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Abstract: The platelet-derived growth factor receptor (PDGFR) is a membrane tyrosine kinase
receptor involved in several metabolic pathways, not only physiological but also pathological, as in
tumor progression, immune-mediated diseases, and viral diseases. Considering this macromolecule
as a druggable target for modulation/inhibition of these conditions, the aim of this work was to find
new ligands or new information to design novel effective drugs. We performed an initial interaction
screening with the human intracellular PDGFRα of about 7200 drugs and natural compounds
contained in 5 independent databases/libraries implemented in the MTiOpenScreen web server. After
the selection of 27 compounds, a structural analysis of the obtained complexes was performed. Three-
dimensional quantitative structure–activity relationship (3D-QSAR) and absorption, distribution,
metabolism, excretion, and toxicity (ADMET) analyses were also performed to understand the
physicochemical properties of identified compounds to increase affinity and selectivity for PDGFRα.
Among these 27 compounds, the drugs Bafetinib, Radotinib, Flumatinib, and Imatinib showed higher
affinity for this tyrosine kinase receptor, lying in the nanomolar order, while the natural products
included in this group, such as curcumin, luteolin, and epigallocatechin gallate (EGCG), showed
sub-micromolar affinities. Although experimental studies are mandatory to fully understand the
mechanisms behind PDGFRα inhibitors, the structural information obtained through this study could
provide useful insight into the future development of more effective and targeted treatments for
PDGFRα-related diseases, such as cancer and fibrosis.

Keywords: PDGF receptor (PDGFR); systemic sclerosis (SSc); molecular docking; molecular dynamics
(MD); quantitative structure–activity relationship (QSAR); structure-based drug design (SBDD)

1. Introduction

Platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) are
membrane receptors that play a key role in a variety of diseases, such as cancer [1–5],
immune-mediated pathologies, such as systemic sclerosis (SSc) [6–10], and viral infec-
tion [11], by exerting function on the transduction of extracellular signals into the cell.
PDGFRs are transmembrane glycoprotein dimer molecules consisting of an extracellular
ligand-binding region divided into five Ig-like domains bound to an intracellular receptor
tyrosine kinase (RTK) domain through a single transmembrane alpha helix. The tyrosine
kinase domain is a typical type III RTK formed by a bilobal kinase, a juxtamembrane (JM)
domain, and an activation loop (A-loop) [11,12]. The JM domain is inserted into the active
site, while the A-loop (that starts with a conserved amino acid sequence DFG) controls
access to it and partially blocks the ATP and substrate site in the inactive state of the enzyme.
In the active state of the RTK, the DFG motif is located in a hydrophobic pocket close to the
ATP binding site. When an inhibitor binds this pocket, the ATP binding site undergoes a
conformational change that reversibly or irreversibly prevents its normal function [13].
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Considering that the human PDGFRα has become one of the most important thera-
peutic targets for the above-mentioned diseases [4–8,14–17], its modulation/inhibition is
a critical aspect that determines the investigation of new ligands or new information to
design new effective drugs. As previously reported [18–23], inhibiting PDGFRα (overex-
pressed and/or abnormally activated) can reduce many types of cancer, including prostate,
ovarian, breast, pancreatic, and liver cancers, by inactivating downstream signaling path-
ways that regulate cell proliferation, migration, and angiogenesis [24–26]. On the other
hand, these signal pathways can induce proliferation and chemotaxis of myofibroblasts,
collagen production, and adhesion in endothelial cells [27]. In pathological states, which
are also correlated to viral infections, they are upregulated in patients with a progressive
fibrotic disease such as SSc [28–30].

For these reasons, the structure-based drug design (SBDD), which promotes the devel-
opment of novel drugs with a potential affinity for therapeutic targets, has turned out to
be an essential tool for rapid and cost-efficient lead discovery. SBDD is a growing, itera-
tive, and powerful approach that involves the structural evaluation of targets in the drug
discovery process. It has the ability to reduce the time and cost of developing new drug
lead molecules with potential therapeutic effects [31]. A virtual ligands database screening,
followed by molecular docking, molecular dynamics (MD), and three-dimensional quanti-
tative structure–activity relationship (3D-QSAR) analysis, as previously reported [2,3,5,32],
provides an excellent workflow (Figure 1) to assess an efficient SBDD.
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Figure 1. Schematic representation of the methodology and workflow implemented for the SBDD.

Here, we analyzed 27 molecules selected from the results of structure-based virtual
screening following this workflow and characterizing the most important features of an
ideal ligand/inhibitor for the intracellular RTK domain of human PDGFRα.

2. Results
2.1. Virtual Screening of the Small Compounds Database

The structure-based virtual screening of the databases (as descripted in the Methods
section) against the human intracellular PDGFRα (hiPDGFRα) provided an early version
of the best compounds list (Tables S1–S5). This was evaluated by taking the best ligands of
each of the 5 drug-like chemical libraries, resulting in the 27 ligands reported in Table 1.
Among these libraries, the Drugs-lib had the most involvement, showing ligands with
higher affinities, although the natural products selected showed Kd values in the sub-
micromolar range, indicating medium–high affinities.
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Table 1. The best compounds selected after the structure-based virtual screening and their affinities
for the hiPDGFRα obtained after the molecular docking analysis by the SwissDock web server.

Compound Database ∆G (kcal/mol) Kd,pred (M)

Bafetinib Drugs-lib −12.26 1.01 × 10−9

Radotinib Drugs-lib −11.74 2.43 × 10−9

Imatinib Drugs-lib −11.67 2.74 × 10−9

Flumatinib Drugs-lib −11.64 2.88 × 10−9

Nilotinib Drugs-lib −10.93 9.53 × 10−9

Ag-13958 Drugs-lib −10.79 1.21 × 10−8

Tg100-801 Drugs-lib −10.76 1.28 × 10−8

Ditercalinium Drugs-lib −10.15 3.60 × 10−8

Dasatinib Drugs-lib −10.06 4.14 × 10−8

R428_Bemcentinib Drugs-lib −9.98 4.78 × 10−8

Glisolamide Drugs-lib −9.91 5.35 × 10−8

MolPort-002-524-598 NP-lib −9.83 6.19 × 10−8

Bms-833923 Drugs-lib −9.53 1.01 × 10−7

Benfluorex Drugs-lib −9.40 1.28 × 10−7

MolPort-039-052-621 NP-lib −9.23 1.69 × 10−7

MolPort-009-018-791_Curcumin NP-lib −9.10 2.12 × 10−7

47194043_iPPI iPPI-lib −9.08 2.18 × 10−7

Crenolanib Drugs-lib −9.08 2.18 × 10−7

MolPort-001-740-946_luteolin-7-O-glucuronide NP-lib −9.07 2.21 × 10−7

Nintedanib Drugs-lib −8.80 3.48 × 10−7

24301892_iPPI iPPI-lib −8.78 3.60 × 10−7

24824231_div Diverse-lib −8.74 3.88 × 10−7

MolPort-001-741-358_EGCG NP-lib −8.70 4.18 × 10−7

29215783_iPPI iPPI-lib −8.48 6.00 × 10−7

MolPort-001-740-557_Quercetin NP-lib −8.40 6.88 × 10−7

Hispaglabridin_B Food-lib −8.36 7.38 × 10−7

MolPort-001-768-161_Binaphthalene NP-lib −8.06 1.23 × 10−6

2.2. Molecular Docking

The molecular docking analysis, which was used to check the virtual screening results,
provided affinity values reported in Table 1 and binding geometries of the ligand/hiPDGFRα
complexes. These values are in the nanomolar/sub-micromolar range and confirm the
ranking obtained by the structure-based virtual screening (Figure S1).

To validate the docking process, we compared the Imatinib/hiPDGFRα predicted
complex with the available crystal structure, obtaining a ligand–ligand superimpose root
mean square deviation (RMSD) value of 0.198 Å. This value is significantly lower than 1 Å,
indicating a high reliability of the method.

All complexes involved the hiPDGFRα active site, although the docking box was
set for the entire protein, indicating no other binding site. The four best ligands inter-
acted with hiPDGFRα through the formation of five hydrogen bonds with Glu644, Thr674,
Cys677, and Asp836, showing very similar geometries. As reported in Figure 2A, Bafe-
tinib also interacted with the protein, forming six hydrophobic interactions with Val607,
Glu644, Ile647, Thr674, Leu825, and Phe837, and one π-cation interaction with Lys627.
This π-cation interaction was also formed in the Flumatinib/hiPDGFRα complex, which
additionally showed nine hydrophobic interactions (with Leu599, Val607, Lys627, Glu644,
Val658, Thr674, Leu825, Asp836, and Phe837) and a halogen bond between Glu644 and
the trifluoromethyl group of the ligand (Figure 2B). This π-cation interaction, the halogen
bond, and the distances and number of hydrophobic interactions between the ligand and
the hiPDGFRα seem to be crucial for binding affinity.



Int. J. Mol. Sci. 2023, 24, 9623 4 of 12Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 2. Complex geometries prediction by molecular docking analysis: amino acids and the ligand 
of (A) Bafetinib/hiPDGFRα and (B) Flumatinib/hiPDGFRα complex involved in the interaction are 
shown as sticks. Weak bonds are also reported and emphasized in the legends. 

Although the Imatinib/hiPDGFRα crystal structure shows seven hydrogen bonds 
(with Glu644, Met648, Thr674, Cys677, His815, Val816), a salt bridge (Asp836), two π-cat-
ion interactions (with His816 and Tyr676), and seven hydrophobic interactions (with 
Leu599, Lys627, Glu644, Val658, Ile672, Thr674, and Asp836), the predicted 
Imatinib/hiPDGFRα complex, after the molecular dynamics analysis, shows only five hy-
drogen bonds previously described and nine hydrophobic interactions (with Leu599, 
Val607, Lys627, Ile672, Thr674, Tyr676, Leu825, Asp836, and Phe837). This could be ex-
plained by the difference in temperature between the two types of tests (293 K for the 
crystallographic analysis and 300 K for the molecular dynamics).  

Regarding the binding between natural ligands such as curcumin and quercetin and 
hiPDGFRα, this involves only a minor number of hydrogen bonds and hydrophobic in-
teractions, even if their strength and number establish a medium–high affinity (Kd,pred = 0.2 
µM and Kd,pred = 0.7 µM, respectively). This still determines an excellent competition 
against ATP that has an affinity for the wildtype enzyme in the order of sub-millimolar 
(Km = 179.6 µM) [12], underscoring the potency of their enzymatic inhibition capabilities. 

  

Figure 2. Complex geometries prediction by molecular docking analysis: amino acids and the ligand
of (A) Bafetinib/hiPDGFRα and (B) Flumatinib/hiPDGFRα complex involved in the interaction are
shown as sticks. Weak bonds are also reported and emphasized in the legends.

Although the Imatinib/hiPDGFRα crystal structure shows seven hydrogen bonds
(with Glu644, Met648, Thr674, Cys677, His815, Val816), a salt bridge (Asp836), two π-cation
interactions (with His816 and Tyr676), and seven hydrophobic interactions (with Leu599,
Lys627, Glu644, Val658, Ile672, Thr674, and Asp836), the predicted Imatinib/hiPDGFRα
complex, after the molecular dynamics analysis, shows only five hydrogen bonds previ-
ously described and nine hydrophobic interactions (with Leu599, Val607, Lys627, Ile672,
Thr674, Tyr676, Leu825, Asp836, and Phe837). This could be explained by the difference
in temperature between the two types of tests (293 K for the crystallographic analysis and
300 K for the molecular dynamics).

Regarding the binding between natural ligands such as curcumin and quercetin
and hiPDGFRα, this involves only a minor number of hydrogen bonds and hydropho-
bic interactions, even if their strength and number establish a medium–high affinity
(Kd,pred = 0.2 µM and Kd,pred = 0.7 µM, respectively). This still determines an excellent
competition against ATP that has an affinity for the wildtype enzyme in the order of
sub-millimolar (Km = 179.6 µM) [12], underscoring the potency of their enzymatic inhibi-
tion capabilities.
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2.3. Molecular Dynamics

The stability of the best 4 predicted complexes, obtained through molecular docking,
was analyzed using molecular dynamics simulation for 50 ns. The first four nanoseconds
of these simulations are represented in Figure 3 since no further RMSD variations were
established. The calculated RMSD of each ligand and complex trajectory with respect to
the backbone indicates that the complexes achieve sufficient stability (RMSD < 0.17 nm,
1.7 Å) within less than 4 ns, except for Flumatinib (Figure 3G), which shows RMSD values
of about 0.22 nm.
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Figure 3. RMSDs of ligands and complexes trajectories: (A,C,E,G) RMSDs of Bafetinib, Radotinib,
Imatinib, and Flumatinib versus protein backbone, respectively; (B,D,F,H) RMSDs of hiPDGFRα
versus protein backbone complexed with Bafetinib, Radotinib, Imatinib, and Flumatinib, respectively.

The RMSD trend of Bafetinib (Figure 3A) and Flumatinib (Figure 3G) with respect to
the other ligands seems to require a few more picoseconds and nanoseconds, respectively,
to reach final stability. This behavior could be explained by the establishment of the
π-cation interaction.

The average short-range Coulombic and Lennard–Jones interaction energies calculated
during the molecular dynamics analysis are reported in Table 2. As noted in the molecular
docking section, the electrostatic contributions between Bafetinib and Flumatinib are
essentially equivalent, while there is a significant difference in terms of intermolecular pair
Lennard–Jones potential, indicating a more efficient binding of Bafetinib to the active site.

Table 2. Average short-range interaction energies calculated by energy module of Gromacs.

Complex Coulombic Interaction
Energy (kJ/mol)

Lennard–Jones Energy
(kJ/mol)

Bafetinib/hiPDGFRα −135.72 ± 0.96 −257.94 ± 0.60
Radotinib/hiPDGFRα −142.66 ± 1.10 −234.45 ± 1.50
Imatinib/hiPDGFRα −121.95 ± 1.20 −234.49 ± 1.80

Flumatinib/hiPDGFRα −135.79 ± 2.10 −244.41 ± 3.00
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2.4. Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) and
ADMET Analyses

The three-dimensional QSAR analysis produced comparative molecular fields anal-
ysis (CoMFA) models considering the CoMFA potential or field, the best of which are
summarized in Table 3 based on optimal principal components (OPC). Among these, MW,
nHA, nHD, LogP, TPSA, rotatable bonds (RBs), molar refractivity (MR), length, and max
length were taken into account and modulated to achieve the best model. Some of them
are reported in Tables 4 and 5.

Table 3. Summary of the best CoMFA models.

Field r2 q2 Optimal PC

STE 1.000 0.525 5
ELE 0.761 0.574 4

STE-ELE 0.999 0.692 6

Table 4. ADMET results. Indexes and some descriptors are reported (part 1).

Compound Lipinski Pfizer GSK Golden
Triangle MW LogP LogD nHA nHD TPSA

Recommended Range 100/600 0/3 1/3 0/12 0/7 0/140

Benfluorex Accepted Rejected Rejected Accepted 351.14 4.229 4.039 3 1 38.33
Glisolamide Accepted Accepted Rejected Accepted 434.16 2.953 1.325 9 3 130.4

Imatinib Accepted Accepted Rejected Accepted 493.26 3.805 3.144 8 2 89.51
Nintedanib Accepted Accepted Rejected Rejected 539.25 3.466 3.036 9 2 101.47

Nilotinib Accepted Accepted Rejected Rejected 529.18 4.894 3.881 8 2 100.85
Radotinib Accepted Accepted Rejected Rejected 530.18 4.574 3.643 9 2 113.74

Flumatinib Accepted Accepted Rejected Rejected 562.24 4.043 3.27 9 2 102.4
Ag-13958 Accepted Accepted Rejected Accepted 467.19 4.625 3.476 8 3 100.52

R428_Bemcentinib Accepted Accepted Rejected Rejected 506.29 4.54 4.017 8 3 101.74
Bafetinib Accepted Accepted Rejected Rejected 576.26 4.276 3.518 9 2 102.4

Ditercalinium Rejected Rejected Rejected Rejected 718.4 7.562 5.014 8 2 64.28
Bms-833923 Accepted Accepted Rejected Accepted 473.22 5.193 3.902 6 3 82.17
Tg100-801 Rejected Accepted Rejected Rejected 579.2 6.745 4.857 8 1 92.7

Hispaglabridin_B Accepted Rejected Rejected Rejected 390.18 6.757 5.324 4 1 47.92
Crenolanib Accepted Accepted Rejected Accepted 443.23 4.34 3.093 7 2 78.43
Dasatinib Accepted Accepted Rejected Accepted 487.16 2.807 2.922 9 3 109.74

MolPort-001-740-557_Quercetin Accepted Accepted Accepted Accepted 302.04 2.155 1.767 7 5 131.36
MolPort-001-768-

161_Binaphthalene Accepted Rejected Rejected Accepted 254.11 6.02 4.668 0 0 0

MolPort-001-741-358_EGCG Rejected Accepted Rejected Accepted 458.08 1.893 0.652 11 8 197.37
MolPort-009-018-791_Curcumin Accepted Accepted Accepted Accepted 368.13 2.742 2.82 6 2 93.06

MolPort-039-052-621 Rejected Accepted Rejected Rejected 542.12 5.021 3.33 10 5 162.98
MolPort-002-524-598 Rejected Accepted Rejected Rejected 596.14 −0.524 −0.3 16 10 269.43

MolPort-001-740-946_Luteolin-7-
glucuronide Rejected Accepted Rejected Accepted 462.08 0.864 0.745 12 7 207.35

29215783_iPPI Accepted Rejected Rejected Accepted 410.08 5.88 4.167 4 0 48.67
24301892_iPPI Accepted Accepted Rejected Accepted 454.13 5.425 4.104 7 1 77.75
47194043_iPPI Accepted Rejected Rejected Accepted 354.14 4.824 3.525 4 2 61.96
24824231_div Accepted Accepted Accepted Accepted 330.1 2.863 2.829 5 2 75.27

Abbreviations: molecular weight (MW), logarithm of the n-octanol/water distribution coefficient (LogP), loga-
rithm of the n-octanol/water distribution coefficients at pH = 7.4 (LogD), number of hydrogen bond acceptors
(nHA), number of hydrogen bond donors (nHD), and topological polar surface area (TPSA).

Figure 4 shows the relationships between experimental and calculated activities by
CoMFA models. The fitting statistical results, also reported in Table 3, indicate that the
steric model (STE) is the more consistent and robust one, even if the electrostatic one (ELE)
shows a relatively good squared correlation coefficient r2 and internal predictive coefficient
q2. This would confirm the result of interaction energies obtained by Gromacs, which
describes the best complex in terms of affinity as the one with the higher Lennard–Jones
energy contribution, the forces involved in the steric effect.
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MolPort-001-740-557_Quercetin 0.434 1.701 −5.204 7.69 × 10−5 0.05 0.919 0.007 0.936 0.072 0 
MolPort-001-768-161_Binaphthalene 0.411 −0.156 −4.691 1.45 × 10−5 0.861 0.945 0.011 0.983 0.019 0 

MolPort-001-741-358_EGCG 0.212 1.65 −6.717 5.05 × 10−6 0.034 0.969 0.003 0.936 0.021 0 
MolPort-009-018-791_Curcumin 0.548 0.722 −4.834 1.63 × 10−5 0.706 0.958 0.007 0.792 0.951 0 

MolPort-039-052-621 0.225 0.947 −5.059 2.03 × 10−5 0.39 0.94 0.003 0.912 0.816 0 
MolPort-002-524-598 0.137 1.984 −6.448 1.21 × 10−5 0.243 0.674 0.003 0.222 0.018 0 

MolPort-001-740-946_Luteolin-7-glucuronide 0.253 1.771 −6.471 3.08 × 10−5 0.279 0.079 0.003 0.013 0.058 0 
29215783_iPPI 0.388 −0.195 −4.916 3.44 × 10−5 0.575 0.033 0.003 0.513 0.704 0 
24301892_iPPI 0.471 −1.923 −4.942 1.95 × 10−5 0.554 0.042 0.003 0.054 0.838 0 

Figure 4. CoMFA model prediction values of activities (Recalcd/Pred pAct) versus experimental
activities obtained by molecular docking analysis considering the optimal PC values.

ADMET predictions, in particular, some properties and relative descriptors of the
27 selected molecules, are reported in Tables 4 and 5. A major part of these compounds
satisfies the conditions regarding the acceptance of the first two indexes (Lipinski and
Pfizer) related to absorption, permeability, and toxicity. Only Ditercalinium does not satisfy
the conditions of these indexes since it presents the heaviest and longest molecule and
the highest MR and LogP, which are out of range. Several compounds could cause skin
sensitization and respiratory toxicity—although no compound would cause acute toxicity
during oral administration.

Table 5. ADMET results. Indexes and some descriptors are reported (part 2).

Compound QED NP-
Likeness Caco-2 MDCK Carcinogenicity SkinSen EC EI Respiratory LD50

Oral

Recommended Range >0.67 −5/5 >−5.15 >2.0 × 10−6 0/0.3 Excellent; 0.3/0.7 Medium; 0.7/1 Poor 0

Benfluorex 0.603 −0.95 −4.62 2.19 × 10−5 0.046 0.033 0.003 0.011 0.686 0
Glisolamide 0.613 −1.57 −5.447 1.56 × 10−5 0.026 0.109 0.003 0.007 0.007 0

Imatinib 0.424 −1.477 −5.576 7.27 × 10−6 0.044 0.946 0.003 0.007 0.992 0
Nintedanib 0.272 −1.176 −5.716 2 × 10−5 0.078 0.75 0.003 0.007 0.694 0

Nilotinib 0.302 −1.657 −5.112 1.12 × 10−5 0.027 0.932 0.003 0.009 0.928 0
Radotinib 0.325 −1.62 −5.065 1.06 × 10−5 0.021 0.944 0.003 0.009 0.954 0

Flumatinib 0.361 −1.566 −5.492 7.93 × 10−6 0.028 0.948 0.003 0.006 0.988 0
Ag-13958 0.314 −1.989 −5.46 6.03 × 10−6 0.591 0.245 0.003 0.013 0.986 0

R428_Bemcentinib 0.364 −0.866 −5.342 6.99 × 10−6 0.95 0.581 0.003 0.007 0.74 0
Bafetinib 0.327 −1.607 −5.658 5.79 × 10−6 0.036 0.949 0.003 0.006 0.95 0

Ditercalinium 0.149 0.003 −5.949 6.59 × 10−6 0.086 0.962 0.003 0.009 0.999 0
Bms-833923 0.294 −0.978 −5.526 1.54 × 10−5 0.169 0.392 0.003 0.01 0.896 0
Tg100-801 0.166 −1.068 −5.193 1.92 × 10−5 0.254 0.477 0.003 0.009 0.743 0

Hispaglabridin_B 0.7 2.088 −5.06 1.87 × 10−5 0.906 0.854 0.003 0.111 0.884 0
Crenolanib 0.504 −0.993 −5.421 9.76 × 10−5 0.825 0.543 0.003 0.008 0.81 0
Dasatinib 0.493 −1.724 −4.871 1.25 × 10−5 0.948 0.139 0.003 0.008 0.846 0

MolPort-001-740-
557_Quercetin 0.434 1.701 −5.204 7.69 × 10−5 0.05 0.919 0.007 0.936 0.072 0

MolPort-001-768-
161_Binaphthalene 0.411 −0.156 −4.691 1.45 × 10−5 0.861 0.945 0.011 0.983 0.019 0

MolPort-001-741-
358_EGCG 0.212 1.65 −6.717 5.05 × 10−6 0.034 0.969 0.003 0.936 0.021 0

MolPort-009-018-
791_Curcumin 0.548 0.722 −4.834 1.63 × 10−5 0.706 0.958 0.007 0.792 0.951 0



Int. J. Mol. Sci. 2023, 24, 9623 8 of 12

Table 5. Cont.

Compound QED NP-
Likeness Caco-2 MDCK Carcinogenicity SkinSen EC EI Respiratory LD50

Oral

MolPort-039-052-621 0.225 0.947 −5.059 2.03 × 10−5 0.39 0.94 0.003 0.912 0.816 0
MolPort-002-524-598 0.137 1.984 −6.448 1.21 × 10−5 0.243 0.674 0.003 0.222 0.018 0

MolPort-001-740-
946_Luteolin-7-

glucuronide
0.253 1.771 −6.471 3.08 × 10−5 0.279 0.079 0.003 0.013 0.058 0

29215783_iPPI 0.388 −0.195 −4.916 3.44 × 10−5 0.575 0.033 0.003 0.513 0.704 0
24301892_iPPI 0.471 −1.923 −4.942 1.95 × 10−5 0.554 0.042 0.003 0.054 0.838 0
47194043_iPPI 0.499 −0.597 −5.034 7.22 × 10−6 0.465 0.882 0.003 0.623 0.684 0
24824231_div 0.725 −1.188 −5.289 1.36 × 10−5 0.427 0.854 0.003 0.036 0.017 0

Abbreviations: drug-likeness based on the concept of desirability (QED), Natural Product-likeness score (NP-
likeness), human colon adenocarcinoma cell lines permeability (Caco-2), Madin−Darby Canine Kidney cells
permeability (MDCK), skin sensitization (Skin Sen), eye irritation/corrosion (EI/EC) potential, respiratory toxicity
(Respiratory), and acute toxicity during oral administration (LD50 oral).

3. Discussion

The PDGFRα is a critical factor that plays an essential role in regulating cell prolifera-
tion, survival, and chemotaxis [24–27]. Several studies have identified PDGFR as a potential
target to treat pathologies, such as cancer and progressive fibrotic diseases [4–8,14–17],
by searching for synthetic or natural compounds acting as ligands/inhibitors. Currently,
however, no one has considered involving such large compound libraries for this purpose,
such as those implemented in the MTiOpenScreen web server.

The details of binding interactions between human intracellular PDGFRα and the
compounds selected after the structure-based virtual screening were revealed by molecular
docking and the subsequent MD simulations. Molecular docking analysis, in addition to
complexes’ affinities, was able to provide important critical issues regarding the geometries.
The predicted affinities for the 27 selected complexes vary from the nanomolar order
(1.01 nM for the Bafetinib/hiPDGFRα complex) to the micromolar one, a typical range of
values for a good drug inhibition and reliable QSAR analysis. Some of the most stable
complexes show a π-cation possible interaction with Lys627, halogen bonds with Glu644,
and numerous hydrophobic interactions.

MD analysis reveals that the complexes achieve their stability in a very short time and
remain stable for all the MD simulations, demonstrating no substantial unfolding of the
structures. The type of interaction energies calculated during this analysis shows that the
steric contribution (the Lennard–Jones energy) is predominant in the most stable complexes.
This behavior is confirmed by CoMFA models obtained through the three-dimensional
QSAR. The steric model field (or at least a combination of the two models) produces a
very consistent activity predictor model—suggesting the descriptors included in this field
and the structural information obtained by molecular docking analysis—as a basis for
designing new effective drugs. These predicted models and structural information confirm
the molecule ranking reported in Table 1 and identify Bafetinib as the best candidate for a
hiPDGFR ligand/inhibitor.

Although this analysis was carried out with bioinformatics tools and needs experimen-
tal evidence and confirmation, we can assert that it has the potential to create a platform
for developing new drugs or repositioning already-known drugs. Though the predicted
model is an excellent starting point for developing an ideal hiPDGFRα ligand/inhibitor,
all 27 selected compounds have the potential to effectively bind and inhibit hiPDGFRα
activity based on predicted geometries and affinities. This is partially supported by the
fact that compounds such as Imatinib, Nilotinib, Crenolanib, and Nintedanib, which are
included in this set, have already been experimentally shown to have activity against
hiPDGFR [1,4,8,9,11,15]. Moreover, Bafetinib is already known to inhibit the Bcr/Abl fu-
sion protein tyrosine kinase and the Src-family member Lyn tyrosine kinase for treating
Bcr-Abl+ leukemias, including chronic myelogenous leukemia (CML) and Philadelphia+
acute lymphoblastic leukemia [33,34]. Further studies are necessary to determine whether
these compounds should proceed to the pre-clinical and clinical phases of evaluation.
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As reported in a previous study on Nintedanib [35], it will be crucial to carefully adjust the
dosage of these new drugs in a real-life setting to ensure their optimal efficacy and safety
for patients. This requires close monitoring of potential side effects and close collabora-
tion between healthcare providers and patients to make necessary adjustments based on
individual patient factors, such as age, weight, and comorbidities.

4. Materials and Methods
4.1. Virtual Screening of the Small Compounds Database

The structure-based virtual screening of compounds, such as drugs, food constituents,
and natural products, against the human intracellular PDGFRα was performed using the
MTiOpenScreen web server [36,37] that is based on Autodock Vina-based docking genetic
algorithm and analyses 5 compounds libraries: iPPI-lib, diverse-lib, Drugs-lib, Food-lib,
and NP-lib. These drug-like chemical libraries contain modulators of protein–protein
interactions, diverse chemical compounds, purchasable approved drugs, food constituents,
and natural products, respectively, currently for a total of about 7200 molecules. After the
preparation of the receptor (pdbID: 6jol) [12] removing Imatinib and water molecules, the
PDB file was uploaded on the server setting the grid center coordinates (64.868, 43.016,
0.324) and the size of the search space (30 × 28 × 36 Å), keeping all the other parameters
as default.

4.2. Molecular Docking

Twenty-seven molecules were mainly selected on the basis of the best binding energies
obtained from the results of the MTiOpenScreen web server. To check these results, we
carried out a further docking analysis using the SwissDock web server, as previously
reported [38], based on the EADock DSS algorithm [39,40], and setting the docking type
as accurate without a definition of the region of interest to include the whole protein
in the search space. The final geometry of the complexes obtained was rendered by
PyMol software (The PyMOL Molecular Graphics System, Version 2.5.2, Schrödinger, LLC.,
Cambridge, MA, USA), and the 3D representation of the interaction was obtained by the
Protein-Ligand Interaction Profiler (PLIP) web server [41].

4.3. Molecular Dynamics

The molecular dynamics simulation of the best 4 complexes obtained (including the
Imatinib/receptor complex as reference) was performed using Gromacs software version
2022.4 [42], the CHARMM36 force field updated July 2022 [43], the SPC216 water model,
and the CGenFF server for generating ligand topologies [43]. Each dynamics simulation
started with solvation, neutralization adding three chlorine ions, and minimization of the
system using the steepest descend algorithm for 50,000 steps. Next, the NVT and NPT
equilibration stage was performed in a 100 ps run, stabilizing the temperature at 300 K
(using V-rescale Berendsen thermostat) and the pressure at 1 bar (using C-rescale pressure
coupling), respectively. Finally, MD simulation was run for 50 ns, and the rms tools of
Gromacs were used to determine the root mean square deviation (RMSD) of each ligand
trajectory in relation to the protein backbone and, also, to calculate the protein backbone
RMSD relative to the energy minimized conformation. The Coulombic and Lennard–Jones
interaction energies were calculated using the capability of Gromacs to decompose the
short-range non-bonded energies.

4.4. Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) and
ADMET Analyses

To simplify the design of selective human intracellular PDGFRα inhibitors, the three-
dimensional quantitative structure–activity relationship (3D-QSAR) analysis was carried
out using the comparative molecular fields analysis (CoMFA) [44] available on the web
portal www.3d-qsar.com [45]. To achieve this analysis, we first performed an alignment
of molecules’ conformations and a molecular interaction fields (MIFs) calculation of the

www.3d-qsar.com
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27 selected molecules. We set all parameters as default. The two CoMFA potentials obtained,
called steric (STE) and electrostatic (ELE), were calculated by means of the Lennard–Jones
and Coulomb law definitions, respectively.

The ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis
was carried out using the screening section of ADMETlab 2.0 web server [46] and upload-
ing the SMILES notation of the 27 selected molecules. In addition to the most common
molecular descriptors, the results provide four acceptance indexes called Lipinski, Pfizer,
GSK, and Golden Triangle. The Lipinski rule is related to absorption and permeability,
while the Pfizer rule is related to toxicity. Compounds satisfying the GSK and Golden
Triangle rule may have a more favorable ADMET profile.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24119623/s1.
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