Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Passiflora edulis Sims peel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3550 KiB  
Article
Morphometric and Biochemical Analysis with Seed Protein Profiling of Passiflora Species Found in the Northeastern Himalayan Region of India
by Kripa Shankar, Senjam Romen Singh, Lobsang Wangchu, Arunkumar Phurailatpam, Lukram Shantikumar, Ps. Mariam Anal, Nongthombam Devachandra, Budhindra Nath Hazarika and Aria Dolatabadian
Horticulturae 2025, 11(6), 637; https://doi.org/10.3390/horticulturae11060637 - 6 Jun 2025
Viewed by 596
Abstract
Passion fruit is an underutilised fruit in Northeastern India, known for its unique flavour and health benefits. This study analysed 15 genotypes (P1 to P15) to explore their morphological and biochemical traits related to fruit quality and yield. P. quadrangularis L. (P15) exhibited [...] Read more.
Passion fruit is an underutilised fruit in Northeastern India, known for its unique flavour and health benefits. This study analysed 15 genotypes (P1 to P15) to explore their morphological and biochemical traits related to fruit quality and yield. P. quadrangularis L. (P15) exhibited maximum flower length, fruit size, weight, juice content, shelf-life, and yield. P. edulis f. flavicarpa (P3, P5, and P2) had the highest seed count per fruit and antioxidant activity, along with greater chlorophyll and anthocyanin levels. Passiflora edulis Sims (P8 and P11) showed superior total soluble solids, carotenoids, and vitamin C. The study found that fruit shelf life positively correlated with seed weight, while the number of fruits per vine negatively correlated with seed traits and peel weight. Additionally, certain traits, such as total carotenoids, had strong positive correlations with reducing sugar and flavonoids. Principal component analysis revealed distinct trait relationships, particularly for genotypes P7 and P10. SDS-PAGE protein profiling indicated a significant distance between P3 and P14, emphasising genetic diversity. In conclusion, this research highlights the diverse morphological and biochemical characteristics of passion fruit genotypes, paving the way for the region’s improved fruit quality, yield, and breeding strategies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

15 pages, 1085 KiB  
Article
Effect of Passiflora Edulis Sims Peel Feed on Meat Quality of Finishing Pigs
by Xueying Zai, Xianyong Ma, Guangying Weng, Min Song, Yusheng Lu, Liyi Yang and Dun Deng
Foods 2025, 14(4), 561; https://doi.org/10.3390/foods14040561 - 8 Feb 2025
Viewed by 853
Abstract
Passiflora edulis Sims peel (Chinese name Baixiangguo, BXG) is a by-product with a high nutritional and economic value of Passiflora edulis Sims. In this study, corn was partly replaced with BXG to make feed for finishing pigs and the effects on the carcass [...] Read more.
Passiflora edulis Sims peel (Chinese name Baixiangguo, BXG) is a by-product with a high nutritional and economic value of Passiflora edulis Sims. In this study, corn was partly replaced with BXG to make feed for finishing pigs and the effects on the carcass traits, meat quality, muscle amino acid profile, and gene expression of finishing pigs were evaluated. A total of 20 healthy finishing pigs (Duroc × Landrace × Large) were randomly divided into two groups. The control group (CON) was fed the basal diet, and the experimental group (BXG) was fed a basal diet with BXG instead of 10% corn for a period of 43 d. Compared to the CON group, the carcass weight, intramuscular fat content, and marbling score were significantly increased, while the drip loss, b* value, and shear force of the BXG group were significantly reduced (p < 0.05). Gene expression analysis showed that the mRNA expression of lipid synthesis and oxidative-type fiber related genes was significantly increased in the BXG group (p < 0.05). Proteomic research revealed that the metabolic pathways of the BXG and CON groups differed significantly. A total of 36 differentially expressed proteins were identified, mainly related to energy metabolism, fatty acid degradation, and endocrine regulation pathways. However, the contents of glutamine, glutamate, proline, and other amino acids in the BXG group were significantly reduced (p < 0.05). Overall, this study has a positive effect on improving meat quality, but the specific mechanism needs to be further explored, which offers practical guidance for the application of BXG in producing higher-quality pork and further promotes its commercial application. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

18 pages, 3301 KiB  
Article
Enhancement of Human Epidermal Cell Defense against UVB Damage by Fermentation of Passiflora edulis Sims Peel with Saccharomyces cerevisiae
by Jiaxuan Fang, Qianru Sun, Ziwen Wang, Zixin Song, Jiman Geng, Changtao Wang, Meng Li and Dongdong Wang
Nutrients 2023, 15(3), 501; https://doi.org/10.3390/nu15030501 - 18 Jan 2023
Cited by 15 | Viewed by 2983
Abstract
The processing of Passiflora edulis Sims results in large amounts of wasted peel resources and environmental pollution. In order to improve the utilisation of natural plant resources and economic benefits, this study uses Saccharomyces cerevisiae to ferment Passiflora edulis Sims peel to obtain [...] Read more.
The processing of Passiflora edulis Sims results in large amounts of wasted peel resources and environmental pollution. In order to improve the utilisation of natural plant resources and economic benefits, this study uses Saccharomyces cerevisiae to ferment Passiflora edulis Sims peel to obtain Passiflora edulis Sims peel fermentation broth (PF). The content of active substances in unfermented Passiflora edulis Sims peel water extract (PW) and PF is then determined, as well as their in vitro antioxidant capacity. The protective effects of PF and PW on UVB-induced skin inflammation and skin barrier damage in human immortalised epidermal keratinocytes (HaCaT) cells (including cell viability, ROS, HO-1, NQO1, IL-1β, IL-8, TNF-α, KLK-7, FLG, AQP3 and Caspase 14 levels) are investigated. Studies have shown that PF enhances the content of active substances more effectively compared to PW, showing a superior ability to scavenge free radical scavenging and antioxidants. PW and PF can effectively scavenge excess intracellular ROS, reduce the cellular secretion of pro-inflammatory factors, regulate the content of skin barrier-related proteins and possibly respond to UVB-induced cell damage by inhibiting the activation of the PI3K/AKT/mTOR signalling pathway. Studies have shown that both PW and PF are safe and non-irritating, with PF exploiting the efficacy of Passiflora edulis Sims peel more significantly, providing a superior process for the utilisation of Passiflora edulis Sims waste. At the same time, PF can be developed and used as a functional protective agent against ultraviolet damage to the skin, thereby increasing the value of the use of Passiflora edulis Sims waste. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

20 pages, 4049 KiB  
Article
Micro-Encapsulation of Phytochemicals in Passion Fruit Peel Waste Generated on an Organic Farm: Effect of Carriers on the Quality of Encapsulated Powders and Potential for Value-Addition
by Gift Kabelo Kobo, Tafadzwa Kaseke and Olaniyi Amos Fawole
Antioxidants 2022, 11(8), 1579; https://doi.org/10.3390/antiox11081579 - 15 Aug 2022
Cited by 23 | Viewed by 5623
Abstract
The passion (Passiflora edulis Sims) fruit peel is rich in phenolics and other bioactive compounds and has great potential as a natural food preservative. The present study investigated the value-adding potential of passion fruit peel waste generated on an organic farm. [...] Read more.
The passion (Passiflora edulis Sims) fruit peel is rich in phenolics and other bioactive compounds and has great potential as a natural food preservative. The present study investigated the value-adding potential of passion fruit peel waste generated on an organic farm. The effect of carriers in encapsulating the peel extract to develop a polyphenolic-rich powder was investigated. The passion fruit peel extracts were prepared using 70% ethanol (1:10 w/v), and encapsulated using waxy starch (WS), gum arabic (GA), and maltodextrin (MT) before freeze-drying. The effects of carriers on the passion fruit peel powder (PFPP) production yield, physicochemical, rheological, phytochemical, and antioxidant properties were investigated. GA-and MT-encapsulated powders had better physical, phytochemical, and antioxidant properties, including yield, total soluble solids, solubility, bulk density, total phenolic content, and ferric reducing antioxidant powder. A total of 18 metabolites, including phenolic acids (10), flavonoids (6), and stilbenes (2), were tentatively identified in all the PFPP samples, with WS exhibiting a higher concentration of the compounds compared to GA and MT. Our results indicated that no single carrier was associated with all the quality attributes; therefore, better results could be produced by compositing these carriers. Nonetheless, our results highlight the potential of passion fruit peels as a source of polyphenols and functional ingredient in formulating natural food additives. Full article
(This article belongs to the Special Issue Antioxidant Potential of Extracts from Foods and Plants)
Show Figures

Figure 1

Back to TopTop