Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Phytophthora sojae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1103 KiB  
Article
Pathotypes and Simple Sequence Repeat (SSR)-Based Genetic Diversity of Phytophthora sojae Isolates in the Republic of Korea
by Ngoc Ha Luong, In-Jeong Kang, Hee Jin You and Sungwoo Lee
Microorganisms 2025, 13(3), 478; https://doi.org/10.3390/microorganisms13030478 - 21 Feb 2025
Viewed by 500
Abstract
Phytophthora sojae is the causal agent of the Phytophthora root and stem rot in soybean, which has resulted in a significant increase in the incidence of the disease and substantial yield losses on a global scale. The proliferation of Phytophthora sojae can be mitigated [...] Read more.
Phytophthora sojae is the causal agent of the Phytophthora root and stem rot in soybean, which has resulted in a significant increase in the incidence of the disease and substantial yield losses on a global scale. The proliferation of Phytophthora sojae can be mitigated through the development of Phytophthora-resistant soybean cultivars. A fundamental understanding of the genetic diversity and dynamic changes within the P. sojae population is essential for disease management and the development of new P. sojae-resistant varieties. Although a large number of pathogen samples can lead to more comprehensive interpretations and better conclusions, only six indigenous P. sojae isolates were available in the Republic of Korea at the time of the experiments. Due to the limited availability, this study preliminarily aimed to assess the pathotypes and genetic variation of the six P. sojae isolates collected in the Republic of Korea. The virulence patterns of all the six P. sojae isolates differed based on the 15 soybean differentials known for P. sojae resistance. The six isolates displayed high levels of pathotype complexities, ranging from 8 to 15, which is notably higher than those observed in other countries. Furthermore, 18 of the 21 simple sequence repeat markers used exhibited polymorphisms. The mean allele number (3.8) shows higher genetic variability compared to that (2.5) of isolates from the USA. The gene diversity (0.624) and the mean polymorphic information content (0.579) also displayed high levels of variation among the six isolates. A low mean heterozygosity (0.019) indicated a rare but possible outcrossing between the isolates, which was detected by the SSR marker PS07. Genetic dissimilarity assessments were employed to categorize the six P. sojae isolates into three groups using a neighbor-joining phylogenetic tree and principal component analysis. Although on a small scale, the phenotypic and genotypic assay results obtained indicated a significant variability in the pathotypes and genetic variation within the P. sojae isolates in the Republic of Korea. Though limited in scope, these results will be a cornerstone for elucidating the virulence pathotype and genetic diversity of the P. sojae population in future analyses. These findings also have the potential to improve the soybean breeding strategies aimed at enhancing resistance to P. sojae in the Republic of Korea. Full article
(This article belongs to the Special Issue Plant Pathogenic Fungi: Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2997 KiB  
Article
GmARF15 Enhances the Resistance of Soybean to Phytophthora sojae by Promoting GmPT10d Expression in Response to Salicylic Acid Signalling
by Yuhan Huo, Haiyuan Chen, Zhuo Zhang, Yang Song, Siyan Liu, Piwu Wang and Sujie Fan
Int. J. Mol. Sci. 2025, 26(1), 191; https://doi.org/10.3390/ijms26010191 - 29 Dec 2024
Viewed by 855
Abstract
Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms [...] Read more.
Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of Glycine max (soybean) to P. sojae infection. In this study, we demonstrated that an isoflavonoid-specific prenyltransferase gene (GmPT10d, Glyma.10G070300) was significantly upregulated in the soybean cultivar Williams 82 with high resistance to P. sojae infection. Transgenic soybean seedlings overexpressing GmPT10d exhibited enhanced resistance to P. sojae, and those subjected to RNA interference showed increased susceptibility to the pathogen. Yeast-one-hybrid and electrophoretic mobility shift assays revealed that GmARF15 could directly bind to the promoter of GmPT10d. Further analysis of the GmARF15 function showed that transgenic soybean seedlings overexpressing GmARF15 also exhibited enhanced resistance to P. sojae. Transactivation assay, luciferase assay, and qPCR analysis showed that GmARF15 could promote the expression of GmPT10d. Further analysis indicated that elevated salicylic acid levels were associated with increased expression of GmARF15 and GmPT10d. Taken together, these findings reveal a regulatory mechanism by which GmARF15 enhances soybean resistance to P. sojae, potentially by promoting the expression of GmPT10d through the salicylic acid signaling pathway. Full article
(This article belongs to the Special Issue Environmental Stress and Metabolic Responses in Plants)
Show Figures

Figure 1

15 pages, 4712 KiB  
Article
A Protein with Unknown Function, Ps495620, Is Critical for the Sporulation and Oospore Production of Phytophthora sojae
by Xiaoran Du, Yan Zeng, Yiying Li, Qin Peng, Jianqiang Miao and Xili Liu
J. Fungi 2025, 11(1), 12; https://doi.org/10.3390/jof11010012 - 27 Dec 2024
Viewed by 948
Abstract
While the rapid rise in bioinformatics has facilitated the identification of the domains and functions of many proteins, some still have no domain annotation or largely uncharacterized functions. However, the biological roles of unknown proteins were not clear in oomycetes. An analysis of [...] Read more.
While the rapid rise in bioinformatics has facilitated the identification of the domains and functions of many proteins, some still have no domain annotation or largely uncharacterized functions. However, the biological roles of unknown proteins were not clear in oomycetes. An analysis of the Phytophthora sojae genome database identified the protein Ps495620, which has no domain annotations and functional predictions in Phytophthora. This study used a CRISPR/Cas9-mediated gene replacement system to knock out Ps495620 to elucidate its function. The Ps495620-knockout mutants exhibited significantly increased oospore production and decreased sporangium formation compared to the wild-type strain P6497. Transcriptomics showed that it is a key regulator of nitrogen, pyruvate, ascorbate, and adorate metabolism in P. sojae. Our findings indicate that Ps495620 is critical in regulating sporangium formation and oospore production in P. sojae. Full article
Show Figures

Figure 1

18 pages, 1882 KiB  
Article
Genome-Wide Association Study for Resistance to Phytophthora sojae in Soybean [Glycine max (L.) Merr.]
by Hee Jin You, Ruihua Zhao, Yu-Mi Choi, In-Jeong Kang and Sungwoo Lee
Plants 2024, 13(24), 3501; https://doi.org/10.3390/plants13243501 - 15 Dec 2024
Cited by 1 | Viewed by 1194
Abstract
Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease. The objective of this [...] Read more.
Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease. The objective of this study was to identify genomic regions associated with resistance to P. sojae isolate 40468 through genome-wide association analyses of 983 soybean germplasms. To elucidate the genetic basis of resistance, three statistical models were employed: the compressed mixed linear model (CMLM), Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK), and fixed and random model circulating probability unification (FarmCPU). The three models consistently identified a genomic region (3.8–5.3 Mbp) on chromosome 3, which has been previously identified as an Rps cluster. A total of 18 single nucleotide polymorphisms demonstrated high statistical significance across all three models, which were distributed in eight linkage disequilibrium (LD) blocks within the aforementioned interval. Of the eight, LD3-2 exhibited the discernible segregation of phenotypic reactions by haplotype. Specifically, over 93% of accessions with haplotypes LD3-2-F or LD3-2-G displayed resistance, whereas over 91% with LD3-2-A, LD3-2-C, or LD3-2-D exhibited susceptibility. Furthermore, the BLINK and FarmCPU models identified new genomic variations significantly associated with the resistance on several other chromosomes, indicating that the resistance observed in this panel was due to the presence of different alleles of multiple Rps genes. These findings underscore the necessity for robust statistical models to accurately detect true marker–trait associations and provide valuable insights into soybean genetics and breeding. Full article
(This article belongs to the Special Issue Crop Genetic Mechanisms and Breeding Improvement)
Show Figures

Figure 1

10 pages, 2100 KiB  
Communication
Biocontrol Potential of Streptomyces Strain FY4 Against Heterobasidion Root Rot Pathogen In Vitro
by Yilin Li, Xuehai Li, Li Geng, Shijie Li, Ziwen Gao, Lin Huang, Lu-Min Vaario and Hui Sun
Forests 2024, 15(12), 2124; https://doi.org/10.3390/f15122124 - 1 Dec 2024
Viewed by 1188
Abstract
Root and butt rot, caused by Heterobasidion species, poses a significant threat to coniferous forests in the Northern Hemisphere. Innovative and effective strategies are crucial to enhance the control of this disease. This study aimed at identifying a Streptomyces strain, FY4, and evaluating [...] Read more.
Root and butt rot, caused by Heterobasidion species, poses a significant threat to coniferous forests in the Northern Hemisphere. Innovative and effective strategies are crucial to enhance the control of this disease. This study aimed at identifying a Streptomyces strain, FY4, and evaluating its biocontrol potential against H. annosum and H. parviporum. Strain FY4 was identified as Streptomyces blastmyceticus based on morphological, physiological, and biochemical characteristics, supported by a multigene phylogenetic analysis using the 16S rRNA, atpD, rpoB, and trpB genes. In vitro dual-culture experiments showed that S. blastmyceticus exhibited antagonistic activity against both H. annosum and H. parviporum, with an inhibition zone diameter exceeding 15 mm. Moreover, the fermentation broth of S. blastmyceticus FY4 displayed significant inhibitory effects on the mycelial growth and spore germination of both Heterobasidion species. At a 10% concentration, the fermentation broth inhibited the mycelial growth by over 90% and reduced the spore germination rate by more than 60%. Additionally, the fermentation broth exhibited significant inhibitory effects on the mycelial growth of four common pathogenic fungi—Phytophthora cinnamomi, P. sojae, Rhizoctonia solani, and Verticillium dahlia, with an inhibition rate over 50%. These findings suggest that S. blastmyceticus FY4 produces antifungal substances capable of effectively suppressing infection of Heterobasidion species in conifers. Consequently, strain FY4 holds great promise as a biological control agent for managing root and butt rot caused by these pathogens, as well as potential for controlling other fungal diseases. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

16 pages, 4757 KiB  
Article
Whole Genome Sequencing and Biocontrol Potential of Streptomyces luteireticuli ASG80 Against Phytophthora Diseases
by Gang Xu, Weihuai Wu, Liqian Zhu, Yanqiong Liang, Minli Liang, Shibei Tan, Helong Chen, Xing Huang, Chunping He, Ying Lu, Kexian Yi and Xiang Ma
Microorganisms 2024, 12(11), 2255; https://doi.org/10.3390/microorganisms12112255 - 7 Nov 2024
Cited by 3 | Viewed by 1693
Abstract
Phytophthora-induced crop diseases, commonly known as “plant plagues”, pose a significant threat to global food security. In this study, strain ASG80 was isolated from sisal roots and demonstrated a broad-spectrum antagonistic activity against several Phytophthora species and fungal pathogens. Strain ASG80 was [...] Read more.
Phytophthora-induced crop diseases, commonly known as “plant plagues”, pose a significant threat to global food security. In this study, strain ASG80 was isolated from sisal roots and demonstrated a broad-spectrum antagonistic activity against several Phytophthora species and fungal pathogens. Strain ASG80 was identified as Streptomyces luteireticuli via phylogenetic analysis, digital DNA–DNA hybridization (dDDH), and average nucleotide identity (ANI). Whole-genome sequencing identified 40 biosynthetic gene clusters (BGCs) related to secondary metabolite production, including antimicrobial compounds. Strain ASG80 extract exhibited broad-spectrum inhibitory activity against Phytophthora nicotianae, P. vignae, P. cinnamomi, and P. sojae. Pot experiments showed that strain ASG80 extract significantly reduced sisal zebra disease incidence, with an efficacy comparable to the fungicide metalaxyl. These findings suggest that strain ASG80 is a promising biocontrol agent with substantial potential for managing Phytophthora-related diseases in agriculture. Full article
(This article belongs to the Special Issue Microorganisms in Agriculture)
Show Figures

Figure 1

12 pages, 4426 KiB  
Article
Chitin Translocation Is Functionally Coupled with Synthesis in Chitin Synthase
by Suhao Niu, Lei Qi, Xiaoyue Zhang, Dongfang He, Pengwei Li, Hao Wang and Yunchen Bi
Int. J. Mol. Sci. 2024, 25(21), 11667; https://doi.org/10.3390/ijms252111667 - 30 Oct 2024
Viewed by 1335
Abstract
Chitin, an extracellular polysaccharide, is synthesized by membrane-embedded chitin synthase (CHS) utilizing intracellular substrates. The mechanism of the translocation of synthesized chitin across the membrane to extracellular locations remains unresolved. We prove that the chitin synthase from Phytophthora sojae (PsCHS) is [...] Read more.
Chitin, an extracellular polysaccharide, is synthesized by membrane-embedded chitin synthase (CHS) utilizing intracellular substrates. The mechanism of the translocation of synthesized chitin across the membrane to extracellular locations remains unresolved. We prove that the chitin synthase from Phytophthora sojae (PsCHS) is a processive glycosyltransferase, which can rapidly produce and tightly bind with the highly polymerized chitin. We further demonstrate that PsCHS is a bifunctional enzyme, which is necessary and sufficient to translocate the synthesized chitin. PsCHS was purified and then reconstituted into proteoliposomes (PLs). The nascent chitin is generated and protected from chitinase degradation unless detergent solubilizes the PLs, showing that PsCHS translocates the newly produced chitin into the lumen of the PLs. We also attempted to resolve the PsCHS structure of the synthesized chitin-bound state, although it was not successful; the obtained high-resolution structure of the UDP/Mn2+-bound state could still assist in describing the characterization of the PsCHS’s transmembrane channel. Consistently, we demonstrate that PsCHS is indispensable and capable of translocating chitin in a process that is tightly coupled to chitin synthesis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3743 KiB  
Article
The WRKY Family Transcription Factor GmWRKY72 Represses Glyceollin Phytoalexin Biosynthesis in Soybean
by Jie Lin, Ivan Monsalvo, Hyejung Kwon, Sarah Pullano and Nik Kovinich
Plants 2024, 13(21), 3036; https://doi.org/10.3390/plants13213036 - 30 Oct 2024
Cited by 2 | Viewed by 1518
Abstract
Phytoalexins are plant defense metabolites that are biosynthesized transiently in response to pathogens. Despite that their biosynthesis is highly restricted in plant tissues, the transcription factors that negatively regulate phytoalexin biosynthesis remain largely unknown. Glyceollins are isoflavonoid-derived phytoalexins that have critical roles in [...] Read more.
Phytoalexins are plant defense metabolites that are biosynthesized transiently in response to pathogens. Despite that their biosynthesis is highly restricted in plant tissues, the transcription factors that negatively regulate phytoalexin biosynthesis remain largely unknown. Glyceollins are isoflavonoid-derived phytoalexins that have critical roles in protecting soybean crops from the oomycete pathogen Phytophthora sojae. To identify regulators of glyceollin biosynthesis, we used a transcriptomics approach to search for transcription factors that are co-expressed with glyceollin biosynthesis in soybean and stilbene synthase phytoalexin genes in grapevine. We identified and functionally characterized the WRKY family protein GmWRKY72, which is one of four WRKY72-type transcription factors of soybean. Overexpressing and RNA interference silencing of GmWRKY72 in the soybean hairy root system decreased and increased expression of glyceollin biosynthetic genes and metabolites, respectively, in response to wall glucan elicitor from P. sojae. A translational fusion with green fluorescent protein demonstrated that GFP-GmWRKY72 localizes mainly to the nucleus of soybean cells. The GmWRKY72 protein directly interacts with several glyceollin biosynthetic gene promoters and the glyceollin transcription factor proteins GmNAC42-1 and GmMYB29A1 in yeast hybrid systems. The results show that GmWRKY72 is a negative regulator of glyceollin biosynthesis that may repress biosynthetic gene expression by interacting with transcription factor proteins and the DNA of glyceollin biosynthetic genes. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

18 pages, 6999 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Reveals Molecular Mechanisms Underlying Resistance to Phytophthora Root Rot
by Ruidong Sun, Anan Han, Haitang Wang, Congcong Wang, Yang Lu, Danqing Ni, Na Guo, Han Xing and Jinming Zhao
Plants 2024, 13(12), 1705; https://doi.org/10.3390/plants13121705 - 19 Jun 2024
Cited by 1 | Viewed by 2122
Abstract
Soybean production is significantly impacted by Phytophthora root rot (PRR), which is caused by Phytophthora sojae. The nucleotide-binding leucine-rich repeat (NLR) gene family plays a crucial role in plant disease resistance. However, current understanding of the function of soybean NLR genes in [...] Read more.
Soybean production is significantly impacted by Phytophthora root rot (PRR), which is caused by Phytophthora sojae. The nucleotide-binding leucine-rich repeat (NLR) gene family plays a crucial role in plant disease resistance. However, current understanding of the function of soybean NLR genes in resistance to PRR is limited. To address this knowledge gap, transgenic soybean plants overexpressing the NLR gene (Glyma.18g283200) were generated to elucidate the molecular mechanism of resistance. Here, transcript changes and metabolic differences were investigated at three time points (12, 24, and 36 h) after P. sojae infection in hypocotyls of two soybean lines, Dongnong 50 (susceptible line, WT) and Glyma.18g283200 overexpression line (resistant line, OE). Based on the changes in differentially expressed genes (DEGs) in response to P. sojae infection in different lines and at different time points, it was speculated that HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), valine, leucine, and isoleucine degradation, and phytohormone signaling may be involved in the defense response of soybean to P. sojae at the transcriptome level by GO term and KEGG pathway enrichment analysis. Differentially accumulated metabolites (DAMs) analysis revealed that a total of 223 and 210 differential metabolites were identified in the positive ion (POS) and negative ion (NEG) modes, respectively. An integrated pathway-level analysis of transcriptomics (obtained by RNA-seq) and metabolomics data revealed that isoflavone biosynthesis was associated with disease resistance. This work provides valuable insights that can be used in breeding programs aiming to enhance soybean resistance against PRR. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

14 pages, 3657 KiB  
Article
Phytophthora sojae Effector PsAvh113 Targets Transcription Factors in Nicotiana benthamiana
by Shuai Wu, Jinxia Shi, Qi Zheng, Yuqin Ma, Wenjun Zhou, Chengjie Mao, Chengjie Chen, Zhengwu Fang, Rui Xia and Yongli Qiao
J. Fungi 2024, 10(5), 318; https://doi.org/10.3390/jof10050318 - 27 Apr 2024
Viewed by 1860
Abstract
Phytophthora sojae is a type of pathogenic oomycete that causes Phytophthora root stem rot (PRSR), which can seriously affect the soybean yield and quality. To subvert immunity, P. sojae secretes a large quantity of effectors. However, the molecular mechanisms regulated by most P. [...] Read more.
Phytophthora sojae is a type of pathogenic oomycete that causes Phytophthora root stem rot (PRSR), which can seriously affect the soybean yield and quality. To subvert immunity, P. sojae secretes a large quantity of effectors. However, the molecular mechanisms regulated by most P. sojae effectors, and their host targets remain unexplored. Previous studies have shown that the expression of PsAvh113, an effector secreted by Phytophthora sojae, enhances viral RNA accumulations and symptoms in Nicotiana benthamiana via VIVE assay. In this study, we analyzed RNA-sequencing data based on disease symptoms in N. benthamiana leaves that were either mocked or infiltrated with PVX carrying the empty vector (EV) and PsAvh113. We identified 1769 differentially expressed genes (DEGs) dependent on PsAvh113. Using stricter criteria screening and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis of DEGs, we found that 38 genes were closely enriched in response to PsAvh113 expression. We selected three genes of N. benthamiana (NbNAC86, NbMyb4, and NbERF114) and found their transcriptional levels significantly upregulated in N. benthamiana infected with PVX carrying PsAvh113. Furthermore, individual silencing of these three genes promoted P. capsici infection, while their overexpression increased resistance to P. capsici in N. benthamiana. Our results show that PsAvh113 interacts with transcription factors NbMyb4 and NbERF114 in vivo. Collectively, these data may help us understand the pathogenic mechanism of effectors and manage PRSR in soybeans. Full article
Show Figures

Figure 1

22 pages, 15865 KiB  
Article
The MYB Transcription Factor GmMYB78 Negatively Regulates Phytophthora sojae Resistance in Soybean
by Hong Gao, Jia Ma, Yuxin Zhao, Chuanzhong Zhang, Ming Zhao, Shengfu He, Yan Sun, Xin Fang, Xiaoyu Chen, Kexin Ma, Yanjie Pang, Yachang Gu, Yaqun Dongye, Junjiang Wu, Pengfei Xu and Shuzhen Zhang
Int. J. Mol. Sci. 2024, 25(8), 4247; https://doi.org/10.3390/ijms25084247 - 11 Apr 2024
Cited by 3 | Viewed by 2486
Abstract
Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome [...] Read more.
Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding: 4th Edition)
Show Figures

Figure 1

23 pages, 10610 KiB  
Article
Rationally Designed Novel Antimicrobial Peptides Targeting Chitin Synthase for Combating Soybean Phytophthora Blight
by Yue Ran, Kiran Shehzadi, Jian-Hua Liang and Ming-Jia Yu
Int. J. Mol. Sci. 2024, 25(6), 3512; https://doi.org/10.3390/ijms25063512 - 20 Mar 2024
Cited by 1 | Viewed by 2380
Abstract
Soybean phytophthora blight is a severe menace to global agriculture, causing annual losses surpassing USD 1 billion. Present crop loss mitigation strategies primarily rely on chemical pesticides and disease-resistant breeding, frequently surpassed by the pathogens’ quick adaptive evolution. In this urgent scenario, our [...] Read more.
Soybean phytophthora blight is a severe menace to global agriculture, causing annual losses surpassing USD 1 billion. Present crop loss mitigation strategies primarily rely on chemical pesticides and disease-resistant breeding, frequently surpassed by the pathogens’ quick adaptive evolution. In this urgent scenario, our research delves into innovative antimicrobial peptides characterized by low drug resistance and environmental friendliness. Inhibiting chitin synthase gene activity in Phytophthora sojae impairs vital functions such as growth and sporulation, presenting an effective method to reduce its pathogenic impact. In our study, we screened 16 previously tested peptides to evaluate their antimicrobial effects against Phytophthora using structure-guided drug design, which involves molecular docking, saturation mutagenesis, molecular dynamics, and toxicity prediction. The in silico analysis identified AMP_04 with potential inhibitory activity against Phytophthora sojae’s chitin synthase. Through three rounds of saturation mutagenesis, we pin-pointed the most effective triple mutant, TP (D10K, G11I, S14L). Molecular dynamic simulations revealed TP’s stability in the chitin synthase-TP complex and its transmembrane mechanism, employing an all-atom force field. Our findings demonstrate the efficacy of TP in occupying the substrate-binding pocket and translocation catalytic channel. Effective inhibition of the chitin synthase enzyme can be achieved. Specifically, the triple mutant demonstrates enhanced antimicrobial potency and decreased toxicity relative to the wild-type AMP_04, utilizing a mechanism akin to the barrel-stave model during membrane translocation. Collectively, our study provides a new strategy that could be used as a potent antimicrobial agent in combatting soybean blight, contributing to sustainable agricultural practices. Full article
(This article belongs to the Special Issue Computational Studies in Drug Design and Discovery)
Show Figures

Figure 1

13 pages, 3126 KiB  
Article
Characterization of Three Types of Elongases from Different Fungi and Site-Directed Mutagenesis
by Yuxin Wang, Lulu Chang, Hao Zhang, Yong Q. Chen, Wei Chen and Haiqin Chen
J. Fungi 2024, 10(2), 129; https://doi.org/10.3390/jof10020129 - 3 Feb 2024
Viewed by 2532
Abstract
Fatty acid elongases play crucial roles in synthesizing long-chain polyunsaturated fatty acids. Identifying more efficient elongases is essential for enhancing oleaginous microorganisms to produce high yields of target products. We characterized three elongases that were identified with distinct specificities: McELO from Mucor circinelloides [...] Read more.
Fatty acid elongases play crucial roles in synthesizing long-chain polyunsaturated fatty acids. Identifying more efficient elongases is essential for enhancing oleaginous microorganisms to produce high yields of target products. We characterized three elongases that were identified with distinct specificities: McELO from Mucor circinelloides, PrELO from Phytophthora ramorum, and PsELO from Phytophthora sojae. Heterologous expression in Saccharomyces cerevisiae showed that McELO preferentially elongates C16 to C18 fatty acids, PrELO targets Δ6 polyunsaturated fatty acids, and PsELO uses long chain saturated fatty acids as substrates. McELO and PrELO exhibited more homology, potentially enabling fatty acid composition remodeling and enhanced LC-PUFAs production in oleaginous microorganisms. Site-directed mutagenesis of conserved amino acids across elongase types identified residues essential for activity, supported by molecular docking. Alanine substitution of conserved polar residues led to enzyme inactivation, underscoring their importance in the condensation reaction. Our findings offer promising elongase candidates for polyunsaturated fatty acid production, contributing to the bioindustry’s sustainable development. Full article
Show Figures

Figure 1

11 pages, 11363 KiB  
Article
The sprT Gene of Bacillus velezensis FZB42 Is Involved in Biofilm Formation and Bacilysin Production
by Yihan Yang, Ruofu Chen, Mati Ur Rahman, Chunyue Wei and Ben Fan
Int. J. Mol. Sci. 2023, 24(23), 16815; https://doi.org/10.3390/ijms242316815 - 27 Nov 2023
Cited by 5 | Viewed by 2756
Abstract
Bacillus velezensis FZB42, a representative strain of plant-growth-promoting rhizobacteria (PGPR), can form robust biofilm and produce multiple antibiotics against a wild range of phytopathogens. In this study, we observed different biofilm morphology of the mutant Y4, derived from a TnYLB-1 transposon insertion library [...] Read more.
Bacillus velezensis FZB42, a representative strain of plant-growth-promoting rhizobacteria (PGPR), can form robust biofilm and produce multiple antibiotics against a wild range of phytopathogens. In this study, we observed different biofilm morphology of the mutant Y4, derived from a TnYLB-1 transposon insertion library of B. velezensis FZB42. We identified that the transposon was inserted into the sprT gene in Y4. Our bioinformatics analysis revealed that the SprT protein is an unstable hydrophilic protein located in the cytoplasm. It is highly conserved in Bacillus species and predicted to function as a metalloprotease by binding zinc ions. We also demonstrated that ΔsprT significantly reduced the swarming ability of FZB42 by ~5-fold and sporulation capacity by ~25-fold. In addition, the antagonistic experiments showed that, compared to the wild type, the ΔsprT strain exhibited significantly reduced inhibition against Staphylococcus aureus ATCC-9144 and Phytophthora sojae, indicating that the inactivation of sprT led to decreased production of the antibiotic bacilysin. The HPLC-MS analysis confirmed that bacilysin was indeed decreased in the ΔsprT strain, and qPCR analysis revealed that ΔsprT down-regulated the expression of the genes for bacilysin biosynthesis. Our results suggest that the sprT gene plays a regulatory role in multiple characteristics of B. velezensis FZB42, including biofilm formation, swarming, sporulation, and antibiotic production. Full article
(This article belongs to the Special Issue Molecular Research in Prebiotics, Probiotics and Postbiotics)
Show Figures

Figure 1

13 pages, 3607 KiB  
Article
Soybean Variety Saedanbaek Confers a New Resistance Allele to Phytophthora sojae
by Hee Jin You, Kyu-Chan Shim, In-Jeong Kang, Ji-Min Kim, Sungtaeg Kang and Sungwoo Lee
Plants 2023, 12(23), 3957; https://doi.org/10.3390/plants12233957 - 24 Nov 2023
Cited by 9 | Viewed by 1797
Abstract
Phytophthora root and stem rot (PRSR) disease results in substantial losses in soybean production worldwide. The occurrence of PRSR caused by Phytophthora sojae Kaufmann & Gerdemann has become increasingly important for soybean production in the Republic of Korea, but domestic soybean–P. sojae [...] Read more.
Phytophthora root and stem rot (PRSR) disease results in substantial losses in soybean production worldwide. The occurrence of PRSR caused by Phytophthora sojae Kaufmann & Gerdemann has become increasingly important for soybean production in the Republic of Korea, but domestic soybean–P. sojae interaction has been less studied. The disease has been managed by developing varieties harboring resistance to the Phytophthora sojae (Rps) gene. The present study aimed to identify a major gene locus conferring resistance to new P. sojae isolate 2858 in the recombinant inbred line population derived from a cross between parental lines ‘Daepung’ (susceptible) and ‘Saedanbaek’ (resistant). Seventy-three recombination inbred lines (RILs) were evaluated for resistance to P. sojae isolate 2858. A resistance locus was identified in the approximate 3.3–4.3 megabase pair region on chromosome 3 using both single-marker and linkage analyses. The Rps of Saedanbaek (RpsSDB) was located on the well-known Rps gene/allele cluster region, which also partially overlapped with a locus previously identified in the Korean soybean variety, ‘Daewon’, resistant to another P. sojae isolate 2457 (RpsDW). Approximately 402 kilobase pairs of the interval region overlapped, including six nucleotide-binding site-leucine-rich repeat (NBS-LRR)-coding genes. Additional phenotypic assays revealed that Saedanbaek was susceptible to isolate 2457 and that Daewon was susceptible to isolate 2858, indicating that RpsSDB and RpsDW are different genes or alleles that confer race-specific resistance to the two P. sojae isolates. These results provide information that will be helpful for breeders developing P. sojae-resistant cultivars. Full article
Show Figures

Figure 1

Back to TopTop