Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = PDGF receptor (PDGFR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2627 KiB  
Review
Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review
by Chao-Nan Ma, Shan-Rui Shi, Xue-Ying Zhang, Guo-Song Xin, Xiang Zou, Wen-Lan Li and Shou-Dong Guo
Biomolecules 2024, 14(11), 1446; https://doi.org/10.3390/biom14111446 - 14 Nov 2024
Cited by 6 | Viewed by 2902
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived [...] Read more.
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases. Full article
Show Figures

Figure 1

19 pages, 4736 KiB  
Article
CP-673451, a Selective Platelet-Derived Growth Factor Receptor Tyrosine Kinase Inhibitor, Induces Apoptosis in Opisthorchis viverrini-Associated Cholangiocarcinoma via Nrf2 Suppression and Enhanced ROS
by Jinchutha Duangdara, Boonyakorn Boonsri, Apinya Sayinta, Kittiya Supradit, Pakpoom Thintharua, Supeecha Kumkate, Chinnawut Suriyonplengsaeng, Noppadol Larbcharoensub, Somkit Mingphruedhi, Narongsak Rungsakulkij, Paramin Muangkaew, Pongsatorn Tangtawee, Watoo Vassanasiri, Wikran Suragul, Tavan Janvilisri, Rutaiwan Tohtong, David O. Bates and Kanokpan Wongprasert
Pharmaceuticals 2024, 17(1), 9; https://doi.org/10.3390/ph17010009 - 20 Dec 2023
Cited by 6 | Viewed by 2714
Abstract
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) play essential roles in promoting cholangiocarcinoma (CCA) cell survival by mediating paracrine crosstalk between tumor and cancer-associated fibroblasts (CAFs), indicating the potential of PDGFR as a target for CCA treatment. Clinical trials evaluating PDGFR inhibitors [...] Read more.
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) play essential roles in promoting cholangiocarcinoma (CCA) cell survival by mediating paracrine crosstalk between tumor and cancer-associated fibroblasts (CAFs), indicating the potential of PDGFR as a target for CCA treatment. Clinical trials evaluating PDGFR inhibitors for CCA treatment have shown limited efficacy. Furthermore, little is known about the role of PDGF/PDGFR expression and the mechanism underlying PDGFR inhibitors in CCA related to Opisthorchis viverrini (OV). Therefore, we examined the effect of PDGFR inhibitors in OV-related CCA cells and investigated the molecular mechanism involved. We found that the PDGF and PDGFR mRNAs were overexpressed in CCA tissues compared to resection margins. Notably, PDGFR-α showed high expression in CCA cells, while PDGFR-β was predominantly expressed in CAFs. The selective inhibitor CP-673451 induced CCA cell death by suppressing the PI3K/Akt/Nrf2 pathway, leading to a decreased expression of Nrf2-targeted antioxidant genes. Consequently, this led to an increase in ROS levels and the promotion of CCA apoptosis. CP-673451 is a promising PDGFR-targeted drug for CCA and supports the further clinical investigation of CP-673451 for CCA treatment, particularly in the context of OV-related cases. Full article
(This article belongs to the Special Issue Cancer Drugs Treatment and Toxicity 2023)
Show Figures

Graphical abstract

29 pages, 2168 KiB  
Review
Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment
by Shilpi Singh, Debashis Barik, Karl Lawrie, Iteeshree Mohapatra, Sujata Prasad, Afsar R. Naqvi, Amar Singh and Gatikrushna Singh
Int. J. Mol. Sci. 2023, 24(19), 14960; https://doi.org/10.3390/ijms241914960 - 6 Oct 2023
Cited by 14 | Viewed by 4276
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor [...] Read more.
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy. Full article
Show Figures

Figure 1

19 pages, 3987 KiB  
Review
Pharmacology and Rationale for Seralutinib in the Treatment of Pulmonary Arterial Hypertension
by Soni Savai Pullamsetti, Ravikumar Sitapara, Robin Osterhout, Astrid Weiss, Laura L. Carter, Lawrence S. Zisman and Ralph Theo Schermuly
Int. J. Mol. Sci. 2023, 24(16), 12653; https://doi.org/10.3390/ijms241612653 - 10 Aug 2023
Cited by 14 | Viewed by 5408
Abstract
Pulmonary arterial hypertension (PAH) is a complex disorder characterized by vascular remodeling and a consequent increase in pulmonary vascular resistance. The histologic hallmarks of PAH include plexiform and neointimal lesions of the pulmonary arterioles, which are composed of dysregulated, apoptosis-resistant endothelial cells and [...] Read more.
Pulmonary arterial hypertension (PAH) is a complex disorder characterized by vascular remodeling and a consequent increase in pulmonary vascular resistance. The histologic hallmarks of PAH include plexiform and neointimal lesions of the pulmonary arterioles, which are composed of dysregulated, apoptosis-resistant endothelial cells and myofibroblasts. Platelet-derived growth factor receptors (PDGFR) α and β, colony stimulating factor 1 receptor (CSF1R), and mast/stem cell growth factor receptor kit (c-KIT) are closely related kinases that have been implicated in PAH progression. In addition, emerging data indicate significant crosstalk between PDGF signaling and the bone morphogenetic protein receptor type 2 (BMPR2)/transforming growth factor β (TGFβ) receptor axis. This review will discuss the importance of the PDGFR-CSF1R-c-KIT signaling network in PAH pathogenesis, present evidence that the inhibition of all three nodes in this kinase network is a potential therapeutic approach for PAH, and highlight the therapeutic potential of seralutinib, currently in development for PAH, which targets these pathways. Full article
(This article belongs to the Special Issue Pathophysiology and Treatment of Pulmonary Arterial Hypertension)
Show Figures

Figure 1

12 pages, 2194 KiB  
Article
Screening and Analysis of Possible Drugs Binding to PDGFRα: A Molecular Modeling Study
by Matteo Mozzicafreddo, Devis Benfaremo, Chiara Paolini, Silvia Agarbati, Silvia Svegliati Baroni and Gianluca Moroncini
Int. J. Mol. Sci. 2023, 24(11), 9623; https://doi.org/10.3390/ijms24119623 - 1 Jun 2023
Cited by 5 | Viewed by 2966
Abstract
The platelet-derived growth factor receptor (PDGFR) is a membrane tyrosine kinase receptor involved in several metabolic pathways, not only physiological but also pathological, as in tumor progression, immune-mediated diseases, and viral diseases. Considering this macromolecule as a druggable target for modulation/inhibition of these [...] Read more.
The platelet-derived growth factor receptor (PDGFR) is a membrane tyrosine kinase receptor involved in several metabolic pathways, not only physiological but also pathological, as in tumor progression, immune-mediated diseases, and viral diseases. Considering this macromolecule as a druggable target for modulation/inhibition of these conditions, the aim of this work was to find new ligands or new information to design novel effective drugs. We performed an initial interaction screening with the human intracellular PDGFRα of about 7200 drugs and natural compounds contained in 5 independent databases/libraries implemented in the MTiOpenScreen web server. After the selection of 27 compounds, a structural analysis of the obtained complexes was performed. Three-dimensional quantitative structure–activity relationship (3D-QSAR) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were also performed to understand the physicochemical properties of identified compounds to increase affinity and selectivity for PDGFRα. Among these 27 compounds, the drugs Bafetinib, Radotinib, Flumatinib, and Imatinib showed higher affinity for this tyrosine kinase receptor, lying in the nanomolar order, while the natural products included in this group, such as curcumin, luteolin, and epigallocatechin gallate (EGCG), showed sub-micromolar affinities. Although experimental studies are mandatory to fully understand the mechanisms behind PDGFRα inhibitors, the structural information obtained through this study could provide useful insight into the future development of more effective and targeted treatments for PDGFRα-related diseases, such as cancer and fibrosis. Full article
(This article belongs to the Special Issue Recent Advances in Drug Discovery)
Show Figures

Figure 1

19 pages, 2272 KiB  
Review
The Platelet-Derived Growth Factor Pathway in Pulmonary Arterial Hypertension: Still an Interesting Target?
by Julien Solinc, Jonathan Ribot, Florent Soubrier, Catherine Pavoine, France Dierick and Sophie Nadaud
Life 2022, 12(5), 658; https://doi.org/10.3390/life12050658 - 29 Apr 2022
Cited by 13 | Viewed by 6263
Abstract
The lack of curative options for pulmonary arterial hypertension drives important research to understand the mechanisms underlying this devastating disease. Among the main identified pathways, the platelet-derived growth factor (PDGF) pathway was established to control vascular remodeling and anti-PDGF receptor (PDGFR) drugs were [...] Read more.
The lack of curative options for pulmonary arterial hypertension drives important research to understand the mechanisms underlying this devastating disease. Among the main identified pathways, the platelet-derived growth factor (PDGF) pathway was established to control vascular remodeling and anti-PDGF receptor (PDGFR) drugs were shown to reverse the disease in experimental models. Four different isoforms of PDGF are produced by various cell types in the lung. PDGFs control vascular cells migration, proliferation and survival through binding to their receptors PDGFRα and β. They elicit multiple intracellular signaling pathways which have been particularly studied in pulmonary smooth muscle cells. Activation of the PDGF pathway has been demonstrated both in patients and in pulmonary hypertension (PH) experimental models. Tyrosine kinase inhibitors (TKI) are numerous but without real specificity and Imatinib, one of the most specific, resulted in beneficial effects. However, adverse events and treatment discontinuation discouraged to pursue this therapy. Novel therapeutic strategies are currently under experimental evaluation. For TKI, they include intratracheal drug administration, low dosage or nanoparticles delivery. Specific anti-PDGF and anti-PDGFR molecules can also be designed such as new TKI, soluble receptors, aptamers or oligonucleotides. Full article
(This article belongs to the Special Issue Pulmonary Hypertension: From Bench to Bedside)
Show Figures

Figure 1

13 pages, 3838 KiB  
Article
Evening Primrose Extracts Inhibit PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Regulating Cell-Cycle-Related Proteins
by Jin-Ho Lee, Min Jeong Kim, Keun-Jung Woo, Joonpyo Hong, Sun-Hong Kim and Tack-Joong Kim
Curr. Issues Mol. Biol. 2022, 44(5), 1928-1940; https://doi.org/10.3390/cimb44050131 - 27 Apr 2022
Cited by 2 | Viewed by 2659
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological [...] Read more.
The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological activities, such as antioxidant effects, the inhibition of lipid accumulation and the prevention of muscle atrophy. However, the function of evening primrose stem (EVP) in the regulation of VSMC proliferation and migration and the underlying mechanisms have not been identified. In this study, the effect of EVP on the platelet-derived growth factor (PDGF)-induced proliferation and migration of VSMCs was investigated. The results show that PDGF-BB-induced proliferation of VSMCs was inhibited by EVP at concentrations of 25, 50 or 100 μg/mL in a concentration-dependent manner, and a migration assay showed that EVP inhibited cell migration. Cell cycle analysis was performed to confirm the mechanism by which cell proliferation and migration was inhibited. The results indicate that proteins involved in the cell cycle, such as cyclin, CDK and phosphorylated Rb, were downregulated by EVP at concentrations of 100 μg/mL, thereby increasing the proportion of cells in the G0/G1 phase and inhibiting cell cycle progression. In the PDGF receptor (PDGFR) signaling pathway, phosphorylation of the PDGFR was inhibited by EVP at concentrations of 100 μg/mL, and PLCγ phosphorylation was also decreased. The PDGF-BB-induced effect of EVP on the proliferation of VSMCs involved the inhibition of Akt phosphorylation and the reduction in the phosphorylation of MAPK proteins such as ERK, P38 and JNK. In conclusion, the results demonstrate that EVP inhibited PDGF-BB-induced VSMC proliferation and migration by regulating cell-cycle-related proteins. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 1107 KiB  
Article
Germline Variants in Angiogenesis-Related Genes Contribute to Clinical Outcome in Head and Neck Squamous Cell Carcinoma
by Dorota Butkiewicz, Agnieszka Gdowicz-Kłosok, Małgorzata Krześniak, Tomasz Rutkowski, Barbara Łasut-Szyszka and Krzysztof Składowski
Cancers 2022, 14(7), 1844; https://doi.org/10.3390/cancers14071844 - 6 Apr 2022
Cited by 5 | Viewed by 2699
Abstract
Fibroblast growth factor (FGF)/FGF receptor (FGFR), and platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) systems, as well as some matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), are involved in various steps of angiogenesis. Data indicate that common germline variations in angiogenesis-regulating genes may [...] Read more.
Fibroblast growth factor (FGF)/FGF receptor (FGFR), and platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) systems, as well as some matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), are involved in various steps of angiogenesis. Data indicate that common germline variations in angiogenesis-regulating genes may modulate therapy results and cancer progression. However, whether these variants affect clinical outcome in head and neck squamous cell carcinoma (HNSCC) is unclear. Hence, we assessed the relationship between FGF/FGFR, PDGF/PDGFR, MMP, and TIMP genetic variants and treatment outcomes in HNSCC patients receiving radiotherapy (RT) alone or combined with cisplatin-based chemotherapy. In multivariate analysis, FGF2 rs1048201 CC homozygotes showed a higher risk of death (p = 0.039), while PDGFRA rs2228230 T was strongly associated with an increased risk of locoregional relapse (HR 2.49, p = 0.001) in the combination treatment subgroup. In the RT alone subset, MMP2 rs243865 TT carriers had a higher risk of locoregional recurrence (HR 2.92, p = 0.019), whereas PDGFRB rs246395 CC homozygotes were at increased risk of metastasis (HR 3.06, p = 0.041). The MMP2 rs7201 C and TIMP2 rs7501477 T were associated with a risk of locoregional failure in the entire cohort (p = 0.032 and 0.045, respectively). Furthermore, rs1048201, rs2228230, rs246395, rs243865, rs7201, and rs7201/rs7501477 were independent indicators of an unfavorable outcome. This study demonstrates that the FGF2, PDGFRA, PDGFRB, MMP2, and TIMP2 variants may contribute to treatment failure and poor prognosis in HNSCC. Full article
(This article belongs to the Special Issue Chemoradiotherapy for Head and Neck Cancer)
Show Figures

Figure 1

13 pages, 1163 KiB  
Review
PDGF/PDGFR: A Possible Molecular Target in Scleroderma Fibrosis
by Chiara Paolini, Silvia Agarbati, Devis Benfaremo, Matteo Mozzicafreddo, Silvia Svegliati and Gianluca Moroncini
Int. J. Mol. Sci. 2022, 23(7), 3904; https://doi.org/10.3390/ijms23073904 - 31 Mar 2022
Cited by 27 | Viewed by 4453
Abstract
Systemic sclerosis (SSc) is a clinically heterogeneous disorder of the connective tissue characterized by vascular alterations, immune/inflammatory manifestations, and organ fibrosis. SSc pathogenesis is complex and still poorly understood. Therefore, effective therapies are lacking and remain nonspecific and limited to disease symptoms. In [...] Read more.
Systemic sclerosis (SSc) is a clinically heterogeneous disorder of the connective tissue characterized by vascular alterations, immune/inflammatory manifestations, and organ fibrosis. SSc pathogenesis is complex and still poorly understood. Therefore, effective therapies are lacking and remain nonspecific and limited to disease symptoms. In the last few years, many molecular and cellular mediators of SSc fibrosis have been described, providing new potential options for targeted therapies. In this review: (i) we focused on the PDGF/PDGFR pathway as key signaling molecules in the development of tissue fibrosis; (ii) we highlighted the possible role of stimulatory anti-PDGFRα autoantibodies in the pathogenesis of SSc; (iii) we reported the most promising PDGF/PDGFR targeting therapies. Full article
(This article belongs to the Special Issue Angiogenesis in Disease)
Show Figures

Figure 1

23 pages, 24073 KiB  
Article
PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions
by Nundehui Díaz-Lezama, Anne Wolf, Susanne Koch, Anna M. Pfaller, Josef Biber, Xavier Guillonneau, Thomas Langmann and Antje Grosche
Int. J. Mol. Sci. 2021, 22(3), 1174; https://doi.org/10.3390/ijms22031174 - 25 Jan 2021
Cited by 7 | Viewed by 4813
Abstract
Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and [...] Read more.
Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy—a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome. Full article
Show Figures

Figure 1

14 pages, 3091 KiB  
Article
Blockade of Platelet-Derived Growth Factor Signaling Inhibits Choroidal Neovascularization and Subretinal Fibrosis in Mice
by Ye Liu, Kousuke Noda, Miyuki Murata, Di Wu, Atsuhiro Kanda and Susumu Ishida
J. Clin. Med. 2020, 9(7), 2242; https://doi.org/10.3390/jcm9072242 - 15 Jul 2020
Cited by 16 | Viewed by 3457
Abstract
Neovascular age related macular degeneration (nAMD) leads to severe vision loss worldwide and is characterized by the formation of choroidal neovascularization (CNV) and fibrosis. In the current study, we aimed to investigate the effect of blockade for platelet derived growth factor receptor-β (PDGFR-β) [...] Read more.
Neovascular age related macular degeneration (nAMD) leads to severe vision loss worldwide and is characterized by the formation of choroidal neovascularization (CNV) and fibrosis. In the current study, we aimed to investigate the effect of blockade for platelet derived growth factor receptor-β (PDGFR-β) on the formation of choroidal neovascularization and fibrosis in the laser-induced CNV model in mice. Firstly, the presence of PDGFR-β in CNV lesions were confirmed. Intravitreal injection of PDGFR-β neutralizing antibody significantly reduced the size of CNV and subretinal fibrosis. Additionally, subretinal hyperreflective material (SHRM), a landmark feature on OCT as a risk factor for subretinal fibrosis formation in nAMD patients was also suppressed by PDGFR-β blockade. Furthermore, pericytes were abundantly recruited to the CNV lesions during CNV formation, however, blockade of PDGFR-β significantly reduced pericyte recruitment. In addition, PDGF-BB stimulation increased the migration of the rat retinal pericyte cell line, R-rPCT1, which was abrogated by the neutralization of PDGFR-β. These results indicate that blockade of PDGFR-β attenuates laser-induced CNV and fibrosis through the inhibition of pericyte migration. Full article
(This article belongs to the Special Issue Vitreo-Retinal Disorders: Pathogenesis, Diagnosis and Therapies)
Show Figures

Figure 1

20 pages, 2933 KiB  
Article
Overexpression of Platelet-Derived Growth Factor and Its Receptor Are Correlated with Oral Tumorigenesis and Poor Prognosis in Oral Squamous Cell Carcinoma
by Li-Han Lin, Jiun-Sheng Lin, Cheng-Chieh Yang, Hui-Wen Cheng, Kuo-Wei Chang and Chung-Ji Liu
Int. J. Mol. Sci. 2020, 21(7), 2360; https://doi.org/10.3390/ijms21072360 - 29 Mar 2020
Cited by 44 | Viewed by 4551
Abstract
Oral squamous cell carcinoma (OSCC) is a cancerous disease with poor prognosis. According to the statistics, the 5-year survival rate has not improved significantly over the past 20 years. The platelet-derived growth factor (PDGF) and its signaling pathway is a key regulator of [...] Read more.
Oral squamous cell carcinoma (OSCC) is a cancerous disease with poor prognosis. According to the statistics, the 5-year survival rate has not improved significantly over the past 20 years. The platelet-derived growth factor (PDGF) and its signaling pathway is a key regulator of angiogenesis and tumorigenesis. High level of PDGF and its receptor (PDGFR) have been reported in several types of malignancies. In this study, we investigated the relationship of the molecular expression levels of PDGF and PDGFR with clinicopathological parameters in OSCC. To this end, we measured the mRNA and protein levels of PDGF and PDGFR by real-time quantitative PCR (qRT-PCR), immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA), respectively. We found positive correlations of the mRNA levels of PDGFA, PDGFB, and PDGFRB with lymph node metastasis and poor overall survival (OS). High expression of PDGF, PDGFRA, and PDGFRB were remarkably associated with lymph node metastasis and poor OS, as determined by immunohistochemistry. Preoperative serum levels of PDGF-AA and PDGF-BB had a positive correlation with preoperative platelet count. Elevated serum levels of PDGF-AA. PDGF-BB, and platelet count correlated with lymph node metastasis and an unfavorable outcome. In multivariate Cox regression analysis, PDGFA mRNA, PDGFB mRNA, PDGFRB mRNA, PDGF immunoexpression, PDGFRB immunoexpression, serum PDGF-AA, serum PDGF-BB, and platelet count emerged as significant independent prognostic factors for OS. In vitro, we found that elevated PDGF promotes colony formation, migration, and invasiveness of SAS and OECM-1 cancer cell lines. Our results suggest that the expression level of serum PDGF has the potential to become a useful diagnostic marker for the prognosis of OSCC. In addition, PDGFR should be considered as a potential therapeutic target for OSCC. Furthermore, research should be undertaken to elucidate the role of PDGF and PDGFR regarding the behavior of tumor cells in OSCC. Full article
(This article belongs to the Special Issue Oral Fibrosis and Oral Cancer: From Molecular Targets to Therapeutics)
Show Figures

Graphical abstract

17 pages, 2661 KiB  
Article
Platelet-Derived Growth Factor Receptor and Ionizing Radiation in High Grade Glioma Cell Lines
by Oana Alexandru, Ani-Simona Sevastre, Juan Castro, Stefan-Alexandru Artene, Daniela Elise Tache, Oana Stefana Purcaru, Veronica Sfredel, Ligia Gabriela Tataranu and Anica Dricu
Int. J. Mol. Sci. 2019, 20(19), 4663; https://doi.org/10.3390/ijms20194663 - 20 Sep 2019
Cited by 19 | Viewed by 3516
Abstract
Treatment of high grade gliomas (HGGs) has remained elusive due to their high heterogeneity and aggressiveness. Surgery followed by radiotherapy represents the mainstay of treatment for HGG. However, the unfavorable location of the tumor that usually limits total resection and the resistance to [...] Read more.
Treatment of high grade gliomas (HGGs) has remained elusive due to their high heterogeneity and aggressiveness. Surgery followed by radiotherapy represents the mainstay of treatment for HGG. However, the unfavorable location of the tumor that usually limits total resection and the resistance to radiation therapy are the major therapeutic problems. Chemotherapy with DNA alkylating agent temozolomide is also used to treat HGG, despite modest effects on survival. Disregulation of several growth factor receptors (GFRs) were detected in HGG and receptor amplification in glioblastoma has been suggested to be responsible for heterogeneity propagation through clonal evolution. Molecularly targeted agents inhibiting these membrane proteins have demonstrated significant cytotoxicity in several types of cancer cells when tested in preclinical models. Platelet-derived growth factor receptors (PDGFRs) and associated signaling were found to be implicated in gliomagenesis, moreover, HGG commonly display a Platelet-derived growth factor (PDGF) autocrine pathway that is not present in normal brain tissues. We have previously shown that both the susceptibility towards PDGFR and the impact of the PDGFR inactivation on the radiation response were different in different HGG cell lines. Therefore, we decided to extend our investigation, using two other HGG cell lines that express PDGFR at the cell surface. Here, we investigated the effect of PDGFR inhibition alone or in combination with gamma radiation in 11 and 15 HGG cell lines. Our results showed that while targeting the PDGFR represents a good means of treatment in HGG, the combination of receptor inhibition with gamma radiation did not result in any discernable difference compared to the single treatment. The PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways are the major signaling pathways emerging from the GFRs, including PDGFR. Decreased sensitivity to radiation-induced cell death are often associated with redundancy in these pro-survival signaling pathways. Here we found that Phosphoinositide 3-kinases (PI3K), Extracellular-signal-regulated kinase 1/2 (ERK1/2), or c-Jun N-terminal kinase 1/2 (JNK1/2) inactivation induced radiosensitivity in HGG cells. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 2.0)
Show Figures

Graphical abstract

16 pages, 4737 KiB  
Article
STIM1 Knockout Enhances PDGF-Mediated Ca2+ Signaling through Upregulation of the PDGFR–PLCγ–STIM2 Cascade
by Tzu-Yu Huang, Yi-Hsin Lin, Heng-Ai Chang, Tzu-Ying Yeh, Ya-Han Chang, Yi-Fan Chen, Ying-Chi Chen, Chun-Chun Li and Wen-Tai Chiu
Int. J. Mol. Sci. 2018, 19(6), 1799; https://doi.org/10.3390/ijms19061799 - 18 Jun 2018
Cited by 11 | Viewed by 5487
Abstract
Platelet-derived growth factor (PDGF) has mitogenic and chemotactic effects on fibroblasts. An increase in intracellular Ca2+ is one of the first events that occurs following the stimulation of PDGF receptors (PDGFRs). PDGF activates Ca2+ elevation by activating the phospholipase C gamma [...] Read more.
Platelet-derived growth factor (PDGF) has mitogenic and chemotactic effects on fibroblasts. An increase in intracellular Ca2+ is one of the first events that occurs following the stimulation of PDGF receptors (PDGFRs). PDGF activates Ca2+ elevation by activating the phospholipase C gamma (PLCγ)-signaling pathway, resulting in ER Ca2+ release. Store-operated Ca2+ entry (SOCE) is the major form of extracellular Ca2+ influx following depletion of ER Ca2+ stores and stromal interaction molecule 1 (STIM1) is a key molecule in the regulation of SOCE. In this study, wild-type and STIM1 knockout mouse embryonic fibroblasts (MEF) cells were used to investigate the role of STIM1 in PDGF-induced Ca2+ oscillation and its functions in MEF cells. The unexpected findings suggest that STIM1 knockout enhances PDGFR–PLCγ–STIM2 signaling, which in turn increases PDGF-BB-induced Ca2+ elevation. Enhanced expressions of PDGFRs and PLCγ in STIM1 knockout cells induce Ca2+ release from the ER store through PLCγ–IP3 signaling. Moreover, STIM2 replaces STIM1 to act as the major ER Ca2+ sensor in activating SOCE. However, activation of PDGFRs also activate Akt, ERK, and JNK to regulate cellular functions, such as cell migration. These results suggest that alternative switchable pathways can be observed in cells, which act downstream of the growth factors that regulate Ca2+ signaling. Full article
(This article belongs to the Special Issue Calcium Signaling in Human Health and Diseases)
Show Figures

Graphical abstract

13 pages, 856 KiB  
Review
Stroma-Directed Molecular Targeted Therapy in Gastric Cancer
by Yasuhiko Kitadai, Michiyo Kodama and Kei Shinagawa
Cancers 2011, 3(4), 4245-4257; https://doi.org/10.3390/cancers3044245 - 8 Dec 2011
Cited by 8 | Viewed by 9095
Abstract
Recent studies in molecular and cellular biology have shown that tumor growth and metastasis are not determined by cancer cells alone, but also by a variety of stromal cells. Tumor stroma contains abundant extracellular matrix and several types of cells, including carcinoma-associated fibroblasts [...] Read more.
Recent studies in molecular and cellular biology have shown that tumor growth and metastasis are not determined by cancer cells alone, but also by a variety of stromal cells. Tumor stroma contains abundant extracellular matrix and several types of cells, including carcinoma-associated fibroblasts (CAFs), endothelial cells, pericytes and inflammatory cells including macrophages. In gastric cancer tissues, tumor cells express platelet-derived growth factor (PDGF)-B. Stromal cells, including CAFs, pericytes and lymphatic endothelial cells, express PDGF receptor (PDGFR)-β. Administration of PDGFR tyrosine kinase inhibitor significantly decreases stromal reaction, lymphatic vessel area and pericyte coverage of tumor microvessels. Administration of PDGFR tyrosine kinase inhibitor in combination with cytotoxic chemotherapeutic drug(s) impairs the progressive growth and metastasis of gastric cancer. Activated stroma might serve as a novel therapeutic target in cases of gastric cancer. Full article
(This article belongs to the Special Issue Tumor Stroma)
Show Figures

Back to TopTop