Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Penicillium dimorphosporum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 39243 KiB  
Article
A Study of the Metabolic Profiles of Penicillium dimorphosporum KMM 4689 Which Led to Its Re-Identification as Penicillium hispanicum
by Liliana E. Nesterenko, Roman S. Popov, Olesya I. Zhuravleva, Natalya N. Kirichuk, Viktoria E. Chausova, Kirill S. Krasnov, Mikhail V. Pivkin, Ekaterina A. Yurchenko, Marina P. Isaeva and Anton N. Yurchenko
Fermentation 2023, 9(4), 337; https://doi.org/10.3390/fermentation9040337 - 28 Mar 2023
Cited by 9 | Viewed by 2473
Abstract
Changes in cultivation conditions, in particular salinity and temperature, affect the production of secondary fungal metabolites. In this work, the extracts of fungus previously described as Penicillium dimorphosporum cultivated in various salinity and temperature conditions were investigated using HPLC UV/MS techniques, and their [...] Read more.
Changes in cultivation conditions, in particular salinity and temperature, affect the production of secondary fungal metabolites. In this work, the extracts of fungus previously described as Penicillium dimorphosporum cultivated in various salinity and temperature conditions were investigated using HPLC UV/MS techniques, and their DPPH radical scavenging and cytotoxicity activities against human prostate cancer PC-3 cells and rat cardiomyocytes H9c2 were tested. In total, 25 compounds, including 13 desoxyisoaustamide-related alkaloids and eight anthraquinones, were identified in the studied extracts and their relative amounts were estimated. The production of known neuroprotective alkaloids 5, 6 and other brevianamide alkaloids was increased in hypersaline and high-temperature conditions, and this may be an adaptation to extreme conditions. On the other hand, hyposalinity stress may induce the synthesis of unidentified antioxidants with low cytotoxicity that could be very interesting for future investigation. The study of secondary metabolites of the strain KMM 4689 showed that although brevianamide-related alkaloids and anthraquinone pigments are widely distributed in various fungi, these metabolites have not been described for P. dimorphosporum and related species. For this reason, the strain KMM 4689 was re-sequenced using the β-tubulin gene and ITS regions as molecular markers and further identified as P. hispanicum. Full article
(This article belongs to the Special Issue New Research on Fungal Secondary Metabolites)
Show Figures

Figure 1

11 pages, 1934 KiB  
Article
New Marine Fungal Deoxy-14,15-Dehydroisoaustamide Resensitizes Prostate Cancer Cells to Enzalutamide
by Sergey A. Dyshlovoy, Olesya I. Zhuravleva, Jessica Hauschild, Tobias Busenbender, Dmitry N. Pelageev, Anton N. Yurchenko, Yuliya V. Khudyakova, Alexandr S. Antonov, Markus Graefen, Carsten Bokemeyer and Gunhild von Amsberg
Mar. Drugs 2023, 21(1), 54; https://doi.org/10.3390/md21010054 - 14 Jan 2023
Cited by 10 | Viewed by 4143
Abstract
Marine fungi serve as a valuable source for new bioactive molecules bearing various biological activities. In this study, we report on the isolation of a new indole diketopiperazine alkaloid deoxy-14,15-dehydroisoaustamide (1) from the marine-derived fungus Penicillium dimorphosporum KMM 4689 associated with [...] Read more.
Marine fungi serve as a valuable source for new bioactive molecules bearing various biological activities. In this study, we report on the isolation of a new indole diketopiperazine alkaloid deoxy-14,15-dehydroisoaustamide (1) from the marine-derived fungus Penicillium dimorphosporum KMM 4689 associated with a soft coral. The structure of this metabolite, including its absolute configuration, was determined by HR-MS, 1D and 2D NMR as well as CD data. Compound 1 is a very first deoxyisoaustamide alkaloid possessing two double bonds in the proline ring. The isolated compound was noncytotoxic to a panel of human normal and cancer cell lines up to 100 µM. At the same time, compound 1 resensitized prostate cancer 22Rv1 cells to androgen receptor (AR) blocker enzalutamide. The mechanism of this phenomenon was identified as specific drug-induced degradation of androgen receptor transcription variant V7 (AR-V7), which also resulted in general suppression of AR signaling. Our data suggest that the isolated alkaloid is a promising candidate for combinational therapy of castration resistant prostate cancer, including drug-resistant subtypes. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

12 pages, 1273 KiB  
Article
New Deoxyisoaustamide Derivatives from the Coral-Derived Fungus Penicillium dimorphosporum KMM 4689
by Olesya I. Zhuravleva, Alexandr S. Antonov, Vo Thi Dieu Trang, Mikhail V. Pivkin, Yuliya V. Khudyakova, Vladimir A. Denisenko, Roman S. Popov, Natalya Y. Kim, Ekaterina A. Yurchenko, Andrey V. Gerasimenko, Anatoly A. Udovenko, Gunhild von Amsberg, Sergey A. Dyshlovoy and Shamil S. Afiyatullov
Mar. Drugs 2021, 19(1), 32; https://doi.org/10.3390/md19010032 - 12 Jan 2021
Cited by 20 | Viewed by 4684
Abstract
Seven new deoxyisoaustamide derivatives (17) together with known compounds (810) were isolated from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Their structures were established using spectroscopic methods, X-ray diffraction analysis and by comparison with related [...] Read more.
Seven new deoxyisoaustamide derivatives (17) together with known compounds (810) were isolated from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Their structures were established using spectroscopic methods, X-ray diffraction analysis and by comparison with related known compounds. The absolute configurations of some alkaloids were determined based on CD and NOESY data as well as biogenetic considerations. The cytotoxic and neuroprotective activities of some of the isolated compounds were examined and structure-activity relationships were pointed out. New deoxyisoaustamides 46 at concentration of 1 µM revealed a statistical increase of PQ(paraquat)-treated Neuro-2a cell viability by 30–39%. Full article
(This article belongs to the Special Issue Marine Compounds from the Far Eastern Organisms)
Show Figures

Graphical abstract

Back to TopTop