Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = PBSeT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8078 KiB  
Article
Synthesis and Characterization of Poly(Butylene Sebacate-Co-Terephthalate) Copolyesters with Pentaerythritol as Branching Agent
by Hyunho Jang, Sangwoo Kwon, Sun Jong Kim, Young-Teck Kim and Su-il Park
Int. J. Mol. Sci. 2024, 25(1), 55; https://doi.org/10.3390/ijms25010055 - 19 Dec 2023
Cited by 2 | Viewed by 1930
Abstract
Poly(butylene sebacate-co-terephthalate) (PBSeT) copolyesters are prepared by melt polymerization via two-step transesterification and polycondensation using pentaerythritol (PE) as a branching agent. The effects of the incorporated PE on its chemical, thermal, mechanical, and degradation properties, along with the rheological properties of its melt, [...] Read more.
Poly(butylene sebacate-co-terephthalate) (PBSeT) copolyesters are prepared by melt polymerization via two-step transesterification and polycondensation using pentaerythritol (PE) as a branching agent. The effects of the incorporated PE on its chemical, thermal, mechanical, and degradation properties, along with the rheological properties of its melt, are investigated. The highest molecular weight and intrinsic viscosity along with the lowest melt flow index were achieved at a PE content of 0.2 mol%, with minimal reduction in the tensile strength and the highest tear strength. The addition of PE did not significantly influence the thermal behavior and stability of the PBSeT copolyesters; however, the elongation at break decreased with increasing PE content. The sample with 0.2 mol% PE exhibited a higher storage modulus and loss modulus as well as a lower loss angle tangent than the other samples, indicating improved melt elasticity. The incorporation of more than 0.2 mol% PE enhanced the enzymatic degradation of copolyesters. In summary, including within 0.2 mol%, PE effectively improved both the processability-related characteristics and degradation properties of PBSeT copolyesters, suggesting their potential suitability for use in agricultural and packaging materials. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

12 pages, 4694 KiB  
Article
Solid State Polymerization of Biodegradable Poly(butylene sebacate-co-terephthalate): A Rapid, Facile Method for Property Enhancement
by Daegyu Lim and Su-il Park
Polymers 2023, 15(5), 1133; https://doi.org/10.3390/polym15051133 - 24 Feb 2023
Cited by 2 | Viewed by 3114
Abstract
Poly(butylene sebacate-co-terephthalate) (PBSeT) has generated attention as a promising biopolymer for preparing bioplastics. However, there are limited studies on the synthesis of PBSeT, impeding its commercialization. Herein, with a view to addressing this challenge, biodegradable PBSeT was modified using solid state polymerization (SSP) [...] Read more.
Poly(butylene sebacate-co-terephthalate) (PBSeT) has generated attention as a promising biopolymer for preparing bioplastics. However, there are limited studies on the synthesis of PBSeT, impeding its commercialization. Herein, with a view to addressing this challenge, biodegradable PBSeT was modified using solid state polymerization (SSP) with various ranges of time and temperature. The SSP used three different temperatures below the melting temperature of PBSeT. The polymerization degree of SSP was investigated using Fourier-transform infrared spectroscopy. The changes in the rheological properties of PBSeT after SSP were investigated using a rheometer and an Ubbelodhe viscometer. Differential scanning calorimetry and X-ray diffraction showed that the crystallinity of PBSeT was higher after SSP. The investigation revealed that after SSP for 40 min at 90 °C, PBSeT exhibited higher intrinsic viscosity (increased from 0.47 to 0.53 dL/g), crystallinity, and complex viscosity than PBSeT polymerized at other temperatures. However, a high SSP processing time resulted in a decrease in these values. In this experiment, SSP was most effectively performed in the temperature range closest to the melting temperature of PBSeT. This indicates that SSP could be a facile and rapid method for improving the crystallinity and thermal stability of synthesized PBSeT. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Graphical abstract

13 pages, 2232 KiB  
Article
High Seebeck Coefficient from Screen-Printed Colloidal PbSe Nanocrystals Thin Film
by Viviana Sousa, Guillaume Savelli, Oleg I. Lebedev, Kirill Kovnir, José H. Correia, Eliana M. F. Vieira, Pedro Alpuim and Yury V. Kolen’ko
Materials 2022, 15(24), 8805; https://doi.org/10.3390/ma15248805 - 9 Dec 2022
Cited by 7 | Viewed by 2504
Abstract
Thin-film thermoelectrics (TEs) with a thickness of a few microns present an attractive opportunity to power the internet of things (IoT). Here, we propose screen printing as an industry-relevant technology to fabricate TE thin films from colloidal PbSe quantum dots (QDs). Monodisperse 13 [...] Read more.
Thin-film thermoelectrics (TEs) with a thickness of a few microns present an attractive opportunity to power the internet of things (IoT). Here, we propose screen printing as an industry-relevant technology to fabricate TE thin films from colloidal PbSe quantum dots (QDs). Monodisperse 13 nm-sized PbSe QDs with spherical morphology were synthesized through a straightforward heating-up method. The cubic-phase PbSe QDs with homogeneous chemical composition allowed the formulation of a novel ink to fabricate 2 μm-thick thin films through robust screen printing followed by rapid annealing. A maximum Seebeck coefficient of 561 μV K−1 was obtained at 143 °C and the highest electrical conductivity of 123 S m−1 was reached at 197 °C. Power factor calculations resulted in a maximum value of 2.47 × 10−5 W m−1 K−2 at 143 °C. To the best of our knowledge, the observed Seebeck coefficient value is the highest reported for TE thin films fabricated by screen printing. Thus, this study highlights that increased Seebeck coefficients can be obtained by using QD building blocks owing to quantum confinement. Full article
(This article belongs to the Special Issue Nanostructural Thin Films: Microstructure and Optical Properties)
Show Figures

Figure 1

17 pages, 4497 KiB  
Article
Maleic Anhydride-Grafted PLA Preparation and Characteristics of Compatibilized PLA/PBSeT Blend Films
by Hyunho Jang, Sangwoo Kwon, Sun Jong Kim and Su-il Park
Int. J. Mol. Sci. 2022, 23(13), 7166; https://doi.org/10.3390/ijms23137166 - 28 Jun 2022
Cited by 23 | Viewed by 5072
Abstract
Poly(butylene sebacate-co-terephthalate) (PBSeT) is a biodegradable flexible polymer suitable for melt blending with other biodegradable polymers. Melt blending with a compatibilizer is a common strategy for increasing miscibility between polymers. In this study, PBSeT polyester was synthesized, and poly(lactic acid) (PLA) was blended [...] Read more.
Poly(butylene sebacate-co-terephthalate) (PBSeT) is a biodegradable flexible polymer suitable for melt blending with other biodegradable polymers. Melt blending with a compatibilizer is a common strategy for increasing miscibility between polymers. In this study, PBSeT polyester was synthesized, and poly(lactic acid) (PLA) was blended with 25 wt% PBSeT by melt processing with 3–6 phr PLA-grafted maleic anhydride (PLA-g-MAH) compatibilizers. PLA-g-MAH enhanced the interfacial adhesion of the PLA/PBSeT blend, and their mechanical and morphological properties confirmed that the miscibility also increased. Adding more than 6 phr of PLA-g-MAH significantly improved the mechanical properties and accelerated the cold crystallization of the PLA/PBSeT blends. Furthermore, the thermal stabilities of the blends with PLA-g-MAH were slightly enhanced. PLA/PBSeT blends with and without PLA-g-MAH were not significantly different after 120 h, whereas all blends showed a more facilitated hydrolytic degradation rate than neat PLA. These findings indicate that PLA-g-MAH effectively improves PLA/PBSeT compatibility and can be applied in the packaging industry. Full article
Show Figures

Figure 1

16 pages, 2921 KiB  
Article
Characterization of PLA/PBSeT Blends Prepared with Various Hexamethylene Diisocyanate Contents
by Sun Jong Kim, Hyo Won Kwak, Sangwoo Kwon, Hyunho Jang and Su-il Park
Materials 2021, 14(1), 197; https://doi.org/10.3390/ma14010197 - 3 Jan 2021
Cited by 18 | Viewed by 4419
Abstract
Poly (lactic acid) (PLA) is the most widely available commercial bioplastic that is used in various medical and packaging applications and three-dimensional filaments. However, because neat PLA is brittle, it conventionally has been blended with ductile polymers and plasticizers. In this study, PLA [...] Read more.
Poly (lactic acid) (PLA) is the most widely available commercial bioplastic that is used in various medical and packaging applications and three-dimensional filaments. However, because neat PLA is brittle, it conventionally has been blended with ductile polymers and plasticizers. In this study, PLA was blended with the high-ductility biopolymer poly (butylene-sebacate–co–terephthalate) (PBSeT), and hexamethylene diisocyanate (HDI) was applied as a crosslinking compatibilizer to increase the miscibility between the two polymers. PLA (80%) and PBSeT (20%) were combined with various HDI contents in the range 0.1–1.0 parts-per-hundred rubber (phr) to prepare blends, and the resulting physical, thermal, and hydrolysis properties were analyzed. Fourier-transform infrared analysis confirmed that –NH–C=OO bonds had formed between the HDI and the other polymers and that the chemical bonding had influenced the thermal behavior. All the HDI-treated specimens showed tensile strengths and elongations higher than those of the control. In particular, the 0.3-phr-HDI specimen showed the highest elongation (exceeding 150%) and tensile strength. In addition, all the specimens were hydrolyzed under alkaline conditions, and all the HDI-treated specimens degraded faster than the neat PLA one. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

16 pages, 3509 KiB  
Article
Synthesis, Characterization and Properties of Biodegradable Poly(Butylene Sebacate-Co-terephthalate)
by Sun Jong Kim, Hyo Won Kwak, Sangwoo Kwon, Hyunho Jang and Su-il Park
Polymers 2020, 12(10), 2389; https://doi.org/10.3390/polym12102389 - 16 Oct 2020
Cited by 27 | Viewed by 5268
Abstract
In this study, poly(butylene sebacate-co-terephthalate) (PBSeT) was successfully synthesized using various ratios of sebacic acid (Se) and dimethyl terephthalate (DMT). The synthesized PBSeT showed a high molecular weight (Mw, 88,700–154,900 g/mol) and good elastomeric properties. In particular, the [...] Read more.
In this study, poly(butylene sebacate-co-terephthalate) (PBSeT) was successfully synthesized using various ratios of sebacic acid (Se) and dimethyl terephthalate (DMT). The synthesized PBSeT showed a high molecular weight (Mw, 88,700–154,900 g/mol) and good elastomeric properties. In particular, the PBSeT64 (6:4 sebacic acid/dimethyl terephthalate mole ratio) sample showed an elongation at break value of over 1600%. However, further increasing the DMT content decreased the elongation properties but increased the tensile strength due to the inherent strength of the aromatic unit. The melting point and crystallization temperature were difficult to observe in PBSeT64, indicating that an amorphous copolyester was formed at this mole ratio. Interestingly, wide angle X-ray diffraction (WAXD) curves was shown in the cases of PBSeT46 and PBSeT64, neither the crystal peaks of PBSe nor those of poly(butylene terephthalate) (PBT) are observed, that is, PBSeT64 showed an amorphous form with low crystallinity. The Fourier-transform infrared (FT-IR) spectrum showed C–H peaks at around 2900 cm−1 that reduced as the DMT ratio was increased. Nuclear magnetic resonance (NMR) showed well-resolved peaks split by coupling with the sebacate and DMT moieties. These results highlight that elastomeric PBSeT with high molecular weight could be synthesized by applying DMT monomer and showed promising mechanical properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

28 pages, 27782 KiB  
Article
Nanoscale Study of Clausthalite-Bearing Symplectites in Cu-Au-(U) Ores: Implications for Ore Genesis
by Nicholas D. Owen, Cristiana L. Ciobanu, Nigel J. Cook, Ashley Slattery and Animesh Basak
Minerals 2018, 8(2), 67; https://doi.org/10.3390/min8020067 - 13 Feb 2018
Cited by 24 | Viewed by 6230
Abstract
Symplectites comprising clausthalite (PbSe) and host Cu-(Fe)-sulphides (chalcocite, bornite, and chalcopyrite) are instructive for constraining the genesis of Cu-Au-(U) ores if adequately addressed at the nanoscale. The present study is carried out on samples representative of all three Cu-(Fe)-sulphides displaying clausthalite inclusions that [...] Read more.
Symplectites comprising clausthalite (PbSe) and host Cu-(Fe)-sulphides (chalcocite, bornite, and chalcopyrite) are instructive for constraining the genesis of Cu-Au-(U) ores if adequately addressed at the nanoscale. The present study is carried out on samples representative of all three Cu-(Fe)-sulphides displaying clausthalite inclusions that vary in size, from a few µm down to the nm-scale (<5 nm), as well as in morphology and inclusion density. A Transmission Electron Microscopy (TEM) study was undertaken on foils prepared by Focussed Ion Beam and included atom-scale High-Angle Annular Dark-Field Scanning TEM (HAADF-STEM) imaging. Emphasis is placed on phase relationships and their changes in speciation during cooling, as well as on boundaries between inclusions and host sulphide. Three species from the chalcocite group (Cu2–xS) are identified as 6a digenite superstructure, monoclinic chalcocite, and djurleite. Bornite is represented by superstructures, of which 2a and 4a are discussed here, placing constraints for ore formation at T > 265 °C. A minimum temperature of 165 °C is considered for clausthalite-bearing symplectites from the relationships with antiphase boundaries in 6a digenite. The results show that alongside rods, blebs, and needle-like grains of clausthalite within the chalcocite that likely formed via exsolution, a second, overprinting set of replacement textures, extending down to the nanoscale, occurs and affects the primary symplectites. In addition, other reactions between pre-existing Se, present in solid solution within the Cu-(Fe)-sulphides, and Pb, transported within a fluid phase, account for the formation of composite, commonly pore-attached PbSe and Bi-bearing nanoparticles within the chalcopyrite. The inferred reorganisation of PbSe nanoparticles into larger tetragonal superlattices represents a link between the solid solution and the symplectite formation and represents the first such example in natural materials. Epitaxial growth between clausthalite and monazite is further evidence for the interaction between pre-existing Cu ores and fluids carrying REE, P, and most likely Pb. In U-bearing ores, such Pb can form via decay of uranium within the ore, implying hydrothermal activity after the initial ore deposition. The U-Pb ages obtained for such ores therefore need to be carefully assessed as to whether they represent primary ore deposition or, more likely, an overprinting event. A latest phase of fluid infiltration is the recognised formation of Cu-selenide bellidoite (Cu2Se), as well as Fe oxides. Full article
(This article belongs to the Special Issue Se-Bearing Minerals: Structure, Composition, and Origin)
Show Figures

Figure 1

30 pages, 4023 KiB  
Review
Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites
by Devin R. Merrill, Daniel B. Moore, Sage R. Bauers, Matthias Falmbigl and David C. Johnson
Materials 2015, 8(4), 2000-2029; https://doi.org/10.3390/ma8042000 - 22 Apr 2015
Cited by 63 | Viewed by 11556
Abstract
A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by [...] Read more.
A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+δ]m(TiSe2)n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor. Full article
(This article belongs to the Special Issue Low-Dimensional Anisotropic Thermoelectrics)
Show Figures

Figure 1

Back to TopTop