Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = PRNT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4051 KiB  
Article
Chimeric Vesicular Stomatitis Virus Bearing Western Equine Encephalitis Virus Envelope Proteins E2-E1 Is a Suitable Surrogate for Western Equine Encephalitis Virus in a Plaque Reduction Neutralization Test
by Kerri L. Miazgowicz, Bailey E. Maloney, Melinda A. Brindley, Mattie Cassaday, Raegan J. Petch, Paul Bates, Aaron C. Brault and Amanda E. Calvert
Viruses 2025, 17(8), 1067; https://doi.org/10.3390/v17081067 - 31 Jul 2025
Viewed by 133
Abstract
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory [...] Read more.
In December 2023, infections of western equine encephalitis virus (WEEV) within Argentina were reported to the World Health Organization (WHO). By April 2024, more than 250 human infections, 12 of which were fatal, and 2500 equine infections were identified in South America. Laboratory diagnosis and surveillance in affected countries were hindered by a lack of facilities equipped with BSL-3 laboratories, as confirmatory serodiagnosis for WEEV requires live virus in the plaque reduction neutralization test (PRNT). To expand serodiagnosis for WEEV in the Americas, we developed a virus chimera composed of vesicular stomatitis virus (VSV) engineered to display the E2-E1 glycoproteins of WEEV (VSV/WEEV) in place of the VSV glycoprotein (G). PRNT90 and IC90 values of parental WEEV and VSV/WEEV were analogous using sera collected from mice, horses, and chickens. VSV/WEEV rapidly formed plaques with clear borders and reduced the assay readout time by approximately 8 h compared to the parental virus. Overall, we demonstrate that chimeric VSV/WEEV is a suitable surrogate for WEEV in a diagnostic PRNT. Use of chimeric VSV/WEEV in place of authentic WEEV will dramatically expand testing capacity by enabling PRNTs to be performed at BSL-2 containment, while simultaneously decreasing the health risk to testing personnel. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
Show Figures

Figure 1

8 pages, 1302 KiB  
Communication
Vaccinia and Monkeypox Virus-Neutralizing Antibodies in People Living with HIV: A Serological Study in a Orthopoxvirus-Endemic, Low-Income Region in Brazil
by Thyago José Silva, Ana Gabriella Stoffella-Dutra, Victor Lacerda Gripp, Pollyana R. C. Gorgens, Iago José da Silva Domingos, Pedro Henrique Bastos e Silva, Bruna Caroline Chaves-Garcia, Erna Geessien Kroon, Etel Rocha-Vieira, Giliane de Souza Trindade and Danilo Bretas de Oliveira
Pathogens 2025, 14(8), 733; https://doi.org/10.3390/pathogens14080733 - 25 Jul 2025
Viewed by 287
Abstract
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks [...] Read more.
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks affect rural communities. This epidemiological context is especially relevant for at-risk populations, such as people living with HIV (PLHIV). This study aimed to assess the presence of neutralizing antibodies (NAbs) against OPV in PLHIV in this endemic setting. Serum samples were collected from 177 PLHIV in treatment at the specialized service between December 2021 and August 2022. VACV and MPXV NAbs were measured using the plaque reduction neutralization test (PRNT) and VACV-infected cells. The overall occurrence of OPV NAbs was 27.7%. NAbs were higher in individuals born before 1980 (53.3%) than those born after 1980 (1.1%). Among anti-VACV-seropositive individuals, 40.8% also had MPXV NAbs, suggesting cross-immunity. These findings indicate the circulation of VACV in PLHIV and highlight the increased susceptibility to OPV infections among individuals born after the cessation of smallpox vaccination. The results reinforce the importance of continued surveillance of OPV, especially in endemic regions and vulnerable populations. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

8 pages, 295 KiB  
Brief Report
A Single Dose of Yellow Fever Vaccine Provides Long-Term Immunity in Japanese Travelers
by Shinji Fukushima, Chang Kweng Lim and Atsuo Hamada
Vaccines 2025, 13(7), 675; https://doi.org/10.3390/vaccines13070675 - 24 Jun 2025
Viewed by 613
Abstract
Yellow fever (YF) is an acute hemorrhagic zoonotic disease that causes severe liver damage, renal failure, and hemorrhagic shock. No antiviral treatment is available; thus, vaccination is a critical preventive measure. Although the World Health Organization (WHO) revised the guidelines regarding the need [...] Read more.
Yellow fever (YF) is an acute hemorrhagic zoonotic disease that causes severe liver damage, renal failure, and hemorrhagic shock. No antiviral treatment is available; thus, vaccination is a critical preventive measure. Although the World Health Organization (WHO) revised the guidelines regarding the need for booster vaccination for YF with the rationale that a single vaccination provides sufficient long-term immunogenicity, no studies have evaluated long-term immunity in Japanese adults who received a single dose of YF vaccine. This study evaluated the long-term persistence of immunogenicity in Japanese adults vaccinated with the YF vaccine. This observational study enrolled Japanese adults who received a single YF vaccination >5 years previously. Blood samples were collected after confirming eligibility for the study. The serum levels of anti-yellow fever virus (YFV)-neutralizing antibodies were measured using the 50% plaque reduction neutralization test (PRNT50). The 65 participants comprised 35 males and 30 females, with a median age at vaccination of 34 years. The time between YF vaccination and registration was between 5 and 26 years. All participants remained seropositive even after a long time. Statistical analysis showed no correlation between the time elapsed since YF vaccination and PRNT50. Our results indicate that a single dose of YF vaccine provides adequate long-term immunity in Japanese adults and that booster vaccinations are not routinely required. These findings strongly aid in the development of travel medicine guidelines and the optimization of vaccination strategies by reducing the usage of medical resources and simplifying the health requirements for travelers. Full article
Show Figures

Figure 1

16 pages, 654 KiB  
Article
Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico
by J. Manuel Aranda-Coello, Carlos Machain-Williams, Manuel Weber, Alma R. Dzul Rosado, Tyler R. Simpkins and Bradley J. Blitvich
Viruses 2025, 17(5), 590; https://doi.org/10.3390/v17050590 - 22 Apr 2025
Viewed by 1031
Abstract
We performed serologic surveillance for selected arthropod-borne viruses (arboviruses) in bats and opossums in the Lacandona Rainforest, Chiapas, Mexico, in 2023–2024. Sera were collected from 94 bats of at least 15 species and 43 opossums of three species. The sera were assayed by [...] Read more.
We performed serologic surveillance for selected arthropod-borne viruses (arboviruses) in bats and opossums in the Lacandona Rainforest, Chiapas, Mexico, in 2023–2024. Sera were collected from 94 bats of at least 15 species and 43 opossums of three species. The sera were assayed by the plaque reduction neutralization test (PRNT) for antibodies to eight orthoflaviviruses (dengue viruses 1–4, St. Louis encephalitis virus, T’Ho virus, West Nile virus, and Zika virus) and one alphavirus (chikungunya virus; CHIKV). Twelve (12.8%) bats and 15 (34.9%) opossums contained orthoflavivirus-specific antibodies. One bat (a Jamaican fruit bat) was seropositive for Zika virus, and 11 bats contained antibodies to an undetermined orthoflavivirus, as did the 15 opossums. All bats and most opossums seropositive for an undetermined orthoflavivirus had low PRNT titers, possibly because they had been infected with another (perhaps unrecognized) orthoflavivirus not included in the PRNTs. Antibodies that neutralized CHIKV were detected in three (7.0%) opossums and none of the bats. The three opossums had low CHIKV PRNT titers, and therefore, another alphavirus may have been responsible for the infections. In summary, we report serologic evidence of arbovirus infections in bats and opossums in Chiapas, Mexico. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 3907 KiB  
Article
Application of Pipe Ring Notched Tensile (PRNT) Specimens to Fracture Mechanics Testing of Ductile Metallic Materials
by Isaak Trajković, Jovan Tanasković, Zoran Radosavljević, Miloš Milošević, Bojan Medjo and Jasmina Lozanović
Metals 2025, 15(4), 410; https://doi.org/10.3390/met15040410 - 4 Apr 2025
Viewed by 465
Abstract
This paper presents the results of experimental and numerical analysis of fracture mechanics testing of ductile metallic materials using a non-standard procedure with PRNT (pipe ring notched tensile) ring-shaped specimens, introduced in previous publications through analysis of 3D-printed polymer rings. The main focus [...] Read more.
This paper presents the results of experimental and numerical analysis of fracture mechanics testing of ductile metallic materials using a non-standard procedure with PRNT (pipe ring notched tensile) ring-shaped specimens, introduced in previous publications through analysis of 3D-printed polymer rings. The main focus of this research is the determination of the values of the plastic geometry factor ηpl since the specimen is not a standard one. Toward this aim, the finite element software package Simulia Abaqus was applied to evaluate the J-integral (by using the domain integral method) and the F-CMOD curve so that the plastic geometry factor ηpl can be evaluated for different values of the ratio of crack length to specimen width (a0/W = 0.45 ÷ 0.55). In this way, a procedure and the possibility of practical implementation on the thin-walled pipelines are established. Full article
Show Figures

Figure 1

19 pages, 2364 KiB  
Article
Use of a Multiplex Immunoassay Platform to Investigate Multifaceted Antibody Responses in SARS-CoV-2 Vaccinees with and Without Prior Infection
by Troy Odo, Brien K. Haun, Caitlin A. Williams, Aquena Ball, Albert To, Teri Ann S. Wong, Lauren Ching, Eileen Nakano, Alex Van Ry, Laurent Pessaint, Hanne Andersen, Oreola Donini, Vivek R. Nerurkar and Axel T. Lehrer
COVID 2025, 5(4), 44; https://doi.org/10.3390/covid5040044 - 22 Mar 2025
Viewed by 867
Abstract
The emergence of COVID-19 necessitated the rapid development of vaccines. While highly effective at reducing severe disease and death, breakthrough infections remain a problem as the virus continues to mutate. To help address this issue, we show the utility of a multiplex immunoassay [...] Read more.
The emergence of COVID-19 necessitated the rapid development of vaccines. While highly effective at reducing severe disease and death, breakthrough infections remain a problem as the virus continues to mutate. To help address this issue, we show the utility of a multiplex immunoassay in measuring multiple aspects of the antibody response generated by SARS-CoV-2 vaccines. We use a multiplex immunoassay platform to measure spike-specific IgG concentration, avidity, and receptor-binding inhibition. In addition, we correlate results from an ACE-2 receptor-binding inhibition assay with corresponding data from a SARS-CoV-2 microneutralization assay to establish this inhibitory assay as a potential predictor of virus neutralization. We studied these antibody responses in SARS-CoV-2-naïve and -convalescent vaccinees. Our results showed increased IgG concentrations, avidity, and inhibition following vaccination in both groups. We were also able to differentiate the immune response between the two groups using the multiplex immunoassay platform to look at antibody diversity. The receptor-binding inhibition assay has strong correlations with a cell-based pseudovirus neutralization assay as well as with WT SARS-CoV-2 Washington and Delta variant PRNT50 assays. This suggests that the inhibition assay may be able to simultaneously predict virus neutralization of different SARS-CoV-2 variants. Overall, we show that the developed custom multiplex immunoassay with several experimental variations is a powerful tool in assessing multiple aspects of the SARS-CoV-2 antibody response in vaccinated individuals. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

13 pages, 2651 KiB  
Article
A Live-Cell Imaging-Based Fluorescent SARS-CoV-2 Neutralization Assay by Antibody-Mediated Blockage of Receptor Binding Domain-ACE2 Interaction
by Jorge L. Arias-Arias, Laura Monturiol-Gross and Eugenia Corrales-Aguilar
BioTech 2025, 14(1), 10; https://doi.org/10.3390/biotech14010010 - 14 Feb 2025
Viewed by 1094
Abstract
Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains [...] Read more.
Neutralization assays have become an important tool since the beginning of the COVID-19 pandemic for testing vaccine responses and therapeutic antibodies as well as for monitoring humoral immunity to SARS-CoV-2 in epidemiological studies. The spike glycoprotein (S) present on the viral surface contains a receptor binding domain (RBD) that recognizes the angiotensin-converting enzyme 2 receptor (ACE2) in host cells, allowing virus entry. The gold standard for determining SARS-CoV-2 neutralizing antibodies is the plaque reduction neutralization test (PRNT), which relies on live-virus replication performed exclusively in biosafety level 3 (BSL-3) laboratories. Here, we report the development of a surrogate live-cell imaging-based fluorescent SARS-CoV-2 neutralization assay, applicable to BSL-1 or BSL-2 laboratories, by antibody-mediated blockage of the interaction between recombinant RBD with overexpressed ACE2 receptor in a genetically modified HEK 293T stable cell line. Our approach was able to detect neutralizing antibodies both in COVID-19-positive human serum samples and polyclonal equine formulations against SARS-CoV-2. This new cell-based surrogate neutralization assay represents a virus-free fluorescence imaging alternative to the reported approaches, which can be used to detect antibody-neutralizing capabilities toward SARS-CoV-2. This assay could also be extrapolated in the future to other established and emergent viral agents. Full article
(This article belongs to the Special Issue Advances in Bioimaging Technology)
Show Figures

Figure 1

9 pages, 694 KiB  
Brief Report
Comparative Analysis of Hemagglutination Inhibition and Plaque Reduction Neutralization Tests for Japanese Encephalitis Virus Antibody Detection
by Cui Li, Jianqing Wan, Deli Wang, Lu Xiao, Xuni Li, Cunshuai Zhang and Zhao Wang
Viruses 2025, 17(1), 104; https://doi.org/10.3390/v17010104 - 14 Jan 2025
Viewed by 1063
Abstract
Japanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the Flaviviridae family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization [...] Read more.
Japanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the Flaviviridae family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization Test (PRNT) is considered the gold standard for detecting JE-specific antibodies because of its high specificity. However, PRNT is complex, time-consuming, and requires live viruses, limiting its applicability in routine diagnostics. In this study, we compared the sensitivity and correlation of the Hemagglutination Inhibition (HI) assay and PRNT for detecting JE antibodies in avian serum samples. We conducted a comparative analysis of the outcomes obtained from the PRNT and HI using 240 serum samples collected from 30 JEV-immunized avian subjects at various time points. Comparative analysis revealed a significant correlation between the HI and PRNT (R2 = 0.9321, p ≤ 0.0001). The Bland–Altman analysis also exhibited favorable concordance between the two assays. Consequently, HI may function as a viable substitute for PRNT in the screening of a substantial number of serum samples. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 1723 KiB  
Protocol
Optimizing Microneutralization and IFN-γ ELISPOT Assays to Evaluate Mpox Immunity
by Yinyi Yu, Krystal Meza, Chase Colbert, Daniel F. Hoft, Anna Jaunarajs, Azra Blazevic, Sharon E. Frey and Getahun Abate
Vaccines 2025, 13(1), 27; https://doi.org/10.3390/vaccines13010027 - 31 Dec 2024
Cited by 1 | Viewed by 1040
Abstract
Background: Available assays to measure pox virus neutralizing antibody titers are laborious and take up to 5 days. In addition, assays to measure T cell responses require the use of specific antigens, which may not be the same for all pox viruses. This [...] Read more.
Background: Available assays to measure pox virus neutralizing antibody titers are laborious and take up to 5 days. In addition, assays to measure T cell responses require the use of specific antigens, which may not be the same for all pox viruses. This study reports the development of robust assays for the measurement of mpox-specific neutralizing antibodies and IFN-γ-producing T-cell responses. Methods: Fourteen samples from 7 volunteers who received Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) were used. The focused reduction neutralization test (FRNT) was performed using the mpox-specific A29 monoclonal antibody. Optimization and further development of FRNT were conducted using the plaque reduction neutralization test (PRNT) as the gold standard. The mpox-specific IFN-γ ELISPOT assay was optimized using different mpox antigen preparations. Results with pre-vaccination samples were compared with post-vaccination samples using the Wilcoxon matched-pairs test. Results: Pre-vaccination and post-vaccination sera (n = 7) had FRNT50 (i.e., titers that inhibited at least 50% of the virus) of 109.1 ± 161.8 and 303.7 ± 402.8 (mean ± SD), respectively. Regression analysis of fold changes in FRNT50 and PRNT50 showed that the two assays closely agree (n = 25 tests on paired samples, R2 of 0.787). Using UV-inactivated mpox as an antigen, the number of IFN-γ spot-forming T cells (SFC) in pre-vaccination samples (16.13 ± 15.86, mean ± SD) was significantly lower than SFC in post-vaccination samples (172.9 ± 313.3, mean ± SD) with p = 0.0078. Conclusions: Our newly developed microneutralization test has a good correlation with PRNT. UV-inactivated mpox is an appropriate antigen for the ELISPOT assay that measures mpox cross-reactive T cells. These assays will be useful in future mpox vaccine studies. Full article
Show Figures

Figure 1

8 pages, 508 KiB  
Communication
Differential Neutralization Profiles of 17DD Vaccinated Population to 17D-204 and 17DD Vaccine Strains
by Ana C. B. Terzian, Sasha R. Azar, Cassia F. Estofolete, Mauricio L. Nogueira and Nikos Vasilakis
Vaccines 2024, 12(12), 1311; https://doi.org/10.3390/vaccines12121311 - 23 Nov 2024
Viewed by 992
Abstract
Background/Objectives: Yellow fever virus (YFV) (Flaviviridae, Orthoflavivirus) is the etiologic agent of yellow fever (YF), a vector-borne disease with significant morbidity and mortality across the tropics and neotropics, despite having a highly efficacious and safe vaccine (17D). Vaccination provides [...] Read more.
Background/Objectives: Yellow fever virus (YFV) (Flaviviridae, Orthoflavivirus) is the etiologic agent of yellow fever (YF), a vector-borne disease with significant morbidity and mortality across the tropics and neotropics, despite having a highly efficacious and safe vaccine (17D). Vaccination provides lifelong protection from YF disease mediated by humoral immunity. There are several versions of the original 17D vaccine: 17D-204 (marketed in the USA as YF-VAX, in France as Stamaril, and in China as Tiantan-V), 17D-213 (Russian Federation), and 17DD (by FIOCRUZ in Brazil). Vaccines produced in the US, France, Senegal, China, and Russia represent 17D-204-derived strains, whereas the Brazilian 17DD has a unique passage/attenuation history from 17D-204-derived strains. Their functional differences in the neutralization profiles are not known. Methods: The Plaque Reduction Neutralization Test (PRNT) was used to determine the neutralization profiles of sera from 209 patients that were previously vaccinated with the 17DD strain against both 17D-204 and 17DD. Results: Sera exhibited significantly more efficient neutralization of 17DD (mean reciprocal PRNT50 183, PRNT80 86, median reciprocal PRNT50 80, and PRNT80 40) compared to 17D-204 (mean reciprocal PRNT50 91, PRNT80 33, median reciprocal PRNT50 40, and PRNT80 10). Conclusions: Our data indicate antigenic differences between 17D and 17DD vaccines. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
Show Figures

Figure 1

6 pages, 912 KiB  
Case Report
Neurological Manifestation Associated with Chikungunya Infection in a Pediatric Patient from Itacoatiara, Brazilian Amazon: A Case Report
by Samuel Benjamin Aguiar de Oliveira, Barbara Aparecida Chaves, Maurício Teixeira Lima, Alexandre Vilhena Silva-Neto, Jady Shayenne Mota Cordeiro, Wuelton Marcelo Monteiro, Michele de Souza Bastos and Vanderson de Souza Sampaio
Viruses 2024, 16(11), 1658; https://doi.org/10.3390/v16111658 - 24 Oct 2024
Viewed by 1558
Abstract
A 9-year-old male with autism and a history of well-controlled epilepsy presented with acute headache, fever, and generalized tonic-clonic seizures. Initial diagnostics, including imaging and cerebrospinal fluid analysis, were inconclusive. However, further serological testing suggested the presence of the chikungunya virus, establishing a [...] Read more.
A 9-year-old male with autism and a history of well-controlled epilepsy presented with acute headache, fever, and generalized tonic-clonic seizures. Initial diagnostics, including imaging and cerebrospinal fluid analysis, were inconclusive. However, further serological testing suggested the presence of the chikungunya virus, establishing a diagnosis of chikungunya-associated neurological manifestation. The patient was treated with anticonvulsants, antibiotics for secondary bacterial pneumonia, and supportive care, leading to a gradual recovery. This case highlights the importance of considering systemic viral infections in pediatric patients with neurological symptoms and underscores the potential for arboviruses like chikungunya to cause neurological manifestation. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses—Volume II)
Show Figures

Figure 1

10 pages, 751 KiB  
Article
Development of Smallpox Antibody Testing and Surveillance Following Smallpox Vaccination in the Republic of Korea
by Hwachul Shin, SangEun Lee, Myung-Min Choi, Hwajung Yi and Yoon-Seok Chung
Vaccines 2024, 12(10), 1105; https://doi.org/10.3390/vaccines12101105 - 26 Sep 2024
Cited by 1 | Viewed by 1997
Abstract
Background: Despite its global eradication in 1977, smallpox remains a concern owing to its potential as a biological agent, thereby prompting the ongoing development and utilization of its vaccine. Vaccination with the Vaccinia virus induces immunity against variola virus, the causative agent [...] Read more.
Background: Despite its global eradication in 1977, smallpox remains a concern owing to its potential as a biological agent, thereby prompting the ongoing development and utilization of its vaccine. Vaccination with the Vaccinia virus induces immunity against variola virus, the causative agent of smallpox; however, this immunity does not extend to viruses of different genera within the Poxviridae family. In this study, we aimed to assess the efficacy of an enzyme-linked immunosorbent assay (ELISA) method utilizing Vaccinia virus and recombinant A27L antigen for detecting antibodies against smallpox. Methods. An analysis of the serum from 20 individuals pre- and post-vaccination with the CJ strain (CJ50300) revealed neutralizing antibodies, which were confirmed using the plaque reduction neutralization test (PRNT). The ELISA method, validated with a PRNT50 cut-off value of >4, exhibited a sensitivity and specificity of >95% and was particularly reactive with the inactivated virus. Furthermore, adherence to the smallpox vaccination policy revealed significant differences in Orthopoxvirus antibody levels among 300 individuals of different age groups. These findings highlight the reliability and efficacy of the ELISA method in detecting post-vaccination antibodies and contribute significantly to diagnostic methods to prepare for potential smallpox resurgence and bioterrorism threats. Full article
(This article belongs to the Section Vaccines and Public Health)
Show Figures

Figure 1

17 pages, 2947 KiB  
Article
A Cross-Sectional Study of Measles-Specific Antibody Levels in Australian Blood Donors—Implications for Measles Post-Elimination Countries
by Kirsten M. Williamson, Helen Faddy, Suellen Nicholson, Vicki Stambos, Veronica Hoad, Michelle Butler, Tambri Housen, Tony Merritt and David N. Durrheim
Vaccines 2024, 12(7), 818; https://doi.org/10.3390/vaccines12070818 - 22 Jul 2024
Cited by 4 | Viewed by 1973
Abstract
Passive immunisation with normal human immunoglobulin (NHIG) is recommended as post-exposure prophylaxis (PEP) for higher-risk measles contacts where vaccination is contraindicated. However, the concentration of measles-specific antibodies in NHIG depends on antibody levels within pooled donor plasma. There are concerns that measles immunity [...] Read more.
Passive immunisation with normal human immunoglobulin (NHIG) is recommended as post-exposure prophylaxis (PEP) for higher-risk measles contacts where vaccination is contraindicated. However, the concentration of measles-specific antibodies in NHIG depends on antibody levels within pooled donor plasma. There are concerns that measles immunity in the Australian population may be declining over time and that blood donors’ levels will progressively decrease, impacting levels required to produce effective NHIG for measles PEP. A cross-sectional study of Australian plasmapheresis donors was performed using an age-stratified, random sample of recovered serum specimens, collected between October and November 2019 (n = 1199). Measles-specific IgG antibodies were quantified by ELISA (Enzygnost anti-measles virus IgG, Siemens), and negative and equivocal specimens (n = 149) also underwent plaque reduction neutralisation testing (PRNT). Mean antibody levels (optical density values) progressively decreased from older to younger birth cohorts, from 2.09 [±0.09, 95% CI] to 0.58 [±0.04, 95% CI] in donors born in 1940–1959 and 1990–2001, respectively (p < 0.0001). This study shows that mean measles-specific IgG levels are significantly lower in younger Australian donors. While current NHIG selection policies target older donors, as younger birth cohorts become an increasingly larger proportion of contributing donors, measles-specific antibody concentrations of NHIG will progressively reduce. We therefore recommend monitoring measles-specific antibody levels in future donors and NHIG products in Australia and other countries that eliminated measles before the birth of their youngest blood donors. Full article
Show Figures

Figure 1

14 pages, 2537 KiB  
Article
Equal Maintenance of Anti-SARS-CoV-2 Antibody Levels Induced by Heterologous and Homologous Regimens of the BNT162b2, ChAdOx1, CoronaVac and Ad26.COV2.S Vaccines: A Longitudinal Study Up to the 4th Dose of Booster
by Tatiana A. do Nascimento, Patricia Y. Nogami, Camille F. de Oliveira, Walter F. F. Neto, Carla P. da Silva, Ana Claudia S. Ribeiro, Alana W. de Sousa, Maria N. O. Freitas, Jannifer O. Chiang, Franko A. Silva, Liliane L. das Chagas, Valéria L. Carvalho, Raimunda S. S. Azevedo, Pedro F. C. Vasconcelos, Igor B. Costa, Iran B. Costa, Luana S. Barbagelata, Wanderley D. das Chagas Junior, Edvaldo T. da Penha Junior, Luana S. Soares, Giselle M. R. Viana, Alberto A. Amarilla, Naphak Modhiran, Daniel Watterson, Lívia M. N. Casseb, Lívia C. Martins and Daniele F. Henriquesadd Show full author list remove Hide full author list
Vaccines 2024, 12(7), 792; https://doi.org/10.3390/vaccines12070792 - 18 Jul 2024
Cited by 3 | Viewed by 1416
Abstract
Several technological approaches have been used to develop vaccines against COVID-19, including those based on inactivated viruses, viral vectors, and mRNA. This study aimed to monitor the maintenance of anti-SARS-CoV-2 antibodies in individuals from Brazil according to the primary vaccination regimen, as follows: [...] Read more.
Several technological approaches have been used to develop vaccines against COVID-19, including those based on inactivated viruses, viral vectors, and mRNA. This study aimed to monitor the maintenance of anti-SARS-CoV-2 antibodies in individuals from Brazil according to the primary vaccination regimen, as follows: BNT162b2 (group 1; 22) and ChAdOx1 (group 2; 18). Everyone received BNT162b2 in the first booster while in the second booster CoronaVac, Ad26.COV2.S, or BNT162b2. Blood samples were collected from 2021 to 2023 to analyze specific RBD (ELISA) and neutralizing antibodies (PRNT50). We observed a progressive increase in anti-RBD and neutralizing antibodies in each subsequent dose, remaining at high titers until the end of follow-up. Group 1 had higher anti-RBD antibody titers than group 2 after beginning the primary regimen, with significant differences after the 2nd and 3rd doses. Group 2 showed a more expressive increase after the first booster with BNT162B2 (heterologous booster). Group 2 also presented high levels of neutralizing antibodies against the Gamma and Delta variants until five months after the second booster. In conclusion, the circulating levels of anti-RBD and neutralizing antibodies against the two variants of SARS-CoV-2 were durable even five months after the 4th dose, suggesting that periodic booster vaccinations (homologous or heterologous) induced long-lasting immunity. Full article
(This article belongs to the Special Issue SARS-CoV-2 Variants, Vaccines, and Immune Responses)
Show Figures

Figure 1

12 pages, 246 KiB  
Article
Risk Factors for Impaired Cellular or Humoral Immunity after Three Doses of SARS-CoV-2 Vaccine in Healthy and Immunocompromised Individuals
by Jae-Hoon Ko, Choon-Mee Kim, Mi-Seon Bang, Da-Yeon Lee, Da-Young Kim, Jun-Won Seo, Na-Ra Yun, Jin-Young Yang, Kyong-Ran Peck, Kyo-Won Lee, Sung-Hoon Jung, Hyun-Jin Bang, Woo-Kyun Bae, Tae-Jong Kim, Kyeong-Hwan Byeon, Sung-Han Kim and Dong-Min Kim
Vaccines 2024, 12(7), 752; https://doi.org/10.3390/vaccines12070752 - 8 Jul 2024
Cited by 1 | Viewed by 2182
Abstract
Background: We aimed to identify the risk factors for impaired cellular and humoral immunity after three doses of the SARS-CoV-2 vaccine. Methods: Six months after the third vaccine dose, T-cell immunity was evaluated using interferon-gamma release assays (IGRAs) in 60 healthy and 139 [...] Read more.
Background: We aimed to identify the risk factors for impaired cellular and humoral immunity after three doses of the SARS-CoV-2 vaccine. Methods: Six months after the third vaccine dose, T-cell immunity was evaluated using interferon-gamma release assays (IGRAs) in 60 healthy and 139 immunocompromised (IC) individuals, including patients with hematologic malignancy (HM), solid malignancy (SM), rheumatic disease (RD), and kidney transplantation (KT). Neutralizing antibody titers were measured using the plaque reduction neutralization test (PRNT) and surrogate virus neutralization test (sVNT). Results: T-cell immunity results showed that the percentages of IGRA-positive results using wild-type/alpha spike protein (SP) and beta/gamma SP were 85% (51/60) and 75% (45/60), respectively, in healthy individuals and 45.6% (62/136) and 40.4% (55/136), respectively, in IC individuals. IC with SM or KT showed a high percentage of IGRA-negative results. The underlying disease poses a risk for impaired cellular immune response to wild-type SP. The risk was low when all doses were administered as mRNA vaccines. The risk factors for an impaired cellular immune response to beta/gamma SP were underlying disease and monocyte%. In the sVNT using wild-type SP, 12 of 191 (6.3%) individuals tested negative. In the PRNT of 46 random samples, 6 (13%) individuals tested negative for the wild-type virus, and 19 (41.3%) tested negative with omicrons. KT poses a risk for an impaired humoral immune response. Conclusions: Underlying disease poses a risk for impaired cellular immune response after the third dose of the SARS-CoV-2 vaccine; KT poses a risk for impaired humoral immune response, emphasizing the requirement of precautions in patients. Full article
Back to TopTop