Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Pistacia terebinthus L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1396 KiB  
Review
An Analysis of Three Pistacia Species’ Phenolic Compounds and Their Potential Anticancer and Cytotoxic Activities on Cancer Cells—A Review
by Naser A. Alsharairi
Curr. Issues Mol. Biol. 2025, 47(6), 393; https://doi.org/10.3390/cimb47060393 - 26 May 2025
Viewed by 1222
Abstract
The genus Pistacia from the Anacardiaceae family contains species of wild flowering plants. The only species that produces edible nuts large enough for commercial sale is P. vera L. (pistachio). Other species, such as P. terebinthus L., P. atlantica L., and P. khinjuk [...] Read more.
The genus Pistacia from the Anacardiaceae family contains species of wild flowering plants. The only species that produces edible nuts large enough for commercial sale is P. vera L. (pistachio). Other species, such as P. terebinthus L., P. atlantica L., and P. khinjuk, are used as pistachio rootstocks. Pistacia species include phenolic compounds, such as flavonoids, essential oils, and tannins, which are responsible for a number of pharmacological properties. The species most commonly investigated for their anticancer and/or cytotoxic activities against cancer cells in experimental studies include P. lentiscus, P. atlantica subspecies, and P. chinensis subsp. integerrima. However, no review exists that evaluates the phenolic compounds of three other Pistacia species (P. vera L., P. terebinthus L., and P. khinjuk) and their anticancer and cytotoxic effects. Thus, this review aims to thoroughly assess the phenolic compounds that were isolated from these species and investigate any potential anticancer or cytotoxic effects on cancer cells. The findings show that pistacia species and their isolated phenolic compounds (phenolic acids, flavonoids, and essential oils) from different plant parts have anticancer activity against lung, cervical, prostate, gastric, colon, liver, renal, skin, and breast cancer cells. Additionally, certain phenolic compounds from pistacia species have cytotoxic activity; however, the degree of toxicity may vary based on the dosage and duration of use. Further experiments are required to fully understand the possible mechanisms underlying the anticancer and cytotoxic effects of pistacia species and their phenolic compounds on cancer cells. Full article
16 pages, 571 KiB  
Review
Advancing Pistacia terebinthus L. (Anacardiaceae) Research: Food Preservation, Functional Foods, and Nutraceutical Potential
by Daniela Batovska
Foods 2025, 14(7), 1245; https://doi.org/10.3390/foods14071245 - 2 Apr 2025
Cited by 2 | Viewed by 896
Abstract
Pistacia terebinthus L., commonly known as the turpentine tree, is a wild-growing species with a well-documented history of use in traditional medicine and ethnobotany. Various parts of the plant—fruits, seeds, resin, leaves, and galls—have demonstrated significant bioactive potential, particularly antioxidant, antimicrobial, and functional [...] Read more.
Pistacia terebinthus L., commonly known as the turpentine tree, is a wild-growing species with a well-documented history of use in traditional medicine and ethnobotany. Various parts of the plant—fruits, seeds, resin, leaves, and galls—have demonstrated significant bioactive potential, particularly antioxidant, antimicrobial, and functional properties. Despite these promising attributes, the industrial application of P. terebinthus L. in contemporary food and nutraceutical systems remains limited and underexplored. Recent advances have employed a range of technological strategies—including encapsulation, active food packaging, emulsion stabilization, probiotic immobilization, and fermentation—to improve the stability, bioavailability, and functional performance of P. terebinthus L.-derived extracts within food matrices. These approaches have shown potential in enhancing aroma retention, extending shelf life, and supporting probiotic viability, thereby positioning P. terebinthus L. as a promising candidate for use in functional formulations and natural food preservation. Nevertheless, further investigation is required to optimize processing parameters, assess the long-term stability of bioactive compounds, and establish standardized regulatory frameworks. Addressing these challenges will be essential for facilitating the broader integration of P. terebinthus L. into the functional food, nutraceutical, and food preservation industries. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Figure 1

17 pages, 1440 KiB  
Article
Development of Gluten-Free Cakes Using Protein Concentrate Obtained from Cold-Pressed Terebinth (Pistacia terebinthus L.) Oil By-Products
by Muhammed Ozgolet, Salih Karasu and Muhammed Zahid Kasapoglu
Foods 2025, 14(6), 1049; https://doi.org/10.3390/foods14061049 - 19 Mar 2025
Viewed by 761
Abstract
The present research aimed to incorporate terebinth seed protein into gluten-free cakes in order to increase their protein content and improve their technological properties. The terebinth protein replaced the rice flour–corn starch mixture used in control cakes at varying levels (3%, 6%, 9%, [...] Read more.
The present research aimed to incorporate terebinth seed protein into gluten-free cakes in order to increase their protein content and improve their technological properties. The terebinth protein replaced the rice flour–corn starch mixture used in control cakes at varying levels (3%, 6%, 9%, and 12%). The rheological properties of the cake batters were evaluated, along with the physicochemical attributes, textural properties, sensory attributes, and oxidative stability of the baked cakes. As the protein concentration increased, the consistency index of the cake batters also increased. All batters showed shear-thinning behavior, indicating pseudoplastic fluid behavior, and showed a viscoelastic nature reflected by the storage modulus (G′) exceeding the loss modulus (G″). Both G′ and G″ values increase with increasing protein content. The softest texture was observed in the control cake produced with wheat flour, followed by the cakes with 3% and 6% protein addition, while higher protein levels (9% and 12%) resulted in firmer cakes. Furthermore, oxidative stability improved with a higher level of protein. The addition of protein did not negatively affect sensory quality across all measured parameters. This study demonstrates the potential of terebinth protein to enhance the protein content and oxidative stability of gluten-free cakes that maintain their sensory attributes. Full article
Show Figures

Graphical abstract

16 pages, 3185 KiB  
Article
Effects of Rootstock on Water Stress, Physiological Parameters, and Growth of the Pistachio Tree
by Eduardo Fernández-Suela, Pablo Garcia-Estringana, E. Francisco de Andrés, Noelia Ramírez-Martín and Jesus Alegre
Horticulturae 2023, 9(12), 1305; https://doi.org/10.3390/horticulturae9121305 - 5 Dec 2023
Cited by 4 | Viewed by 2228
Abstract
In Spain, almost all pistachios are grown under water-stress conditions. Pistachio plants have sophisticated mechanisms to avoid or tolerate stress. It is known that the rootstock affects responses to water stress in the cultivar grafted onto it. The traditional belief is that Pistacia [...] Read more.
In Spain, almost all pistachios are grown under water-stress conditions. Pistachio plants have sophisticated mechanisms to avoid or tolerate stress. It is known that the rootstock affects responses to water stress in the cultivar grafted onto it. The traditional belief is that Pistacia terebinthus L. is the rootstock best adapted to rainfed conditions. This study examined the effect of rootstock on stress traits, photosynthetic rate, transpiration, stomatal conductance, chlorophyll, polyphenol concentrations, and growth in plants of Pistacia vera L. cv. Kerman grafted onto P. terebinthus, P. atlantica, and UCB-1. These responses were classified into constituent traits and characteristics of the plant’s adaptation to water stress. The latter was induced by adding PEG 6000 to the nutrient solution. Plants grafted onto P. terebinthus showed more constituent traits, while plants grafted onto UCB-1 showed a greater number of drought-responsive traits. Plants grafted onto P. atlantica showed similar adaptative traits to those observed in UCB-1 but lower values of transpiration and net photosynthesis. Although it is likely that plants grafted onto P. terebinthus survive longer under extreme drought conditions, under moderate stress conditions, their yield is probably lower than that of plants grafted onto UCB-1 under the same moderate stress conditions. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 1577 KiB  
Article
Effect of Encapsulation Techniques on Aroma Retention of Pistacia terebinthus L. Fruit Oil: Spray Drying, Spray Freeze Drying, and Freeze Drying
by Delal Meryem Yaman, Derya Koçak Yanık, Aysel Elik Demir, Hicran Uzun Karka, Gamze Güçlü, Serkan Selli, Haşim Kelebek and Fahrettin Göğüş
Foods 2023, 12(17), 3244; https://doi.org/10.3390/foods12173244 - 29 Aug 2023
Cited by 15 | Viewed by 3189
Abstract
The primary aim of this investigation was to assess the impact of varying the ratio of gum arabic to maltodextrin and employing diverse encapsulation techniques on the properties of the powdered substance and the capacity to retain the aromatic attributes of terebinth fruit [...] Read more.
The primary aim of this investigation was to assess the impact of varying the ratio of gum arabic to maltodextrin and employing diverse encapsulation techniques on the properties of the powdered substance and the capacity to retain the aromatic attributes of terebinth fruit oil. Distinct ratios of gum arabic to maltodextrin (75:25, 50:50, and 25:75) were employed to fabricate oil-in-water emulsions. The utmost stability of the emulsion was realized at a gum arabic to maltodextrin ratio of 75:25, characterized by a minimal creaming index and an even and small-scale dispersion. The encapsulation techniques employed included spray drying (SD), spray freeze-drying (SFD), and freeze-drying (FD). These methodologies were compared based on encapsulation efficiency, desiccation yield, powder attributes, and the capacity to retain aroma. The encapsulation efficiencies were notably higher (>90%) in SD, particularly with the application of an ultrasonic nozzle and a two-fluidized nozzle (2FN), in contrast to those obtained through SFD and FD. Notably, SD employing an ultrasonic nozzle exhibited superior preservation of volatiles (73.19%) compared to FD (24.45%), SD-2FN (62.34%), and SFD (14.23%). Among the various components, α-pinene and linalool stood out with near-perfect retention rates, close to 100%. Full article
Show Figures

Figure 1

15 pages, 1705 KiB  
Article
Comparison of the Allelopathic Potential of Non-Native and Native Species of Mediterranean Ecosystems
by Natividad Chaves Lobón, Marisa González Félix and Juan Carlos Alías Gallego
Plants 2023, 12(4), 972; https://doi.org/10.3390/plants12040972 - 20 Feb 2023
Cited by 11 | Viewed by 2847
Abstract
Allelopathy is a frequent interaction between species in Mediterranean ecosystems and it is also one of the proposed strategies to explain the colonisation of invasive species. To confirm the importance of allelopathic potential as a mechanism of invasion of non-native species in Mediterranean [...] Read more.
Allelopathy is a frequent interaction between species in Mediterranean ecosystems and it is also one of the proposed strategies to explain the colonisation of invasive species. To confirm the importance of allelopathic potential as a mechanism of invasion of non-native species in Mediterranean ecosystems, it would be advisable to compare the allelopathic effects of non-native plants with native plants on the same target species and thus avoid overestimating the role of phytotoxicity in the invasion process. The main objective of this work was to compare the allelopathic activity of native species typical of Mediterranean ecosystems, classified as allelopathic, with the allelopathic activity of non-native species that may have an invasive character in these ecosystems. To this end, we selected three native species (Cistus ladanifer, Pistacia lentiscus, and Pistacia terebithus) and three non-native species (Acacia dealbata, Acer negundo, and Salix babylonica), and we analysed their effect on the species Lactuca sativa and the native species Lavandula stoechas and Echium plantagineum. The tests on L. sativa showed that all species have allelopathic activity. The tests on L. stoechas and E. plantagineum revealed that P. terebinthus exerted the greatest effect, being the only species that maintained an inhibitory effect at extract concentrations of 50% and 25% in all the analysed parameters, except in germination and cotyledon emergence for E. plantagineum. There were no significant differences in the effect on germination between non-native and native species, although significant differences were found in the effect on root size in the three analysed concentrations, with the native species producing greater inhibition. In conclusion, these species exert a negative effect on the selected native target species, but the negative effect of the native species is greater than that of the non-native species. These results indicate that it is important to compare the allelopathic effects of invasive and native species to correctly estimate the phytotoxic effect of invasive species on their invasiveness Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

11 pages, 1198 KiB  
Article
Genetic Diversity and Relationships of Terebinth (Pistacia terebinthus L.) Genotypes Growing Wild in Turkey
by Murat Guney, Salih Kafkas, Mozhgan Zarifikhosroshahi, Muhammet Ali Gundesli, Sezai Ercisli and Vojtěch Holubec
Agronomy 2021, 11(4), 671; https://doi.org/10.3390/agronomy11040671 - 1 Apr 2021
Cited by 13 | Viewed by 3528
Abstract
Genetic diversity and relationships of 54 wild-grown terebinths (Pistacia terebinthus L.) were determined using 40 SSR (simple sequence repeat) markers (38 in silico polymorphic SSR markers and 2 SSR markers). In silico polymorphic SSR analysis, 430 alleles were identified. The number of [...] Read more.
Genetic diversity and relationships of 54 wild-grown terebinths (Pistacia terebinthus L.) were determined using 40 SSR (simple sequence repeat) markers (38 in silico polymorphic SSR markers and 2 SSR markers). In silico polymorphic SSR analysis, 430 alleles were identified. The number of alleles per locus ranged from 3 to 25 with a mean value of 11 alleles per locus. The values of polymorphism information content (PIC) ranged from 0.34 (CUPOhBa4344) to 0.91 (CUPSiBa4072) with a mean PIC value of 0.68. Genetic distances were estimated according to the UPGMA (Unweighted Pair Group Method with Arithmetic Average), the Structure, and Principal Coordinates (PCoA) based clustering. The structure analysis and UPGMA clustering of the genotypes depicted two major clusters. PCoA results supported cluster analysis results. The dendrogram revealed two major clusters. Forty-two samples were obtained from the Kazankaya canyon and 12 samples from the Karanlıkdere region. The two regions are 130 km apart from each other but in a dendrogram, we did not find geographical isolation. The results proved the efficiency of SSRs for genetic diversity analysis in the terebinth. Based on the results, SSRs can be applied as a trustworthy tool for the evaluation of genetic diversity in terebinth genotypes. Molecular analysis on the terebinth genotypes in this study will promote the germplasm collection and the selection of the populations in future studies on terebinths for genetic mapping, genetic diversity, germplasm characterization, and rootstock breeding. Full article
(This article belongs to the Special Issue Use of Wild Crop Relatives as Genetic Resources in Crop Breeding)
Show Figures

Figure 1

22 pages, 8849 KiB  
Article
Relating Climate, Drought and Radial Growth in Broadleaf Mediterranean Tree and Shrub Species: A New Approach to Quantify Climate-Growth Relationships
by J. Julio Camarero and Álvaro Rubio-Cuadrado
Forests 2020, 11(12), 1250; https://doi.org/10.3390/f11121250 - 25 Nov 2020
Cited by 15 | Viewed by 3829
Abstract
The quantification of climate–growth relationships is a fundamental step in tree-ring sciences. This allows the assessment of functional responses to climate warming, particularly in biodiversity and climate-change hotspots including the Mediterranean Basin. In this region, broadleaf tree and shrub species of pre-Mediterranean, subtropical [...] Read more.
The quantification of climate–growth relationships is a fundamental step in tree-ring sciences. This allows the assessment of functional responses to climate warming, particularly in biodiversity and climate-change hotspots including the Mediterranean Basin. In this region, broadleaf tree and shrub species of pre-Mediterranean, subtropical origin, have to withstand increased aridification trends. However, they have not been widely studied to assess their long-term growth responses to climate and drought. Since these species evolved under less seasonal and wetter conditions than strictly Mediterranean species, we hypothesized that their growth would mainly respond to higher precipitation and water availability from spring to early summer. Here, we quantified climate–growth relationships in five of these broadleaf species showing different leaf phenology and wood type (Pistacia terebinthus L., Pistacia lentiscus L., Arbutus unedo L., Celtis australis L., and Laurus nobilis L.) by using dendrochronology. We calculated Pearson correlations between crossdated, indexed, mean ring width series of each species (chronologies) and monthly climate variables (mean temperature, total precipitation). We also calculated correlations between the species’ chronologies and a drought index on 7-day scales. Lastly, we compared the correlation analyses with “climwin” analyses based on an information-theoretic approach and subjected to cross-validation and randomization tests. As expected, the growth of all species was enhanced in response to wet and cool conditions during spring and early summer. In some species (P. lentiscus, A. unedo, C. australis,) high prior-winter precipitation also enhanced growth. Growth of most species strongly responded to 9-month droughts and the correlations peaked from May to July, except in L. nobilis which showed moderate responses. The “climwin” analyses refined the correlation analyses by (i) showing the higher explanatory power of precipitation (30%) vs. temperature (7%) models, (ii) selecting the most influential climate windows with June as the median month, and (iii) providing significant support to the precipitation model in the case of P. terebinthus confirming that the radial growth of this species is a robust proxy of hydroclimate variability. We argue that “climwin” and similar frameworks based on information-theoretic approaches should be applied by dendroecologists to critically assess and quantify climate–growth relationships in woody plants with dendrochronological potential. Full article
(This article belongs to the Special Issue Dendroecological Wood Anatomy and Xylogenesis)
Show Figures

Figure 1

17 pages, 1257 KiB  
Article
Pistacia terebinthus Resin as Yeast Immobilization Support for Alcoholic Fermentation
by Michalis Kallis, Konstantinos Sideris, Nikolaos Kopsahelis, Loulouda Bosnea, Yiannis Kourkoutas, Antonia Terpou and Maria Kanellaki
Foods 2019, 8(4), 127; https://doi.org/10.3390/foods8040127 - 17 Apr 2019
Cited by 20 | Viewed by 4967
Abstract
A natural resin retrieved from Pistacia terebinthus tree was evaluated as an immobilization carrier of Saccharomyces cerevisiae AXAZ-1 cells targeting successive fermentation batches of sugar synthetic mediums. Fermentation times below 54 h were recorded at temperatures 28–14 °C. In total, 147 compounds were [...] Read more.
A natural resin retrieved from Pistacia terebinthus tree was evaluated as an immobilization carrier of Saccharomyces cerevisiae AXAZ-1 cells targeting successive fermentation batches of sugar synthetic mediums. Fermentation times below 54 h were recorded at temperatures 28–14 °C. In total, 147 compounds were detected using gas chromatography-mass spectrometry (GC-MS) analysis, including alcohols, esters, ketones, aldehydes, acids, and terpenes. Principal component analysis indicated that the state of cells (free/immobilized) and the fermentation temperature primarily affected terpenes’ composition. Importantly, no spoilage of the fermented beverages was noted during 90 days of storage at room temperature, most likely due to the high content of extracted terpenoids and phenols (up to 579.01 mg L−1 and 171.8 mg gallic acid equivalent L−1, respectively). Likewise, the developed novel biocatalyst (yeast cells immobilized within Pistacia terebinthus resin) was suitable for the production of low alcohol beverages with an enhanced aromatic profile. The obtained results revealed that the proposed bioprocess shows great commercialization potential in the new fast-growing low-alcohol beverages sector. Full article
(This article belongs to the Special Issue Foods and Bioproducts: Novel Insights/ New Knowledge)
Show Figures

Figure 1

20 pages, 2821 KiB  
Article
Human Adenocarcinoma Cell Line Sensitivity to Essential Oil Phytocomplexes from Pistacia Species: a Multivariate Approach
by Alessandro Buriani, Stefano Fortinguerra, Vincenzo Sorrenti, Stefano Dall’Acqua, Gabbriella Innocenti, Monica Montopoli, Daniela Gabbia and Maria Carrara
Molecules 2017, 22(8), 1336; https://doi.org/10.3390/molecules22081336 - 11 Aug 2017
Cited by 32 | Viewed by 5914
Abstract
Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus, P. lentiscus [...] Read more.
Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus, P. lentiscus var. chia (mastic gum), P. terebinthus, P. vera, and P. integerrima, was screened on three human adenocarcinoma cell lines: MCF-7 (breast), 2008 (ovarian), and LoVo (colon). The results indicate that all the Pistacia phytocomplexes, with the exception of mastic gum oil, induce cytotoxic effects on one or more of the three cell lines. PCA highlighted the presence of different cooperating clusters of bioactive molecules. Cluster variability among species, and even within the same species, could explain some of the differences seen among samples suggesting the presence of both common and species-specific mechanisms. Single molecules from one of the most significant clusters were tested, but only bornyl-acetate presented cytotoxic activity, although at much higher concentrations (IC50 = 138.5 µg/mL) than those present in the essential oils, indicating that understanding of the full biological effect requires a holistic vision of the phytocomplexes with all its constituents. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

13 pages, 380 KiB  
Article
In Vitro Release Studies on Multiple and Simple Emulsions of α-Tocopherol with Pistacia Leaves
by Ö. Özer, B. Kıvçak, B. Mutlu, S. Akay, H. Sağlam and S. Tömek
Sci. Pharm. 2007, 75(3), 97-110; https://doi.org/10.3797/scipharm.2007.75.97 - 28 Sep 2007
Cited by 5 | Viewed by 1359
Abstract
α-Tocopherol is the most effective lipid soluble natural antioxidant and free-radical scavenger. The present study aimed to evaluate the performance of the extracts of Pistacia lentiscus, P. lentiscus var. chia and P. terebinthus leaves as additives on in vitro release of α-tocopherol. [...] Read more.
α-Tocopherol is the most effective lipid soluble natural antioxidant and free-radical scavenger. The present study aimed to evaluate the performance of the extracts of Pistacia lentiscus, P. lentiscus var. chia and P. terebinthus leaves as additives on in vitro release of α-tocopherol. The α-tocopherol content of Pistacia extracts were determined and the release was investigated from w/o/w multiple emulsion, w/o and o/w simple emulsions through cellulose acetate and cellulose nitrate membranes by using HPLC-UV method. As significant increase in the extent of α-tocopherol release was observed with the addition of Pistacia extracts in all emulsions. They could be suggested as suitable additives in α-tocopherol containing formulations. Full article
Back to TopTop