Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Pleiades-Neo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6399 KiB  
Article
An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy
by Solmaz Fathololoumi, Daniel D. Saurette, Harnoordeep Singh Mann, Naoya Kadota, Hiteshkumar B. Vasava, Mojtaba Naeimi, Prasad Daggupati and Asim Biswas
Land 2025, 14(7), 1344; https://doi.org/10.3390/land14071344 - 24 Jun 2025
Viewed by 394
Abstract
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside [...] Read more.
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside ground-truth EGs mapping in Niagara Region, Canada. The research involved generating spectral feature maps using Blue, Green, Red, and Near-infrared spectral bands, complemented by indices indicative of surface wetness, vegetation, color, and soil texture. Employing the Random Forest (RF) algorithm, this study executed three distinct strategies for EGs identification. The first strategy involved direct calibration using Sentinel-2 spectral features for 10 m resolution mapping. The second strategy utilized high-resolution Pléiades Neo data for model calibration, enabling EGs mapping at resolutions of 0.6, 2, 4, 6, and 8 m. The third, or upscaling strategy, applied the high-resolution calibrated model to medium-resolution Sentinel-2 imagery, producing 10 m resolution EGs maps. The accuracy of these maps was evaluated against actual data and compared across strategies. The findings highlight the Variable Importance Measure (VIM) of different spectral features in EGs identification, with normalized near-infrared (Norm NIR) and normalized red reflectance (Norm Red) exhibiting the highest and lowest VIM, respectively. Vegetation-related indices demonstrated a higher VIM compared to surface wetness indices. The overall classification error of the upscaling strategy at spatial resolutions of 0.6, 2, 4, 6, 8, and 10 m (Upscaled), as well as that of the direct Sentinel-2 model, were 7.9%, 8.2%, 9.1%, 10.3%, 11.2%, 12.5%, and 14.5%, respectively. The errors for EGs maps at various resolutions revealed an increase in identification error with higher spatial resolution. However, the upscaling strategy significantly improved the accuracy of EGs identification in medium spatial resolution scenarios. This study not only advances the methodology for EGs mapping but also contributes to the broader field of precision agriculture and environmental management. By providing a scalable and accessible approach to EGs mapping, this research supports enhanced soil conservation practices and sustainable land management, addressing key challenges in agricultural sustainability and environmental stewardship. Full article
Show Figures

Figure 1

22 pages, 5776 KiB  
Article
Using Pleiades Satellite Imagery to Monitor Multi-Annual Coastal Dune Morphological Changes
by Olivier Burvingt, Bruno Castelle, Vincent Marieu, Bertrand Lubac, Alexandre Nicolae Lerma and Nicolas Robin
Remote Sens. 2025, 17(9), 1522; https://doi.org/10.3390/rs17091522 - 25 Apr 2025
Viewed by 897
Abstract
In the context of sea levels rising, monitoring spatial and temporal topographic changes along coastal dunes is crucial to understand their dynamics since they represent natural barriers against coastal flooding and large sources of sediment that can mitigate coastal erosion. Different technologies are [...] Read more.
In the context of sea levels rising, monitoring spatial and temporal topographic changes along coastal dunes is crucial to understand their dynamics since they represent natural barriers against coastal flooding and large sources of sediment that can mitigate coastal erosion. Different technologies are currently used to monitor coastal dune topographic changes (GNSS, UAV, airborne LiDAR, etc.). Satellites recently emerged as a new source of topographic data by providing high-resolution images with a rather short revisit time at the global scale. Stereoscopic or tri-stereoscopic acquisition of some of these images enables the creation of 3D models using stereophotogrammetry methods. Here, the Ames Stereo Pipeline was used to produce digital elevation models (DEMs) from tri-stereo panchromatic and high-resolution Pleiades images along three 19 km long stretches of coastal dunes in SW France. The vertical errors of the Pleiades-derived DEMs were assessed by comparing them with DEMs produced from airborne LiDAR data collected a few months apart from the Pleiades images in 2017 and 2021 at the same three study sites. Results showed that the Pleiades-derived DEMs could reproduce the overall dune topography well, with averaged root mean square errors that ranged from 0.5 to 1.1 m for the six sets of tri-stereo images. The differences between DEMs also showed that Pleiades images can be used to monitor multi-annual coastal dune morphological changes. Strong erosion and accretion patterns over spatial scales ranging from hundreds of meters (e.g., blowouts) to tens of kilometers (e.g., dune retreat) were captured well, and allowed to quantify changes with reasonable errors (30%). Furthermore, relatively small averaged root mean square errors (0.63 m) can be obtained with a limited number of field-collected elevation points (five ground control points) to perform a simple vertical correction on the generated Pleiades DEMs. Among different potential sources of errors, shadow areas due to the steepness of the dune stoss slope and crest, along with planimetric errors that can also occur due to the steepness of the terrain, remain the major causes of errors still limiting accurate enough volumetric change assessment. However, ongoing improvements on the stereo matching algorithms and spatial resolution of the satellite sensors (e.g., Pleiades Neo) highlight the growing potential of Pleiades images as a cost-effective alternative to other mapping techniques of coastal dune topography. Full article
Show Figures

Figure 1

32 pages, 11825 KiB  
Article
Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea
by Osama Alrabayah, Danu Caus, Robert Alban Watson, Hanna Z. Schulten, Tobias Weigel, Lars Rüpke and Djamil Al-Halbouni
Remote Sens. 2024, 16(13), 2264; https://doi.org/10.3390/rs16132264 - 21 Jun 2024
Cited by 9 | Viewed by 3671
Abstract
Sinkholes can cause significant damage to infrastructures, agriculture, and endanger lives in active karst regions like the Dead Sea’s eastern shore at Ghor Al-Haditha. The common sinkhole mapping methods often require costly high-resolution data and manual, time-consuming expert analysis. This study introduces an [...] Read more.
Sinkholes can cause significant damage to infrastructures, agriculture, and endanger lives in active karst regions like the Dead Sea’s eastern shore at Ghor Al-Haditha. The common sinkhole mapping methods often require costly high-resolution data and manual, time-consuming expert analysis. This study introduces an efficient deep learning model designed to improve sinkhole mapping using accessible satellite imagery, which could enhance management practices related to sinkholes and other geohazards in evaporite karst regions. The developed AI system is centered around the U-Net architecture. The model was initially trained on a high-resolution drone dataset (0.1 m GSD, phase I), covering 250 sinkhole instances. Subsequently, it was additionally fine-tuned on a larger dataset from a Pleiades Neo satellite image (0.3 m GSD, phase II) with 1038 instances. The training process involved an automated image-processing workflow and strategic layer freezing and unfreezing to adapt the model to different input scales and resolutions. We show the usefulness of initial layer features learned on drone data, for the coarser, more readily-available satellite inputs. The validation revealed high detection accuracy for sinkholes, with phase I achieving a recall of 96.79% and an F1 score of 97.08%, and phase II reaching a recall of 92.06% and an F1 score of 91.23%. These results confirm the model’s accuracy and its capability to maintain high performance across varying resolutions. Our findings highlight the potential of using RGB visual bands for sinkhole detection across different karst environments. This approach provides a scalable, cost-effective solution for continuous mapping, monitoring, and risk mitigation related to sinkhole hazards. The developed system is not limited only to sinkholes however, and can be naturally extended to other geohazards as well. Moreover, since it currently uses U-Net as a backbone, the system can be extended to incorporate super-resolution techniques, leveraging U-Net based latent diffusion models to address the smaller-scale, ambiguous geo-structures that are often found in geoscientific data. Full article
(This article belongs to the Special Issue Artificial Intelligence for Natural Hazards (AI4NH))
Show Figures

Graphical abstract

6 pages, 1236 KiB  
Proceeding Paper
Pléiades Neo-Derived Bathymetry in Coastal Temperate Waters: The Case Study of Bay of Saint-Malo
by Antoine Collin, Dorothée James and Eric Feunteun
Environ. Sci. Proc. 2024, 29(1), 68; https://doi.org/10.3390/ECRS2023-16366 - 11 Dec 2023
Viewed by 717
Abstract
Satellite-derived bathymetry is increasingly attracting stakeholders’ attention tasked with remote and/or shallow depths, given its affordability compared to airborne lidar and waterborne sonar surveys. The 6-band 1.2 m Pléiades Neo (PNEO) multispectral imagery has not yet been evaluated for such a purpose. The [...] Read more.
Satellite-derived bathymetry is increasingly attracting stakeholders’ attention tasked with remote and/or shallow depths, given its affordability compared to airborne lidar and waterborne sonar surveys. The 6-band 1.2 m Pléiades Neo (PNEO) multispectral imagery has not yet been evaluated for such a purpose. The contribution of the novel PNEO bands to the depth retrieval was assessed over unclear coastal seawaters (0.2 m−1 of vertical light attenuation in the bay of Saint-Malo, France). The relevance of the radiometric level was also tested: top-of-atmosphere (TOA) digital number (DN), TOA radiance, TOA reflectance, bottom-of-atmosphere (BOA) maritime-modeled reflectance, and BOA tropospheric-modeled reflectance. The lidar response, ranging from 0 to 20 m depth, was stratified by 90 random samples per bathymetric slice of 1 m. The model was based on an easy-to-transfer neural network (one hidden layer and three neurons). The best predictions, reaching R2test of 0.81, were equally obtained for the full PNEO dataset at TOA DN, radiance, and reflectance. For both BOA full-dataset products, the results were slightly less satisfactory: R2test of 0.75 (maritime) and 0.76 (tropospheric). Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

13 pages, 4475 KiB  
Technical Note
Method for Determining Coastline Course Based on Low-Altitude Images Taken by a UAV
by Łukasz Marchel and Mariusz Specht
Remote Sens. 2023, 15(19), 4700; https://doi.org/10.3390/rs15194700 - 25 Sep 2023
Cited by 4 | Viewed by 1791
Abstract
In recent years, the most popular methods for determining coastline course are geodetic, satellite, and tacheometric techniques. None of the above-mentioned measurement methods allows marking out the shoreline both in an accurate way and with high coverage of the terrain with surveys. For [...] Read more.
In recent years, the most popular methods for determining coastline course are geodetic, satellite, and tacheometric techniques. None of the above-mentioned measurement methods allows marking out the shoreline both in an accurate way and with high coverage of the terrain with surveys. For this reason, intensive works are currently underway to find alternative solutions that could accurately, extensively, and quickly determine coastline course. Based on a review of the literature regarding shoreline measurements, it can be concluded that the photogrammetric method, based on low-altitude images taken by an Unmanned Aerial Vehicle (UAV), has the greatest potential. The aim of this publication is to present and validate a method for determining coastline course based on low-altitude photos taken by a drone. Shoreline measurements were carried out using the DJI Matrice 300 RTK UAV in the coastal zone at the public beach in Gdynia (Poland) in 2023. In addition, the coastline course was marked out using high-resolution satellite imagery (0.3–0.5 m). In order to calculate the accuracy of determining the shoreline by photogrammetric and satellite methods, it was decided to relate them to the coastline marked out using a Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) receiver with an accuracy of 2.4 cm Distance Root Mean Square (DRMS). Studies have shown that accuracies of determining coastline course using a UAV are 0.47 m (p = 0.95) for the orthophotomosaic method and 0.70 m (p = 0.95) for the Digital Surface Model (DSM), and are much more accurate than the satellite method, which amounted to 6.37 m (p = 0.95) for the Pléiades Neo satellite and 9.24 m (p = 0.95) for the Hexagon Europe satellite. Based on the obtained test results, it can be stated that the photogrammetric method using a UAV meets the accuracy requirements laid down for the most stringent International Hydrographic Organization (IHO) order, i.e., Exclusive Order (Total Horizontal Uncertainty (THU) of 5 m with a confidence level of 95%), which they relate to coastline measurements. Full article
Show Figures

Figure 1

16 pages, 5873 KiB  
Article
Utilizing High Resolution Satellite Imagery for Automated Road Infrastructure Safety Assessments
by Ivan Brkić, Marko Ševrović, Damir Medak and Mario Miler
Sensors 2023, 23(9), 4405; https://doi.org/10.3390/s23094405 - 30 Apr 2023
Cited by 1 | Viewed by 3090
Abstract
The European Commission (EC) has published a European Union (EU) Road Safety Framework for the period 2021 to 2030 to reduce road fatalities. In addition, the EC with the EU Directive 2019/1936 requires a much more detailed recording of road attributes. Therefore, automatic [...] Read more.
The European Commission (EC) has published a European Union (EU) Road Safety Framework for the period 2021 to 2030 to reduce road fatalities. In addition, the EC with the EU Directive 2019/1936 requires a much more detailed recording of road attributes. Therefore, automatic detection of school routes, four classes of crosswalks, and divided carriageways were performed in this paper. The study integrated satellite imagery as a data source and the Yolo object detector. The satellite Pleiades Neo 3 with a spatial resolution of 0.3 m was used as the source for the satellite images. In addition, the study was divided into three phases: vector processing, satellite imagery processing, and training and evaluation of the You Only Look Once (Yolo) object detector. The training process was performed on 1951 images with 2515 samples, while the evaluation was performed on 651 images with 862 samples. For school zones and divided carriageways, this study achieved accuracies of 0.988 and 0.950, respectively. For crosswalks, this study also achieved similar or better results than similar work, with accuracies ranging from 0.957 to 0.988. The study also provided the standard performance measure for object recognition, mean average precision (mAP), as well as the values for the confusion matrix, precision, recall, and f1 score for each class as benchmark values for future studies. Full article
(This article belongs to the Special Issue Sensors to Improve Road Safety and Sustainable Mobility)
Show Figures

Figure 1

20 pages, 3881 KiB  
Article
Economic Comparison of Satellite, Plane and UAV-Acquired NDVI Images for Site-Specific Nitrogen Application: Observations from Italy
by Marco Sozzi, Ahmed Kayad, Stefano Gobbo, Alessia Cogato, Luigi Sartori and Francesco Marinello
Agronomy 2021, 11(11), 2098; https://doi.org/10.3390/agronomy11112098 - 20 Oct 2021
Cited by 39 | Viewed by 6089
Abstract
Defining the most profitable remote sensing platforms is a difficult decision-making process, as it requires agronomic and economic considerations. In this paper, the price and profitability of three levels of remote sensing platforms were evaluated to define a decision-making process. Prices of satellite, [...] Read more.
Defining the most profitable remote sensing platforms is a difficult decision-making process, as it requires agronomic and economic considerations. In this paper, the price and profitability of three levels of remote sensing platforms were evaluated to define a decision-making process. Prices of satellite, plane and UAV-acquired vegetation indices were collected in Italy during 2020 and compared to the economic benefits resulting from variable rate nitrogen application, according to a bibliographic meta-analysis performed on grains. The quality comparison of these three technologies was performed considering the error propagation in the NDVI formula. The errors of the single bands were used to assess the optical properties of the sensors. Results showed that medium-resolution satellite data with good optical properties could be profitably used for variable rate nitrogen applications starting from 2.5 hectares, in case of medium resolution with good optical properties. High-resolution satellites with lower optical quality were profitable starting from 13.2 hectares, while very high-resolution satellites with good optical properties could be profitably used starting from 76.8 hectares. Plane-acquired images, which have good optical properties, were profitable starting from 66.4 hectares. Additionally, a reference model for satellite image price is proposed. Full article
(This article belongs to the Special Issue Remote Sensing in Agriculture)
Show Figures

Graphical abstract

Back to TopTop