
Viewed by 947
Abstract
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a [...] Read more.
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a bare polystyrene coating. A compact tension (CT) specimen (5 mm thick) was coated for testing in a synergistic stress–corrosion environment. A slow constant displacement rate of 1.25 nm/s was applied in the load-line direction of the specimen to gradually open the crack mouth, while the crack tip was periodically dosed with a 3.5 wt.% NaCl solution. Load-displacement data were recorded and analyzed to calculate the J-integral, according to Standard ASTM E1820, for each coated specimen tested under laboratory-controlled SCC conditions. The fracture toughness, stress intensity, and six other SCC susceptibility indices were further developed to compare the performance of each coating in enhancing SCC resistance. The results revealed a strong dependence of SCC resistance on the nanoparticle aspect ratio, with the nanocomposite coating featuring an AR of 1 performing the best. The SCC behavior was reflected in the fractography of the fractured halves of a specimen, where cleavage was observed during the very slow, stable cracking stage, and dimples formed as a result of fast, unstable cracking toward the end of testing. These findings highlight the potential of tailored nanocomposite coatings to enhance the durability of aerospace-grade aluminum alloys. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

17 pages, 7967 KB  
Article
TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes
by Sushanta Lenka, Shivam Gupta, Bushra Rehman, Deepak Kumar Dubey, Hsuan-Min Wang, Ankit Sharma, Jayachandran Jayakumar, Ching-Wu Wang, Nyan-Hwa Tai, Saulius Grigalevicius and Jwo-Huei Jou
Nanomaterials 2025, 15(3), 199; https://doi.org/10.3390/nano15030199 - 27 Jan 2025
Cited by 2 | Viewed by 2152
Abstract
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the [...] Read more.
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the PEDOT/PSS solution, followed by their incorporation into the OLED hole-injection layer (HIL). Our results demonstrate a significant improvement in device efficiency, attributed to the optimized charge carrier mobility and reduced recombination losses, which were achieved by the presence of TiO2. The nanocomposite hybrid layer enhances light emission efficiency due to its role in modifying surface roughness, promoting better film uniformity, and improving hole injection. The incorporation of TiO2 nanobelts into PEDOT/PSS led to significant efficiency enhancements, yielding a 39% increase in PEmax, a 37% improvement in CEmax, and a remarkable 72% rise in EQEmax compared to the undoped counterpart. This research provides insight into the potential of TiO2 nanocomposites in advancing OLED technology for next-generation display and lighting applications. Full article
Show Figures

Figure 1

18 pages, 8093 KB  
Article
Cell Morphology, Material Property and Ni(II) Adsorption of Microcellular Injection-Molded Polystyrene Reinforced with Graphene Nanoparticles
by Minyuan Chien, Shiachung Chen, Kuanyi Huang, Tlou Nathaniel Moja and Shyhshin Hwang
Polymers 2025, 17(2), 189; https://doi.org/10.3390/polym17020189 - 14 Jan 2025
Cited by 2 | Viewed by 1475
Abstract
Graphene’s incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated [...] Read more.
Graphene’s incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses. Key factors, including initial ion concentration, pH, temperature, and sorbent dosage, were examined. Results showed optimal nickel removal at specific pH levels with removal efficiency decreasing from 91 to 80% as Ni (II) concentrations increased from 10 to 100 mg/L. The adsorption capacity improved from 11 to 130 mg/g. Equilibrium data aligned with Langmuir and Freundlich isotherm models, while adsorption kinetics followed a second-order kinetic model. These findings highlight the potential of PS/GP nanocomposites for nickel ion removal, offering a promising solution for small-scale industrial applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymeric Adsorbent Materials)
Show Figures

Graphical abstract

21 pages, 3951 KB  
Article
Smart Coating of Carbon Steel Using Polystyrene Clay Nanocomposites Loaded with Cerium and Silanol Inhibitors: Characterization and Electrochemical Study
by Layla A. Al Juhaiman, Mona A. Al Jufareen, Saeed M. Al-Zahrani, Ubair Abdus Samad and Tahani S. Al-Garni
Polymers 2024, 16(22), 3196; https://doi.org/10.3390/polym16223196 - 17 Nov 2024
Cited by 1 | Viewed by 1737
Abstract
Local Khulays clay was modified to prepare polystyrene clay nanocomposite (PCN) coatings on carbon steel. The PCN coatings were added to microcapsules (MCs) loaded with the corrosion inhibitor PCN(MC). The microcapsules were prepared by the encapsulation of rare-earth metal Ce+3 ions and [...] Read more.
Local Khulays clay was modified to prepare polystyrene clay nanocomposite (PCN) coatings on carbon steel. The PCN coatings were added to microcapsules (MCs) loaded with the corrosion inhibitor PCN(MC). The microcapsules were prepared by the encapsulation of rare-earth metal Ce+3 ions and isobutyl silanol into polystyrene via the double emulsion solvent evaporation (DESE) technique. From characterization techniques, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with EDX. SEM and FT-IR confirmed the success of the preparation of the PCN(MC). Nanoindentation tests were performed on the thin-film samples. A significant reduction in both the hardness and the reduced modulus was observed for the PCN film compared to the PS film. Electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) all showed an enhanced protection efficiency (%PE) of 3% PCN(MC) over 3% PCN at high temperatures and at different times. The smart coatings were proven by applying the thermal and the mechanical triggers for the 3% PCN(MC) coating. The mechanism of the release of inhibitors was discussed. The self-healing properties of 3% PCN(MC) were evaluated. The enhanced properties of the developed PCN(MC) coatings make them attractive for potential applications in the oil and other industries. Full article
Show Figures

Figure 1

17 pages, 13842 KB  
Article
Fabrication of Functionalized Graphene Oxide–Aluminum Hypophosphite Nanohybrids for Enhanced Fire Safety Performance in Polystyrene
by Zhenzhen Deng, Tao Tang, Junjie Huo, Hui He and Kang Dai
Polymers 2024, 16(21), 3083; https://doi.org/10.3390/polym16213083 - 31 Oct 2024
Cited by 3 | Viewed by 1318
Abstract
To enhance the fire safety performance in polystyrene (PS), a novel organic–inorganic hybrid material (FGO–AHP) was successfully prepared by the combination of functionalized graphene oxide (FGO) and aluminum hypophosphite (AHP) via a chemical deposition method. The resulting FGO–AHP nanohybrids were incorporated into PS [...] Read more.
To enhance the fire safety performance in polystyrene (PS), a novel organic–inorganic hybrid material (FGO–AHP) was successfully prepared by the combination of functionalized graphene oxide (FGO) and aluminum hypophosphite (AHP) via a chemical deposition method. The resulting FGO–AHP nanohybrids were incorporated into PS via a masterbatch-melt blending to produce PS/FGO–AHP nanocomposites. Scanning electron microscope images confirm the homogeneous dispersion and exfoliation state of FGO–AHP in the PS matrix. Incorporating FGO–AHP significantly improves the thermal behavior and fire safety performance of PS. By incorporating 5 wt% FGO–AHP, the maximum mass loss rate (MMLR) in air, total heat release (THR), and maximum smoke density value (Dsmax) of PS nanocomposite achieve a reduction of 53.1%, 23.4%, and 50.9%, respectively, as compared to the pure PS. In addition, thermogravimetry–Fourier transform infrared (TG–FTIR) results indicate that introducing FGO–AHP notably inhibits the evolution of volatile products from PS decomposition. Further, scanning electron microscopy (SEM), FTIR, and Raman spectroscopy were employed to investigate the char residue of PS nanocomposite samples, elaborating the flame-retardant mechanism in PS/FGO–AHP nanocomposites. Full article
(This article belongs to the Special Issue Advances in Flame Retardant Polymeric Materials and Composites)
Show Figures

Figure 1

16 pages, 10346 KB  
Article
Hierarchical Two-Dimensional Layered Nickel Disulfide (NiS2)@PEDOT:PSS Nanocomposites as Battery-Type Electrodes for Battery-Type Supercapacitors with High Energy Density
by Susmi Anna Thomas, Jayesh Cherusseri and Deepthi N. Rajendran
Electrochem 2024, 5(3), 298-313; https://doi.org/10.3390/electrochem5030019 - 17 Jul 2024
Cited by 24 | Viewed by 2315
Abstract
Battery-type hybrid supercapacitors (HSCs) (otherwise known as supercapatteries) are novel electrochemical energy storage devices bridge the gap between rechargeable batteries and traditional SCs. Herein, we report the synthesis of layered two-dimensional (2D) nickel disulfide (NiS2) nanosheets (NSNs) modified with poly(3,4-ethylenedioxythiophene:polystyrene sulfonate [...] Read more.
Battery-type hybrid supercapacitors (HSCs) (otherwise known as supercapatteries) are novel electrochemical energy storage devices bridge the gap between rechargeable batteries and traditional SCs. Herein, we report the synthesis of layered two-dimensional (2D) nickel disulfide (NiS2) nanosheets (NSNs) modified with poly(3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) and their successful implementation in battery-type SCs. Initially, a layered 2D NSN is synthesized via a microwave-assisted hydrothermal method and further used as a template to coat PEDOT:PSS in order to prepare NiS2@PEDOT:PSS nanocomposite electrodes by a facile drop-casting method. This is the first-time report on the synthesis of a hierarchical NiS2@PEDOT:PSS nanocomposite electrode for battery-type HSC applications. An asymmetric battery-type HSC fabricated with NSN@PEDOT:PSS nanocomposite as positrode and activated carbon as negatrode delivers a maximum energy density of 52.1 Wh/kg at a current density of 1.6 A/g with a corresponding power density of 2500 W/kg. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

30 pages, 11705 KB  
Article
Assessment of the Biocompatibility Ability and Differentiation Capacity of Mesenchymal Stem Cells on Biopolymer/Gold Nanocomposites
by Huey-Shan Hung, Chiung-Chyi Shen, Jyun-Ting Wu, Chun-Yu Yueh, Meng-Yin Yang, Yi-Chin Yang and Wen-Yu Cheng
Int. J. Mol. Sci. 2024, 25(13), 7241; https://doi.org/10.3390/ijms25137241 - 30 Jun 2024
Cited by 7 | Viewed by 2089
Abstract
This study assessed the biocompatibility of two types of nanogold composites: fibronectin-gold (FN-Au) and collagen-gold (Col-Au). It consisted of three main parts: surface characterization, in vitro biocompatibility assessments, and animal models. To determine the structural and functional differences between the materials used in [...] Read more.
This study assessed the biocompatibility of two types of nanogold composites: fibronectin-gold (FN-Au) and collagen-gold (Col-Au). It consisted of three main parts: surface characterization, in vitro biocompatibility assessments, and animal models. To determine the structural and functional differences between the materials used in this study, atomic force microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectrophotometry were used to investigate their surface topography and functional groups. The F-actin staining, proliferation, migration, reactive oxygen species generation, platelet activation, and monocyte activation of mesenchymal stem cells (MSCs) cultured on the FN-Au and Col-Au nanocomposites were investigated to determine their biological and cellular behaviors. Additionally, animal biocompatibility experiments measured capsule formation and collagen deposition in female Sprague–Dawley rats. The results showed that MSCs responded better on the FN-Au and Col-AU nanocomposites than on the control (tissue culture polystyrene) or pure substances, attributed to their incorporation of an optimal Au concentration (12.2 ppm), which induced significant surface morphological changes, nano topography cues, and better biocompatibility. Moreover, neuronal, endothelial, bone, and adipose tissues demonstrated better differentiation ability on the FN-Au and Col-Au nanocomposites. Nanocomposites have a crucial role in tissue engineering and even vascular grafts. Finally, MSCs were demonstrated to effectively enhance the stability of the endothelial structure, indicating that they can be applied as promising alternatives to clinics in the future. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

19 pages, 6048 KB  
Review
Research Progress on Helmet Liner Materials and Structural Applications
by Xingyu Zhang, Bin Yang, Jinguo Wu, Xin Li and Ronghua Zhou
Materials 2024, 17(11), 2649; https://doi.org/10.3390/ma17112649 - 30 May 2024
Cited by 11 | Viewed by 5183
Abstract
As an important part of head protection equipment, research on the material and structural application of helmet liners has always been one of the hotspots in the field of helmets. This paper first discusses common helmet liner materials, including traditional polystyrene, polyethylene, polypropylene, [...] Read more.
As an important part of head protection equipment, research on the material and structural application of helmet liners has always been one of the hotspots in the field of helmets. This paper first discusses common helmet liner materials, including traditional polystyrene, polyethylene, polypropylene, etc., as well as newly emerging anisotropic materials, polymer nanocomposites, etc. Secondly, the design concept of the helmet liner structure is discussed, including the use of a multi-layer structure, the addition of geometric irregular bubbles to enhance the energy absorption effect, and the introduction of new manufacturing processes, such as additive manufacturing technology, to realize the preparation of complex structures. Then, the application of biomimetic structures to helmet liner design is analyzed, such as the design of helmet liner structures with more energy absorption properties based on biological tissue structures. On this basis, we propose extending the concept of bionic structural design to the fusion of plant stalks and animal skeletal structures, and combining additive manufacturing technology to significantly reduce energy loss during elastic yield energy absorption, thus developing a reusable helmet that provides a research direction for future helmet liner materials and structural applications. Full article
(This article belongs to the Special Issue Advances in Materials Science for Engineering Applications)
Show Figures

Figure 1

36 pages, 3757 KB  
Review
Functionalization of Carbon Nanotubes in Polystyrene and Properties of Their Composites: A Review
by Hongfu Li, Guangfei Wang, Ying Wu, Naisheng Jiang and Kangmin Niu
Polymers 2024, 16(6), 770; https://doi.org/10.3390/polym16060770 - 11 Mar 2024
Cited by 37 | Viewed by 6372
Abstract
The inherent π–π interfacial interaction between carbon nanotubes (CNTs) and polystyrene (PS) makes the CNT/PS composite a representative thermoplastic nanocomposite. However, the strong van der Waals force among CNTs poses challenges to achieving effective dispersion. This review provides an overview of various CNT [...] Read more.
The inherent π–π interfacial interaction between carbon nanotubes (CNTs) and polystyrene (PS) makes the CNT/PS composite a representative thermoplastic nanocomposite. However, the strong van der Waals force among CNTs poses challenges to achieving effective dispersion. This review provides an overview of various CNT functionalization methods for CNT/PS composites, encompassing covalent grafting with PS-related polymers and non-covalent modification. A focus in this section involves the pre-introduction surface modification of CNTs with PS or PS-related polymers, substantially enhancing both CNT dispersibility and interfacial compatibility within the PS matrix. Furthermore, a comprehensive summary of the mechanical, electrical, thermal, and electromagnetic shielding properties of CNT/PS nanocomposites is provided, offering an overall understanding of this material. The surface modification methods of CNTs reviewed in this paper can be extended to carbon material/aromatic polymer composites, assisting researchers in customizing the optimal surface modification methods for CNTs, maximizing their dispersibility, and fully unleashing the various properties of CNTs/polymer composites. Additionally, high-performance CNTs/PS composites prepared using appropriate CNT modification methods have potential applications in areas such as electronic devices, sensors, and energy storage and conversion. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 3837 KB  
Article
Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films
by Pooyan Parnian and Alberto D’Amore
J. Compos. Sci. 2024, 8(2), 49; https://doi.org/10.3390/jcs8020049 - 29 Jan 2024
Cited by 3 | Viewed by 2680
Abstract
This paper presents a study of the electrical and mechanical properties of polystyrene (PS)/carbon nanotube (CNT) composites prepared using the doctor blade technique. The nanocomposite films of PS/CNT were prepared by casting a composite solution of PS/CNT in tetrahydrofuran (THF) on a glass [...] Read more.
This paper presents a study of the electrical and mechanical properties of polystyrene (PS)/carbon nanotube (CNT) composites prepared using the doctor blade technique. The nanocomposite films of PS/CNT were prepared by casting a composite solution of PS/CNT in tetrahydrofuran (THF) on a glass substrate using a doctor blade and drying in an oven. The nanocomposite films were then characterized using a tensile test and the four-point probe method to evaluate their mechanical properties and electrical conductivity. The experimental results were used to analyze the unpredicted behavior of the nanocomposite films. The experimental results showed that the electrical conductivity of the nanocomposite films became almost insensitive or unmeasurable with increasing CNT content for very dilute PS–THF solutions. In contrast, at higher PS concentrations, film conductivity increased to a given CNT threshold and then decreased. Based on PS–THF viscosity–concentration data, a discussion is elaborated that partially justifies the experimental results. Full article
(This article belongs to the Special Issue Characterization of Polymer Nanocomposites)
Show Figures

Figure 1

Back to TopTop