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Abstract: Defining the most profitable remote sensing platforms is a difficult decision-making pro-
cess, as it requires agronomic and economic considerations. In this paper, the price and profitability
of three levels of remote sensing platforms were evaluated to define a decision-making process.
Prices of satellite, plane and UAV-acquired vegetation indices were collected in Italy during 2020 and
compared to the economic benefits resulting from variable rate nitrogen application, according to a
bibliographic meta-analysis performed on grains. The quality comparison of these three technologies
was performed considering the error propagation in the NDVI formula. The errors of the single bands
were used to assess the optical properties of the sensors. Results showed that medium-resolution
satellite data with good optical properties could be profitably used for variable rate nitrogen ap-
plications starting from 2.5 hectares, in case of medium resolution with good optical properties.
High-resolution satellites with lower optical quality were profitable starting from 13.2 hectares, while
very high-resolution satellites with good optical properties could be profitably used starting from
76.8 hectares. Plane-acquired images, which have good optical properties, were profitable starting
from 66.4 hectares. Additionally, a reference model for satellite image price is proposed.

Keywords: variable rate nitrogen; site-specific management; drones; profitability; sensors; SNR;
Landsat 9; Pleiades-Neo; prediction models

1. Introduction

Site-specific management is one of the main drivers of precision agriculture (PA).
Spatial and temporal variability can be deployed to support management decisions and
improve the profitability and sustainability of agricultural production, taking advantage
of information and communications technologies [1]. Soil properties, vegetation or yield
features can be used to delineate homogeneous management zones in order to apply site-
specific management [2]. The identification of within-field variability is not a trivial task
and can be supported by different technologies. Although homogeneous management
zones are usually identified based on farmers’ knowledge [3], it is common practice to take
advantage of proximal or remote sensors [4], taking into consideration standardized and
consistent data.

Proximal sensors collect data from a distance less than 2 m from the target (e.g., soil
or canopy) [5]. The most widely used proximal sensors in PA are yield monitors, weather
stations [6], soil apparent electrical conductivity sensors [7] and vegetation spectroradiome-
ters [8]. Proximal data provided by tractor-embedded sensors can be used to detect indirect
suitable information to manage field variability (e.g., speed, engine power supplied, fuel
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consumption). Proximal sensors can collect high-resolution data (high number of samples
per hectare). However, they require field surveys, which may be time-consuming and
tricky to perform (e.g., after the emergence of arable crops).

Conversely, remote sensors collect data from a distance greater than 2 m [9]. At such
distances, sensors commonly use electromagnetic radiation. Different platforms equipped
with remote sensors can collect a large amount of data in a short time, ensuring fast data
acquisition over large areas. Remote sensors can be classified according to four main
characteristics. The first is the spatial resolution, which identifies the minimum surface
detectable by the sensors (in m or m2 pixel−1). Spatial resolution directly affects the mini-
mum area manageable with site-specific management. The second feature is the spectral
resolution, which identifies the wavelength region to which the sensors are sensitive and
the relative bandwidth (nanometers). The third characteristic is the radiometric resolution,
which represents the number of values assumed by the reflectance when it is converted
to an electrical signal by the sensors (in bits pixel−1). The last feature of remote sensors
is the temporal resolution, or revisit time, which represents the number of images pro-
vided per unit of time. The temporal resolution of a remote sensor defines the frequency
of agricultural field monitoring. Spectral resolution plays a key role in remote sensing
applications in agriculture, since healthy vegetation’s spectral signature is characterized by
a specific reflectance peak in the near-infrared (800–900 nm) and lower reflectance values
in the red region (650–750 nm). The majority of the vegetation indices (VIs) are based on
these two wavelengths, thus VIs are usually retrieved from passive optical sensors, even if
some application of active radar sensors exists [10]. The most commonly used VI for crop
monitoring is the NDVI [11]. VIs are widely used in PA because of their correlation with
biomass and Leaf Area Index [12]. Moreover, remote sensors and VIs have been profitably
used for variable nitrogen management [13], identification of mechanization level [14],
support of Common Agricultural Policy [15], crop stress detection [16], and field variability
detection [17]. Remote sensors take advantage of different platforms, among which the
most used in agriculture are satellites, planes, and Unmanned Aerial Vehicles (UAVs).

VIs have been used to manage variable rate nitrogen application since the end of
the 1990s, with the first application using active proximal sensors [18]. In 1999 the Yara’s
Research and Development Center developed a sensor (N-sensor, Yara International ASA,
Oslo-Norway) to determine crop nitrogen demand. This sensor uses a proprietary algo-
rithm based on empirical experimentation on multiple crops. Raun et a. [19] developed a
new methodology based on a site-specific calibration. This methodology (Oklahoma State
University algorithm, OSU) takes advantage of the GreenSeeker (Trimble Inc., Sunnydale,
CA, USA) sensor. The amount of nitrogen to apply was decided according to the crop
variability detected by the sensor, and it was calibrated on an area with no nitrogen limita-
tions (N-rich strip) [20]. Thomason et al. [21] improved the accuracy of the OSU algorithm
by using zero nitrogen strips combined with a N-rich strip to calibrate the sensor. In the
very beginning, these sensors were used primarily for staple crops such as wheat, corn,
canola, and potato, but in the last decade, they have been applied to other crops [22,23].
Similarly, passive optical remote sensors have been used for VIs estimation. Blondlot
et al. [24] proposed a methodology to manage nitrogen fertilization using a SPOT satellite,
based on the relationship between NDVI, LAI and chlorophyll content. Shou et al. [25]
used high-resolution satellites to evaluate the nitrogen status in winter wheat, finding a
good correlation between chlorophyll and nitrogen content. Huang et al. [26] improved
the nitrogen status monitoring using a combination of mid-resolution and high-resolution
satellites (RapidEye, Formosat, and WorldView-2). RapidEye images were also used by
Magney et al. [27] to calculate the normalized difference red edge index (NDRE) and map
wheat nitrogen uptake. The correlation between remotely sensed NDVI and nitrogen up-
take is used by several decision support systems for precision farming currently available
(CropSat, Agrosat, Agrisat, etc) to provide nitrogen recommendations for farmers and final
users [28]. More practically, satellite images can be used to delineate stable homogeneous
zones when yield data are insufficient. Georgi et al. [29] proposed an algorithm to delineate
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stable management zones for precision agricultural use, based on automatic segmentation
of RapidEye images. Variable rate nitrogen application can provide environmental and
economic benefits, such as an increment in energy use efficiency and in the net return on
nitrogen application [30]. According to Kayad et al. [31], variable rate nitrogen application
led to an improvement in corn yield by 31% over ten years while quantity of nitrogen
applied was reduced by 23%.

1.1. Satellite

Satellite application for remote sensing is a consolidated technology which has been
used for civil purposes since 1972, when Landsat 1 was launched. Several implementations
occurred over the years, increasing satellite capability and accuracy of data provided.
Nowadays, several constellations of earth observation satellites have been implemented,
which collect data in the radio (~2.5–100 cm), thermal (~8–14 µm), and visible/near-infrared
(~400–900 nm) wavelengths. Earth observation satellites with a spectral resolution ranging
from 400 to 900 nm are the most used in agriculture, as they allow for the calculation of
tens of different VIs. Satellites with spectral resolution suitable for agriculture uses can be
managed either by a governmental agency (usually free of charge) or a private company
(usually for sale). Several constellations of satellites acquire data continuously (Sentinel,
Landsat, RapidEye, PlanetScope, Spot, etc.). Other constellations acquire data according
to an acquisition plan or on demand (Worldview, Quickbird). Both data sources have
been used for index-based variable rate nitrogen application [27]. Due to the observation
distance (400–800 km, depending on the orbit), satellite-acquired images are affected
by distortions and noise, making geometric and radiometric correction necessary. In
addition, atmospheric disturbance during satellite acquisition requires specific atmospheric
correction, which is impossible in some conditions (e.g., clouds, smog).

Recently, a new approach to satellite earth observation was proposed, based on the
constellation of hundreds of nanosatellites characterized by limited observation width,
instead of constellations of 2–5 satellites with a wide observation width [32]. This new
approach was made possible by the decrease in low orbit launching costs.

Figure 1 shows the evolution of data volume provided by several constellations over
the years starting from 1972 (Landsat 1 placed in orbit) up to 2020, based on Marinello et al.
in 2019 [33]. Data volume per hectare per year summarizes information on spatial, spectral,
radiometric and temporal resolutions. Over 50 years, data volume per hectare per year
showed an exponential increase from 100 B*(ha year)−1 up to 100 MB*(ha year)−1. The
large amount of data provided rapidly and continuously is a strength of satellite remote
sensing in agriculture.

1.2. Planes

Airborne sensors are widely used for land monitoring. As in the case of satellite
sensors, this technology was originally developed for non-civil uses. Nowadays, planes
can carry spectral sensors able to analyze geomorphology, land coverage, or vegetation
features. Although airborne surveys are usually based on specific sensors, such as Light
Detection and Ranging or Laser Imaging Detection and Ranging (LiDAR) or hyperspectral
cameras [34,35], tailored multispectral cameras, suitable for agricultural applications, are
sometimes used [36,37]. Images acquired by plane-mounted sensors require photogram-
metric and mosaicization processes to stitch images together. The stitching process requires
a partial image overlap (~80%) to provide suitable blended images. Plane earth observation
requires specific setting of the flight plans and large areas for take-off and landing. This
latter condition decreases the scalability of these techniques and increases the costs.
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Figure 1. Evolution of data volume per hectare provided by different constellations of satellites. Since the first civil satellite
for earth observation was launched (Landsat 1), the amount of data provided per hectare has increased from 100 B to 100 MB
(Pleiades-Neo).

1.3. Unmanned Aerial Vehicles (UAV)

UAVs or Unmanned Aerial Systems (UASs) are a relatively new technology in PA
which has spread among agricultural users after 2000. Agricultural UAVs can carry sev-
eral sensors, such as hyperspectral, multispectral (visible/near-infrared) or thermal cam-
eras [38,39]. Images acquired by UAVs require photogrammetry and mosaicization pro-
cesses to merge multiple images acquired by the sensors. Similarly to airborne sensors,
a specific calibration sensor is needed to correct the incident light during the acquisition
time and obtain the correct reflectance value [40]. The spatial resolution of UAV-acquired
images is primarily affected by the flight altitude. The higher the altitude, the lower the
spatial resolution of the derived images. UAVs used for agricultural purposes are mainly
ascribable to two main classes: fixed wings and multi-copters.

Satellite, plane, and UAV-based VIs can be used to map in-field variability and drive
variable rate management of the inputs. Nevertheless, the choice of the most appropriate
sensors is not always an easy task, as it involves economic and agronomic constraints.
Moreover, the actual prices of these different technologies sometimes do not include some
costs (minimum order area, take-off, elaboration, etc.), leading to difficult and blinded
choices for technicians and farm managers [41].

In the current study, UAV-, plane- and satellite-acquired images were compared
according to sensor quality, price, and profitability for variable rate nitrogen management.
These sensors’ varied data could be profitably used for several other applications (e.g.,
variable rate irrigation, stress and disease detection, yield estimation). However, variable
rate nitrogen management was chosen as a standard technology because its use is validated
by several scientific works involving remote sensors. This work analyzes the economic
benefits provided by variable rate nitrogen application taking into account the price of
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different remote sensing platforms to define the profitability of these technologies by
estimating the final cost of images provided.

2. Materials and Methods
2.1. Dataset Composition

The dataset was comprised of the prices collected through a survey among multispec-
tral image (from satellite, plane, and UAV) providers. The surveys were performed in 2017
and 2020 for UAV companies, while for plane and satellite image providers, prices were
collected in 2020.

Satellite price collection involved nine satellite image providers for a total of 62 prices
for 17 different constellations of satellites. This dataset involved constellations of satellites
whose spectral resolution was reasonable for NDVI calculation (from 600 to 900 nm),
spatial resolution suitable for PA (set at 30 × 30 m pixel size or less), and revisit time
shorter than 20 days, to allow field monitoring even in cloudy environments. The spatial
resolution value refers to panchromatic resolution. The panchromatic resolution is obtained
from the pan sharpening process by using a wider spectral resolution band with a better
spatial resolution to increase the spatial resolution of a band with a narrower spectral
resolution. All information about sensor properties was retrieved from the manufacturers’
websites (Table 1) and the European Space Agency (ESA) satellite mission database (https:
//directory.eoportal.org/web/eoportal/satellite-missions, accessed on 30 April 2020).
Usually, companies provide two types of products: archive data and new acquisition.
Indeed, some constellations of satellites (especially high spatial resolution satellites) acquire
images on-demand, according to the received inquiries. On-demand products rely on new
acquisition, while images already acquired are archived. The current study considered the
minimum price difference between new acquisition and archived images not older than
90 days (fresh archive), since spatial field variability monitoring may rely on relatively
outdated surveys, which are less expensive. Satellite constellations and their main features
are reported in Table 1. All prices collected refer to a minimum order area ranging from
2500 ha to 10,000 ha. Minimum order area represents the minimum surface commercialized
by the image providers. This area is usually far from the final user needs, which would use
only a part of the total surface. This point was considered in the minimum price calculation,
multiplying price per hectare by the minimum order area. For open-source satellites,
such as Sentinel-2 or Landsat-8, the tile dimension was considered as “minimum order
area”. The amount of data per hectare (KB ha−1) was extracted starting from radiometric
resolution (bits pixel−1), spatial resolution (m2 pixel−1) and the number of spectral bands,
according to the following equation:

KB ha−1 =

10000
m2 pixel−1 ∗

bits pixel−1

8 ∗ number o f bands

1000
(1)

Airborne image prices were collected via a survey of four Italian companies, which
provided six prices for different acquisition conditions.

UAV data were collected in 2017 and 2020 to highlight the evolution of this technology
within the Italian market. The UAV dataset was comprised of 44 prices for 2017 and
22 prices for 2020, divided into arable and specialized crops, based on the company’s
pricelist classes. Specialized crops were defined according to the USDA definition [42],
which includes fruits, vegetables, tree nuts, dried fruits, horticulture, nursery crops and
floriculture. On the other hand, arable crops include wheat, corn, soybeans and the majority
of commodity crops. This differentiation was necessary since the average income obtained
with specialized crops is higher than the average income obtained with arable crops. This
study considered only services provided by professionals in PA in Italy.

Due to the high number of sensors available among UAVs and planes, two reference
sensors were chosen for UAV and plane datasets to ease the process and to obtain spectral
and radiometric features usable for comparison and benchmarking. Tetracam micro-

https://directory.eoportal.org/web/eoportal/satellite-missions
https://directory.eoportal.org/web/eoportal/satellite-missions
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MCA Snap 6 (Tetracam Inc., Chatsworth, CA, USA) was used as the reference sensor for
UAVs [43], while Leica DMC III [44] was the reference sensor for plane platforms. Although
more commonly used cameras for UAVs exist, the Tetracam micro-MCA Snap 6 was chosen
since, in terms of number of bands (six), it is in between professional cameras for UAVs
and those used for research and development, which usually have 4–5 and 10–11 bands,
respectively. The sample flights considered for this study were 2500 m and 100 m above
ground level for planes and UAVs respectively.

Table 1. Sensor features and data sources. Additional data were retrieved from the ESA satellite mission database
(https://directory.eoportal.org/web/eoportal/satellite-missions, accessed on 20 February 2019). * data represent the
panchromatic resolution ** data obtained from survey *** data obtained from Equation (1).

Platform
Name

Minimum
Area

Price per
Hectare

Data Volume
per Hectare

Spatial
Resolution *

Radiometic
Resolution

Revisit
Time Data

Source
ha min EUR ha−1 ** KB ha−1 *** m Bits Pixel−1 Days

Deimos-2 10,000 0.055 12.7 0.75 10 2

www.elecnor-
deimos.com,

accessed on 20
February 2019

Dove (Planet) 10,000 0.011 8.89 3 16 1

www.planet.
com, accessed
on 20 February

2019

Formosat-2 14,400 0.028 3.13 2 8 1

www.nspo.narl.
org.tw, accessed
on 20 February

2019

GaoFen-2 2500 0.041 34.2 0.8 14 5
www.cast.cn,

accessed on 20
February 2019

GeoEye-1 10.000 0.250 102 0.5 11 3
www.maxar.

com, accessed
on 5 July 2020

KazEOSat-1 2500 0.057 6.25 3 12 1
www.airbus.

com, accessed
on 5 July 2020

Kompsat-2 2500 0.050 21.9 1 14 6
www.kari.re.kr,
accessed on 20
February 2019

Kompsat-3 2500 0.100 44.6 0.7 14 3
www.kari.re.kr,
accessed on 20
February 2019

Kompsat-3A 2500 0.145 72.3 0.55 14 3
www.kari.re.kr,
accessed on 20
February 2019

Landsat-7/8 3,700,000 − 0.203 15 12 8
www.nasa.gov,
accessed on 20
February 2019

Pleiades-1 10,000 0.193 75.0 0.5 12 1

www.airbus.
com, accessed
on 20 February

2019

Rapideye 10,000 0.011 3.00 5 12 5.5

www.planet.
com, accessed
on 20 February

2019

https://directory.eoportal.org/web/eoportal/satellite-missions
www.elecnor-deimos.com
www.elecnor-deimos.com
www.planet.com
www.planet.com
www.nspo.narl.org.tw
www.nspo.narl.org.tw
www.cast.cn
www.maxar.com
www.maxar.com
www.airbus.com
www.airbus.com
www.kari.re.kr
www.kari.re.kr
www.kari.re.kr
www.nasa.gov
www.airbus.com
www.airbus.com
www.planet.com
www.planet.com
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Table 1. Cont.

Platform
Name

Minimum
Area

Price per
Hectare

Data Volume
per Hectare

Spatial
Resolution *

Radiometic
Resolution

Revisit
Time Data

Source
ha min EUR ha−1 ** KB ha−1 *** m Bits Pixel−1 Days

Sentinel-2 1,200,000 − 0.838 10 16 5 www.esa.int,
accessed on

Spot-6/7 10,000 0.041 8.33 1.5 12 1
www.airbus.com,

accessed on 20
February 2019

Superview-1 10,000 0.227 68.8 0.5 11 4
www.spaceview.
com, accessed on
20 February 2019

TripleSat 2500 0.073 24.4 0.8 10 1
www.earthi.

space, accessed on
20 February 2019

WorldView-3/4 10,000 0.250 179 0.3 11 1
www.maxar.com,

accessed on 20
February 2019

Plane
(Leica DMC III) − 1.68 9000 0.1 12 −

www.leica-
geosystems.com,
accessed on 14

April 2020

UAV
(Tetracam µ-MCA) − 43.4 25,000 0.05 10 −

www.tetracam.
com, accessed on

14 April 2020

2.2. Spectral Accuracy of NDVI and Quality Comparison

NDVI was chosen as the reference VI as it is widely used for spatial pattern delineation
of crop biomass [45]. NDVI can be used to manage variable rate nitrogen applications from
both proximal and remote sensors [8,21,27].

Silicon sensors can convert photons to an electrical signal proportional to the number
of photons that reach the sensors. On the other hand, silicon sensors are affected by
electrical noise, due to the electronic component and the composition of the sensor. The
magnitude of the sensor noise is commonly summarized using the Signal-to-Noise Ratio
(SNR). The SNR of a sensor is the ratio between the signal induced by the photons received
divided by the signal from the source and electronics onboard. Noise affects the signal
produced by the number of photons, leading to less precise measurements. VIs augment
this noise, due to the error propagation of each band used for their calculation.

Taking advantage of SNR data provided for each sensor by the manufacturers, error
propagation in the NDVI formula was assessed with 1500 iterations obtained from a Monte
Carlo Simulation [46]. The coefficient of variation (CV) of NDVI simulation was used as
quality parameter for sensor comparisons.

2.3. Price Composition, Modelization and Profitability Analysis

Comparison among the different platforms and sensors was carried out by dividing
satellite sensors into groups using K-means unsupervised classification algorithm [47]
based on sensors features (Table 1). This classification algorithm is frequently used for
price discretization [48,49]. The elbow method was used to identify the optimal number of
groups. These three groups obtained by K-mean classification can be summarized as Very
High Resolution (VHR; spatial resolution <1 m), High Resolution (HR; spatial resolution
from 1 to 5 m) and Medium Resolution satellites (MR; spatial resolution >10 m). A principal
component analysis (PCA) was performed using the satellite features dataset to investigate

www.esa.int
www.airbus.com
www.spaceview.com
www.spaceview.com
www.earthi.space
www.earthi.space
www.maxar.com
www.leica-geosystems.com
www.leica-geosystems.com
www.tetracam.com
www.tetracam.com
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the main features affecting satellite price per hectare. A regression model was fitted to
estimate the price of satellite images.

To evaluate the download costs of images provided by different satellite constellations,
the amount of data per hectare was multiplied by the average cost of mobile broadband
connection in the European Union-28 (0.93 EUR GB−1 in 2019) [50]. Although nowadays
broadband connection costs are relatively low and could be ignored, download cost was
considered in this analysis in order to estimate the cost of the amount of data per hectare,
which otherwise would not be considered.

Although images are geometrically and radiometrically corrected, atmospheric correc-
tion at the Bottom of the Atmosphere (BOA) is not always performed. In the price analysis
of the satellite images, a correction cost quota proportional to the spatial resolution was
included. The correction cost was estimated according to the labor cost of the geospatial
analysis, which is strongly influenced by the spatial resolution. Accordingly, correction
cost was 150 EUR for VHR, 100 EUR for HR, and 50 EUR for MR satellites. The correction
cost was applied once per image and was not related to the overall area elaborated. These
three quotas were estimated considering the average labor cost in the Euro-area, which is
49.2EUR*h−1 for service employees [51].

An additional quota was added to the final price to take into account the analysis costs
from professional users to define the management zones, produce prescription maps, and
produce agronomic advice. Although management zone delineation and prescription map
definition are complex tasks and require knowledgeable professionals, automatic and unsu-
pervised algorithms can nowadays provide meaningful and effective services. According
to this latter consideration, processing costs were established as follows: 75 EUR for VHR,
50 EUR for HR and 25 EUR for MR satellites, thus considering the major processing time
for higher-resolution images. This processing cost was applied once per image and was
not related to the overall area elaborated.

The prices of airborne platforms were composed of the price per hectare obtained
from quotes, added to a fixed cost for take-off. The take-off quota was retrieved from
the average cost provided by the companies (2000 EUR per flight). The UAV companies
involved in the survey did not declare a minimum flight surface and a take-off cost.

UAV and plane companies provided prices of NDVI images already elaborated (geo-
referenced, mosaicized and radiometrically corrected). For this reason, estimation of the
elaboration costs was not performed. As for VHR satellite data, the processing cost (man-
agement zone definition and agronomic advice) for UAV and plane images was established
as 75 EUR. The resolution of UAV and plane images was, indeed, comparable to that of
VHR satellites. Table 2 summarizes the final prices of each platform.

Table 2. Description of final prices composition: dataset was populated with prices detected from different providers of
UAV, Plane and satellite acquired images.

UAV PLANE SATELLITE

Dataset

44 prices from
22 companies in 2017

22 prices
from 11 companies in 2020

Six prices from four
companies

62 prices from 17 constellation of
satellites

Price and sensors
features

-Price per hectare(€ ha−1)
Reference sensor:

Tetracam Micro-MCA [43]

-Price per hectare(EUR ha−1)
-Take off cost

Reference sensor:
Leica DMC III [44]

Sensor properties used:
-Price per hectare(EUR ha−1)

-Minimum Area (ha)
-Data Volume per Hectare (KB ha−1)

NDVI
elaboration

Included in price per
hectare

Included in price
per hectare

Download cost:
-Data Volume per Hectare (KB ha−1)

-Price per Data Volume (EUR KB−1) [50]
Correction cost:

150 (VHR)-100(HR)–50 (MR) EUR
Processing cost 75 EUR 75 EUR 75 (VHR)/50(HR)/25(MR) EUR
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The final prices of each platform were compared to the economic benefits of variable
rate nitrogen application, which is one of the most common applications of remotely sensed
images in PA. Since variable rate nitrogen application does not require multiple images,
this study considered the price of one image per hectare. The economic benefits provided
by variable rate nitrogen application were obtained from the meta-analysis of Colaço
and Bramley [52], which quantified the impact of sensor-based variable rate nitrogen
application of 58 studies and farmers’ profitability.

Statistical analysis was performed using Python 3.6 (pandas, SciPy, and Seaborn
libraries) and JMP®, Version 14 (SAS Institute Inc., Cary, NC, USA). Remote sensing image
price was compared using a one-way ANOVA, while comparisons between economic
benefits provided by variable nitrogen applications and prices of each platform were
calculated using linear regression.

3. Results and Discussion
3.1. UAV Prices Analysis

A preliminary price analysis was carried out considering the raw image price per
hectare, without fixed, elaboration, and processing costs. This analysis involved prices
in 2017 and 2020 for UAV data, while for satellite and plane data the comparison was
performed only for 2020.

Figure 2 reports the frequency distribution of all prices detected in 2017 and 2020
for UAV-derived NDVI images for arable and specialized crops. The average price of an
NDVI image for arable crops was 72.5 EUR/ha in 2017, while in 2020 it was 43.36 EUR/ha,
showing a price decrease of 40.2%. Similarly, the cost of NDVI images for specialized
crops was 95.00 EUR/ha in 2017 and 79.00 EUR/ha in 2020, showing a decrease of 16.8%
(Figure 2A,B). On the one hand, UAV prices for arable crops in 2020 showed a lower
standard deviation (std = 11.60) compared to data collected in 2017 (std = 25.45). On the
other hand, differences in the standard deviation of price distribution between 2017 and
2020 were not significant for specialized crops. The price of NDVI images for arable crops
in 2017 was 23.7% lower than the one for specialized crops. In 2020 the price difference
between images for arable and specialized crops increased: the cost for arable crops was
45.1% lower than that for specialized crops. (Figure 2C,D).

The price reduction between 2017 and 2020 can be justified by the high number of
companies that were on the market in 2017. Some of the companies with less competitive
prices quit their business by 2020 (five companies from a sample of 22). The smaller price
reduction for specialized crops over the same period can be justified by the specific skills
(e.g., different camera orientation, computer vision techniques, more ground sampling
points) required for UAV flights over specialized crops (e.g., vineyards and orchards). More-
over, to achieve the high-spatial resolution necessary to manage the inputs in these crops,
additional time is required. Experienced know-how is demanded to provide NDVI images
for specialized crops, thus leading to less competition on the market. Differences between
average prices for NDVI images of arable (Figure 2C) and specialized (Figure 2D) crops
increased in the 2020 survey, showing a segmentation of the market which better matched
arable (low income per hectare) and specialized (high income per hectare) crop needs.

Although results were obtained considering only the Italian UAV market, they sug-
gested that UAV acquired images are more suitable for variable rate application where
high spatial and spectral resolution is required and fully exploited (e.g., precision weed
control). Moreover, the UAV imaging cost analysis showed that prices decreased between
2017 and 2020 by 28.5%, having two different prices for arable crops (e.g., wheat, corn,
soybeans) and specialized ones (e.g., vineyards, vegetables, nursery crops).
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specialized crops. The average price of a VI map acquired by UAVs decreased by 28.5% between 2017 and 2020.

3.2. Raw Image Price per Hectare Comparison

Raw image price refers to raw image cost regardless of minimum order area, take-off
costs, and all further image analysis processes. Raw image price per hectare is sometimes
used to compare sensor costs. Thus, satellite, plane, and UAV raw image prices per hectare
were analyzed to study their range. Figure 3 shows the results of the price per hectare
comparison for UAV, plane and satellite raw images, based on the 2020 survey. Average
prices ranged from 43.36 EUR ha−1 for UAVs, to 1.68 EUR ha−1 for planes, to 0.09 EUR ha−1

for satellites. Although UAV and plane prices did not show high variability, satellite price
distribution showed higher heterogeneity. For this reason, the following analyses were
carried out grouping satellite data into three clusters. A K-means unsupervised algorithm
based on (i) minimum price per hectare, (ii) data per hectare, (iii) spatial resolution, (iv)
radiometric resolution, (v) revisit time, and (vi) error propagation in the NDVI formula
was used for clustering. The average cluster value for each feature is reported in Table 3.
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Table 3. Average satellite cluster features.

Price per
Hectare

Data Volume
per Hectare

Spatial
Resolution

Radiometic
Resolution

Revisit
Time CV of

NDVI
EUR min KB ha−1 m Bits Pixel−1 Days

MR 76.1 0.52 12.5 14.0 6.50 0.501%

HR 434 21.8 1.55 12.4 3.14 0.737%

VHR 2527 106 0.45 11.3 2.25 0.579%

Considering that the European average utilized agricultural area per holdings is
16.1 ha, a medium resolution satellite, such as Sentinel-2, could be considered as a dissemi-
nation driver of variable rate nitrogen application in Europe. The application of satellite
imagery in smallholder farming should take into consideration the reduced capability of
medium resolution satellites (above 10 m of spatial resolution) to detect field variability.
In that case, higher spatial resolution satellites showed higher consistency [53]; however,
the economic sustainability of such sources of information was reduced. Although crop
monitoring may not be profitable using the presented satellite constellation to detect field
variability below a defined field size, new application and data processing protocols, such
as biotic stress monitoring [54] and evapotranspiration assessment [55], may be performed
and may contribute to the profitability of such technologies.

3.3. Sensors Quality Evaluation

The CV of NDVI simulation was combined with SNR as an evaluation parameter for
sensor quality. SNR values ranged from 267 for Red and 293 for Near-Infrared bands of
Spot 6/7 to 50 for Red and 50 for Near-Infrared bands of Dove satellites. This variability
in SNR values led to important differences in CV of NDVI simulation. The CV of NDVI
was 0.32% for Spot 6/7 and 1.85% for Dove, which represented the lowest and the highest
values respectively. Free of charge satellites showed a low CV: 0.44% for Landsat 7/8 and
0.59% for Sentinel-2. The reference sensors for UAVs (Tetracam micro-MCA) and planes
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(Leica DMC III) showed a CV of NDVI simulation of 0.43% and 0.63%, respectively. Data
reported in Figure 4 shows the SNR of each sensor and the relative CV of NDVI simulation.
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Figure 4. Signal-to-Noise ratio of sensors and CV of NDVI simulation as error estimation.

The CV of NDVI simulation was used to classify sensors into three groups. The first
group had a CV up to 0.5%, and included UAV and plane reference sensors, some of the
most recent on demand satellites, and free of charge satellites. The second group included a
group of satellites less recently launched, which had CV of NDVI up to 1%. The third group
included only the Dove satellite constellation, which showed a CV of NDVI simulation of
1.85%. The presence of free of charge satellites in the first group proves the high quality of
the optics installed in the non-commercial satellites. On the other hand, the Dove nano-
satellites constellation prioritized reduced size of satellite over optical quality. Reference
sensors for UAVs and planes showed a low CV of NDVI simulation, demonstrating the
optical consistency of these sensors. The relatively high value of CV of NDVI simulation
of the Dove satellites may be caused by the postprocessing applied by PlanetScope (e.g.,
orthorectification), as highlighted by Anger et al. [56]. The comparable value of CV of
NDVI between Sentinel 2, UAV and plane images confirms a previous study [57] which
highlighted the consistency of these sources of data for crop monitoring.

3.4. Satellite Image Price Modeling

The satellite features dataset was analyzed considering price per hectare, data volume
per hectare, minimum order area, revisit time, spatial resolution, radiometric resolution,
raw image price, and CV of NDVI simulation using a PCA. Figure 5 shows the first and
the second principal components obtained from the PCA. According to this analysis, price
per hectare and data volume per hectare had similar loadings on the first and the second
principal components. The CV of NDVI simulation had a large positive impact on the first
principal component analysis.



Agronomy 2021, 11, 2098 13 of 20

Agronomy 2021, 11, 2098 13 of 20 
 

 

3.4. Satellite Image Price Modeling 
The satellite features dataset was analyzed considering price per hectare, data 

volume per hectare, minimum order area, revisit time, spatial resolution, radiometric 
resolution, raw image price, and CV of NDVI simulation using a PCA. Figure 5 shows the 
first and the second principal components obtained from the PCA. According to this 
analysis, price per hectare and data volume per hectare had similar loadings on the first 
and the second principal components. The CV of NDVI simulation had a large positive 
impact on the first principal component analysis. 

 
Figure 5. Loading plot of the first and the second principal components of satellites features ob-
tained from PCA. 

Stepwise regression was performed estimating the price per hectare of satellite im-
agery considering data volume per hectare, minimum order area, revisit time, spatial 
resolution, radiometric resolution, raw image price, and CV of NDVI simulation. Alt-
hough the result of the stepwise regression with the optimization of the Akaike infor-
mation criterion (AIC) returned a multiple linear regression model based on data volume 
per hectare and CV of NDVI simulation, the effect of the CV of NDVI simulation was not 
significant (p-value > 0.05). Based on this, a linear model was fitted plotting price and 
data volume (Figure 6), returning the function showed in Equation (2). 

 
Figure 6. Linear model of price per hectare based on data volume per hectare. 

R² = 0.89
p-value<0.001

0.00

0.10

0.20

0.30

0.40

0 25 50 75 100 125 150 175 200

P
ri

ce
 p

e
r 

h
e

ct
a

re
 (

€
*h

a
-1

)

Data volume per hectare (KB*ha-1)

Figure 5. Loading plot of the first and the second principal components of satellites features obtained
from PCA.

Stepwise regression was performed estimating the price per hectare of satellite imagery
considering data volume per hectare, minimum order area, revisit time, spatial resolution,
radiometric resolution, raw image price, and CV of NDVI simulation. Although the
result of the stepwise regression with the optimization of the Akaike information criterion
(AIC) returned a multiple linear regression model based on data volume per hectare and
CV of NDVI simulation, the effect of the CV of NDVI simulation was not significant
(p-value > 0.05). Based on this, a linear model was fitted plotting price and data volume
(Figure 6), returning the function showed in Equation (2).

€ ha−1 = 0.0019 KB ha−1 (2)
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The definition of a price model to estimate agricultural tools is widely applied to
estimate the profitability of agricultural practices [58]. According to the PCA and regression
analysis results, the raw satellite price per hectare was primarily influenced by data volume
per hectare, calculated according to Equation (1).

3.5. Variable Rate Nitrogen Application Profitability

Relative prices of the NDVI images were compared to the economic benefits delivered
by variable rate nitrogen application, which is a well-known and relatively widespread
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practice. Final prices of the NDVI images were composed of prices per hectare (considering
minimum order area and take-off cost), processing, and elaboration costs. The price of a
single NDVI image was then compared to the economic benefits provided by variable rate
nitrogen application, as one NDVI image is the minimum required for nitrogen application
spatial management. The economic benefits of the variable rate application were extracted
from a recent meta-analysis [52], considering all items of the meta-analysis. This meta-
analysis analyzed 58 studies applying a N-rich strip approach and sensor-based site-specific
N management in grains. Figure 7 shows price trends concerning area variation for UAVs,
planes, and VHR, HR and MR satellites. In the same graph, the variation in precision
nitrogen management profitability according to area variation is plotted. The intersection
between the price trend and the variation in profitability represents the break-even point
of this technology. Areas greater than the break-even point represent a profitable use
of the specific technology for variable rate nitrogen application. On the other hand, on
areas lower than the break-even point, variable rate nitrogen application may not generate
economic advantages. Lines are plotted with halos which represent data distribution with
a confidence interval of 95%. The equation results from the regression are reported in
Table 4.
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Table 4. Equation of value of service according to hectare variation.

Services Equations

UAV Value€ = 43.6 × ha + 75

Plane Value€ = 1.75 × ha + 2075

VHR Value€ = −6 × 10−16 × ha + 2536

HR Value€ = −8 × 10−17 × ha + 434

MR Value€ = −2 × 10−17 × ha + 83.1

Profitability Value€ = 33 × ha
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Table 5 shows that medium-resolution satellites (free of charge satellites) are prof-
itable in fields whose minimum size is 2.52 hectares. For high-resolution satellites, the
profitability starts from 13.2 hectares, while very-high-resolution satellite profitability starts
from 76.8 hectares. Plane acquired NDVI is profitable on blocks larger than 66.4 hectares
(Table 5).

Table 5. Break-even point in hectare and EUR for each sensor.

Break-Even Points

Sensors Hectares EUR

MR 2.52 83.1

HR 13.2 434

Plane 66.4 2191

VHR 76.8 2536

UAV n/a n/a

The analysis allowed us to assess that the average price of UAV-acquired NDVI
images was 43.36 EUR/ha. The average economic benefit provided by variable nitrogen
application was 33 EUR/ha. As such, UAV NDVI images were not affordable for variable
rate nitrogen application.

Nevertheless, Figure 7 shows an overlap of price line halos within the 95% confidence
intervals. This result means that some UAV image providers can offer profitable data for
variable rate nitrogen application when this technique supplies above-average benefits.
Values of profitability obtained considering the 95% confidence interval take into account
the varying profitability of variable rate nitrogen application on fields with different spatial
variability. Besides, high-resolution UAV images provide over-resolved data which are not
necessary for fertilization, as the working width of conventional spreaders is usually larger
than 6 m. The use of UAVs can remain beneficial when high spatial resolution is required
(e.g., leaf disease identification, estimation of wind damage) and if the mapping area is
smaller than 77 hectares.

These results were obtained considering an average advantage provided by variable
rate nitrogen application on grains according to the meta-analysis of Colaço and Bramley
(2018); however, a different result may be obtained considering a lower or higher prof-
itability from variable rate nitrogen application [59]. Site-specific management may also be
applied to herbicide application [60], irrigation [61] and harvest management [62]. These
strategies may have a significant impact on economic analysis of site-specific management,
but were not considered in this study, since their implementation in commercial farms is
lower than variable rate nitrogen application. A similar study by Matese et al. [63] found
the break-even point between satellite and UAV acquired images at five hectares using
RapidEye satellite images as reference. According to the result found in this manuscript,
the break-even point between high-resolution satellites (such as RapidEye) and UAV ac-
quired images was 13 hectares. Although a difference of seven hectares may be considered
non-significant, this displacement may have the following reasons: (i) the economic analy-
sis of Matese et al. was performed on a limited number of price samples and field sizes
(five and 50 hectares); (ii) that study was focused on comparison in terms of variability
between sensors, and the economic analysis represented only a small part; (iii) that study
was carried out on vineyards, while the current study is focused on grains.

Although the aim of this study is to analyzed the economic benefits provided by
remote sensing platforms for variable rate nitrogen application, such techniques can take
advantage of proximal sensors [64]. In this latter case, sensors are located close to the
vegetation and are often active. As a result, spatial resolution and SNR slightly affect the VI
reading. The evaluation of the net returns for variable rate nitrogen application is strongly
affected by within-field variability which may increase or reduce the variation in yield
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and nitrogen requirement with variable rate management [65]. The reference value for
profitability was extracted from a deep meta-analysis [52] which included studies with
negative net return from variable rate nitrogen application. In these latter cases within-field
variability may not be sufficient to be exploited by variable rate management, leading
to a negative net return. Moreover, within-field variability and soil type may increase
or decrease the potential benefits from nitrogen losses and the related subsidies from
environmental policy [66]. The implementation of variable rate nitrogen application and
the related net return should take into account the specificities of each field. Indeed, the
placement of fields in nitrate vulnerable zones may increase the potential benefits of this
practice [67].

4. Conclusions

In this study, three different types of remote sensors were evaluated for their optical
quality and profitability for variable rate nitrogen application. A first comparison analyzed
the price trend of UAV-derived NDVI image providers in Italy between 2017 and 2020
for arable and specialized crops. In both years arable crops showed lower prices than
specialized crops, suggesting differences in survey costs and higher value added to UAV
images for specialized crops. A decrease in the average price was observed between 2017
and 2020 for the analyzed service providers. The number of UAV service providers in
Italy increased starting from 2015 due to the high interest in this technology by farmers.
Due to this latter point, the selection of market operators occurred in the following years.
In addition, other sources of multispectral images, such as planes and satellites, compete
with UAV image providers. The comparison between UAV, plane and satellite prices per
hectare (without taking into account minimum order area, take-off and processing costs)
showed that UAV prices were the highest, followed by those of planes and satellites. The
optical quality comparison was carried out considering the CV of NDVI simulation and
taking advantage of the SNR provided by the manufacturers. Images acquired by high-cost
satellite sensors showed optical quality similar to the reference sensors chosen for UAV
(Tetracam Micro-MCA) and plane images (Leica DMC III).

Conversely, satellite images with lower prices per hectare showed lower optical quality.
These findings highlighted that the prices of satellite images were influenced not only by
data volume per hectare but in some cases also by optical quality. Free of charge satellites
showed different trends. Although the images were free-of-charge, their optical quality was
comparable to the referenced sensors for UAVs and planes, demonstrating the consistency
of their data. However, the generalized model for satellite image prices was based only
on data volume per hectare, as the optical quality influenced the price of only a limited
number of satellites.

The comparison between the cost of remote sensors and the economic benefits pro-
vided by variable rate nitrogen application could be useful for farm managers who need to
implement the methodology and tools to detect field variability. Medium-resolution satel-
lites proved to be profitable for variable rate nitrogen applications for blocks bigger than
2.52 hectares. Medium-resolution satellites with spatial resolution between 10 and 15 m are
accurate enough for managing variable rate fertilization with commonly used sprayers. In
case higher resolution is needed, high-resolution satellites were profitable starting from
13.2 hectares, while very high-resolution ones were profitable starting from 76.8 hectares.
The choice between high- and very-high-resolution should be made according to the optical
quality of the sensors, which was higher in very high-resolution satellites. Plane-acquired
NDVI images proved to be profitable in blocks bigger than 66.4 hectares, thus being suitable
for large farms or consortiums which require high spatial resolution images. Despite the
widespread growth in UAV NDVI image providers in the last few years, UAV-acquired
images did not prove to be profitable for variable rate nitrogen fertilization in grains, as
the average price per hectare was higher than the average economic benefits resulting
from their use. However, UAVs provide very high-resolution images with suitable optical
quality, and, compared to satellites, they are not influenced by cloud cover. For this reason,
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UAV images could be profitably used for high added value applications that could justify
their cost (e.g., variability detection for precision herbicide spraying or foliar fertilizer) or
for applications in crops other than grains.

In conclusion, the advantages and disadvantages of satellite, plane and UAV remote
sensing for variable rate nitrogen application can be highlighted. On the one hand, satellite
remote sensing was characterized by a lower break-even point in hectares, especially
considering low-resolution satellites. On the other hand, medium- and high-resolution
satellite image prices were affected by a minimum required area for purchase, which made
these sources of data less suitable for small fields compared to wide field and regional scale
applications. In terms of spatial resolution, satellite images were characterized by a wide
range of values, making their application suitable for different variable rate applications.
Satellite image quality, assessed as CV of NDVI simulation, showed the consistency of
satellite data with the reference sensors (UAV and plane). However, low resolution satellite
data were characterized by a coarse spatial resolution, making it challenging to identify
specific spatial features and often requiring eliminating border pixels [57]. Conversely,
plane and UAV images allowed the identification of specific spatial features, thanks to their
spatial resolution and optical quality. The main disadvantages of these latter platforms
consist of the price per hectare, making them profitable for variable rate nitrogen application
on grains only with a wide surface (plane) or in case of high spatial variability (UAV),
increasing the potential benefits provided by variable rate nitrogen application. A parallel
economic profitability of variable rate nitrogen application may be performed considering
active proximal sensors (e.g., GreenSeeker, Yara N-Sensor, OptRx) as providers of VIs,
since these sensors are widely used in some areas (e.g., USA, Australia). In this case
the economic analysis should take into account the rates of deterioration of sensors and
navigation satellite systems required for their use.
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