Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = PAN nanofibrous membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3927 KiB  
Article
Effects of Latent Solvent Content on Tuning the Nanofiltration Performance of Nanofibrous Composite Membranes
by Xu-Dong Cao, Yu-Xuan Shao, Qian Wang, Tian-Dan Lu and Jing Zhong
Membranes 2025, 15(4), 118; https://doi.org/10.3390/membranes15040118 - 8 Apr 2025
Viewed by 557
Abstract
This study aims to optimize the application of electrospun nanofibrous substrates in thin-film composite (TFC) nanofiltration (NF) membranes for enhanced liquid separation efficiency by employing a method of effective welding between fibers using latent solvents. Polyacrylonitrile (PAN) nanofiber substrates were fabricated via electrospinning, [...] Read more.
This study aims to optimize the application of electrospun nanofibrous substrates in thin-film composite (TFC) nanofiltration (NF) membranes for enhanced liquid separation efficiency by employing a method of effective welding between fibers using latent solvents. Polyacrylonitrile (PAN) nanofiber substrates were fabricated via electrospinning, and a dense polyamide selective layer was formed on their surface through interfacial polymerization (IP). The investigation focused on the effects of different solvent systems, particularly the role of dimethyl sulfoxide (DMSO) as a latent solvent, on the nanostructure and final membrane performance. The results indicate that increasing the DMSO content can enhance the greenness of the fabrication process, the substrate hydrophilicity, and the mechanical strength, while also influencing the thickness and morphology of the polyamide layer. At a DMSO rate of 30%, the composite membrane achieves optimal pure water permeability and high rejection rates; when the DMSO content exceeds 40%, structural inhomogeneity in the substrate membrane leads to an increase in defects, significantly deteriorating membrane performance. These findings provide theoretical insights and technical guidance for the application of electrospinning technology in designing efficient and stable NF membranes. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

12 pages, 5189 KiB  
Article
Preparation, Air Filtration Performance of a Fluorinated Polyimide/Polyacrylonitrile Nanofibrous Membrane by Electrospinning
by Chen Chen, Lulu Xiong, Yahui Cui and Chaosheng Wang
Polymers 2024, 16(9), 1240; https://doi.org/10.3390/polym16091240 - 29 Apr 2024
Cited by 2 | Viewed by 1617
Abstract
This paper reports the successful fabrication of a new nanofibrous membrane, F-PI/PAN, through electrospinning of polyacrylonitrile (PAN) and fluorinated polyimide (F-PI). The nanofibrous membrane exhibits comprehensive properties for high-temperature filtration and robust PM2.5 (particulate matter with an aerodynamic equivalent diameter of 2.5 [...] Read more.
This paper reports the successful fabrication of a new nanofibrous membrane, F-PI/PAN, through electrospinning of polyacrylonitrile (PAN) and fluorinated polyimide (F-PI). The nanofibrous membrane exhibits comprehensive properties for high-temperature filtration and robust PM2.5 (particulate matter with an aerodynamic equivalent diameter of 2.5 microns or less) removal. The introduction of F enhances the hydrophobicity of the PI. The relationship between the hydrophobic performance and the filtration performance of particles is investigated. The chemical group of the composite membrane was demonstrated using FITR, while the surface morphology was investigated using field emission scanning electron microscopy. The TGA results indicated good thermal stability at 300 °C. Various ratios of F-PI membranes were prepared to characterize the change in properties, with the optimal mass ratio of F-PI being 20 wt%. As the proportion of F-PI increases, its mechanical and filtration efficiency properties and hydrophobicity become stronger. The contact angle reaches its maximum of 128 ± 5.2° when PAN:F-PI = 6:4. Meanwhile, when PAN:F-PI = 8:2, the filtration efficiency reaches 99.4 ± 0.3%, and the elongation at break can reach 76%. The fracture strength can also reach 7.1 MPa, 1.63 times that of the pure PAN membrane. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

12 pages, 3957 KiB  
Article
Algae-Enhanced Electrospun Polyacrylonitrile Nanofibrous Membrane for High-Performance Short-Chain PFAS Remediation from Water
by Shobha Mantripragada, Dongyang Deng and Lifeng Zhang
Nanomaterials 2023, 13(19), 2646; https://doi.org/10.3390/nano13192646 - 26 Sep 2023
Cited by 8 | Viewed by 2530
Abstract
As a short-chain PFAS (per- and polyfluoroalkyl substance), GenX was produced in recent years to replace traditional long-chain PFASs, such as perfluorooctanoic acid (PFOA). However, GenX turns out to be more toxic than people originally thought, posing health risks as a persistent environmental [...] Read more.
As a short-chain PFAS (per- and polyfluoroalkyl substance), GenX was produced in recent years to replace traditional long-chain PFASs, such as perfluorooctanoic acid (PFOA). However, GenX turns out to be more toxic than people originally thought, posing health risks as a persistent environmental pollutant. In this research, for the first time, we incorporated chlorella, a single-celled green freshwater microalga that grows worldwide, with polyacrylonitrile (PAN) in equal amounts in electrospun nanofibers and studied the capability of the electrospun PAN/Algae bicomponent nanofibrous membrane (ES(PAN/Algae)) to bind and remove GenX from water. The incorporation of algae demonstrated a synergistic effect and significantly improved the GenX removal efficiency of the nanofibrous membrane. The maximum GenX removal capacity reached 0.9 mmol/g at pH 6, which is significantly higher than that of most of the reported GenX adsorbents as well as activated carbon. The GenX removal mechanism was investigated and discussed by using water contact angle, zeta potential, FTIR, and XPS techniques. This research demonstrated the potential to make highly efficient adsorbent/filter materials from common and economic materials to practically remediate short-chain PFASs from various water bodies. Full article
Show Figures

Figure 1

11 pages, 3655 KiB  
Article
Tannic Acid/FeIII Complexes Coating PAN Nanofibrous Membrane for Highly Efficient Photocatalytic Degradation of Dyeing Wastewater
by Xuefei Chen, Lubing Zha, Fangmeng Zeng, Jie Meng, Tiandi Pan and Jindan Lv
Coatings 2023, 13(7), 1212; https://doi.org/10.3390/coatings13071212 - 6 Jul 2023
Cited by 4 | Viewed by 2353
Abstract
Considering photocatalytic degradation technology has recently attracted great attention for dyeing wastewater treatment, the polyacrylonitrile (PAN) nanofibrous membrane coated with the TA/FeIII complexes was proposed as a novel photocatalyst in this work. The successful self-assembly of TA/FeIII complexes on the PAN [...] Read more.
Considering photocatalytic degradation technology has recently attracted great attention for dyeing wastewater treatment, the polyacrylonitrile (PAN) nanofibrous membrane coated with the TA/FeIII complexes was proposed as a novel photocatalyst in this work. The successful self-assembly of TA/FeIII complexes on the PAN nanofibrous membrane after layer-by-layer deposition of TA and FeIII was confirmed by the analyses of chemical structure, morphology, and hydrophilicity. With the number of coating cycles, more TA/FeIII complexes coated on the PAN nanofibrous membrane, which contributed to the excellent photocatalytic activity. Whereas, when the coating cycles reached seven, the photocatalytic performance of the modified PAN nanofibrous membrane deteriorated due to the serious aggregation of TA/FeIII complexes. Under optimum five coating cycles, owing to its great light absorbance capability, the modified PAN nanofibrous membrane achieved 98% degradation efficiency of RhB after 360 min illumination. This work would offer a promising high-performance photocatalyst for dyeing wastewater treatment. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

15 pages, 4099 KiB  
Article
Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater
by Sana Ullah, Osamu Ohsawa, Tehmeena Ishaq, Motahira Hashmi, Muhammad Nauman Sarwar, Chunhong Zhu, Yan Ge, Yeonju Jang and Ick Soo Kim
Sustainability 2023, 15(12), 9365; https://doi.org/10.3390/su15129365 - 9 Jun 2023
Cited by 4 | Viewed by 2602
Abstract
Water pollution is increasing with rapidly growing industries and world population, which is very harmful for marine life and humans as well. This research has been conducted to introduce novel material with advanced techniques for the effective removal of heavy metals from wastewater. [...] Read more.
Water pollution is increasing with rapidly growing industries and world population, which is very harmful for marine life and humans as well. This research has been conducted to introduce novel material with advanced techniques for the effective removal of heavy metals from wastewater. Successful nanofiber membranes have been developed with hemp charcoal (HC) and polyacrylonitrile (PAN), which can remove heavy metals from water efficiently in less time. The nanofiber membranes showed good adsorption capacity for heavy metal ions along with good thermal and mechanical stability. Electrospun nanofibers of HC and PAN were assessed for adsorption capacity by soaking them in metallic suspensions of known concentration for a specific period of time. Nickle, cobalt, and copper metals were selected to assess the adsorption capacity of nanofibrous webs. It was observed that HC played a vital role in removing metal ions from wastewater with an excellent efficiency. The adsorption capacity for nickel, cobalt, and copper was 54 mg/g, 87 mg/g, and 96 mg/g, respectively. Full article
Show Figures

Graphical abstract

21 pages, 5625 KiB  
Article
A Competitive Study Using Electrospinning and Phase Inversion to Prepare Polymeric Membranes for Oil Removal
by Thamer Diwan, Zaidun N. Abudi, Mustafa H. Al-Furaiji and Arian Nijmeijer
Membranes 2023, 13(5), 474; https://doi.org/10.3390/membranes13050474 - 28 Apr 2023
Cited by 10 | Viewed by 3355
Abstract
Polyacrylonitrile (PAN) is a popular polymer that can be made into membranes using various techniques, such as electrospinning and phase inversion. Electrospinning is a novel technique that produces nonwoven nanofiber-based membranes with highly tunable properties. In this research, electrospun PAN nanofiber membranes with [...] Read more.
Polyacrylonitrile (PAN) is a popular polymer that can be made into membranes using various techniques, such as electrospinning and phase inversion. Electrospinning is a novel technique that produces nonwoven nanofiber-based membranes with highly tunable properties. In this research, electrospun PAN nanofiber membranes with various concentrations (10, 12, and 14% PAN/dimethylformamide (DMF)) were prepared and compared to PAN cast membranes prepared by the phase inversion technique. All of the prepared membranes were tested for oil removal in a cross-flow filtration system. A comparison between these membranes’ surface morphology, topography, wettability, and porosity was presented and analyzed. The results showed that increasing the concentration of the PAN precursor solution increases surface roughness, hydrophilicity, and porosity and, consequently, enhances the membrane performance. However, the PAN cast membranes showed a lower water flux when the precursor solution concentration increased. In general, the electrospun PAN membranes performed better in terms of water flux and oil rejection than the cast PAN membranes. The electrospun 14% PAN/DMF membrane gave a water flux of 250 LMH and a rejection of 97% compared to the cast 14% PAN/DMF membrane, which showed a water flux of 117 LMH and 94% oil rejection. This is mainly because the nanofibrous membrane showed higher porosity, higher hydrophilicity, and higher surface roughness compared to the cast PAN membranes at the same polymer concentration. The porosity of the electrospun PAN membrane was 96%, while it was 58% for the cast 14% PAN/DMF membrane. Full article
Show Figures

Figure 1

12 pages, 3915 KiB  
Article
Removal of Tetracycline Hydrochloride by Photocatalysis Using Electrospun PAN Nanofibrous Membranes Coated with g-C3N4/Ti3C2/Ag3PO4
by Peng Wang, Xu Han, Xianhong Zheng, Zongqian Wang, Changlong Li and Zhiqi Zhao
Molecules 2023, 28(6), 2647; https://doi.org/10.3390/molecules28062647 - 14 Mar 2023
Viewed by 2491
Abstract
In order to improve the photocatalytic performance of g-C3N4, the g-C3N4/Ti3C2/Ag3PO4 S-type heterojunction catalyst was prepared by electrostatic assembly method, and then the g-C3N4/Ti [...] Read more.
In order to improve the photocatalytic performance of g-C3N4, the g-C3N4/Ti3C2/Ag3PO4 S-type heterojunction catalyst was prepared by electrostatic assembly method, and then the g-C3N4/Ti3C2/Ag3PO4/PAN composite nanofiber membrane was prepared by electrospinning technology. The morphology and chemical properties of the nanofiber membrane were characterized by SEM, FTIR, and XRD, and the photocatalytic degradation of tetracycline hydrochloride (TC) in water by the nanofiber membrane was investigated. The results showed that g-C3N4/Ti3C2/Ag3PO4 could be successfully loaded on PAN and uniformly distributed on the surface of composite nanofiber membrane by electrospinning technology. Increasing the amount of loading and catalyst, lowering the pH value and TC concentration of the system were conducive to the oxidation and degradation of TC. The nano-fiber catalytic membrane had been recycled five times and found to have excellent photocatalytic stability and reusability. The study of catalytic mechanism showed that h+, •OH and •O2 were produced and participated in the oxidation degradation reaction of TC, and •O2 plays a major role in catalysis. Therefore, this work provides a new insight into the construction of high-performance and high-stability photocatalytic system by electrospinning technology. Full article
Show Figures

Figure 1

13 pages, 2947 KiB  
Article
In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes
by Hao Wu, Le Xu, Jiao Jia, Fengchun Dong, Yongtang Jia and Xi Liu
Molecules 2023, 28(2), 760; https://doi.org/10.3390/molecules28020760 - 12 Jan 2023
Cited by 16 | Viewed by 3371
Abstract
In recent years, metal–organic framework (MOF)-based nanofibrous membranes (NFMs) have received extensive attention in the application of water treatment. Hence, it is of great significance to realize a simple and efficient preparation strategy of MOF-based porous NFMs. Herein, we developed a direct in [...] Read more.
In recent years, metal–organic framework (MOF)-based nanofibrous membranes (NFMs) have received extensive attention in the application of water treatment. Hence, it is of great significance to realize a simple and efficient preparation strategy of MOF-based porous NFMs. Herein, we developed a direct in situ formation of MOF/polymer NFMs using an electrospinning method. The porous MOF/polymer NFMs were constructed by interconnecting mesopores in electrospun composite nanofibers using poly(vinylpolypyrrolidone) (PVP) as the sacrificial pore-forming agent. MOF (MIL-88A) particles were formed inside the polyacrylonitrile (PAN)/PVP nanofibers in situ during electrospinning, and the porous MIL-88A/PAN (pMIL-88A/PAN) NFM was obtained after removing PVP by ethanol and water washing. The MOF particles were uniformly distributed throughout the pMIL-88A/PAN NFM, showing a good porous micro-nano morphological structure of the NFM with a surface area of 143.21 m2 g−1, which is conducive to its efficient application in dye adsorption and removal. Specifically, the dye removal efficiencies of the pMIL-88A/PAN NFM for amaranth red, rhodamine B, and acid blue were as high as 99.2, 94.4, and 99.8%, respectively. In addition, the NFM still showed over 80% dye removal efficiencies after five adsorption cycles. The pMIL-88A/PAN NFM also presented high adsorption capacities, fast adsorption kinetics, and high cycling stabilities during the processes of dye adsorption and removal. Overall, this work demonstrates that the in situ electrospun porous MOF/polymer NFMs present promising application potential in water treatment for organic dyestuff removal. Full article
(This article belongs to the Special Issue Metal Organic Frameworks: Synthesis and Application II)
Show Figures

Figure 1

12 pages, 2498 KiB  
Article
Aluminum Diethylphosphinate-Incorporated Flame-Retardant Polyacrylonitrile Separators for Safety of Lithium-Ion Batteries
by Seok Hyeon Kang, Hwan Yeop Jeong, Tae Ho Kim, Jang Yong Lee, Sung Kwon Hong, Young Taik Hong, Jaewon Choi, Soonyong So, Sang Jun Yoon and Duk Man Yu
Polymers 2022, 14(9), 1649; https://doi.org/10.3390/polym14091649 - 19 Apr 2022
Cited by 6 | Viewed by 3373
Abstract
Herein, we developed polyacrylonitrile (PAN)-based nanoporous composite membranes incorporating aluminum diethylphosphinate (ADEP) for use as a heat-resistant and flame-retardant separator in high-performance and safe lithium-ion batteries (LIBs). ADEP is phosphorus-rich, thermally stable, and flame retardant, and it can effectively suppress the combustibility of [...] Read more.
Herein, we developed polyacrylonitrile (PAN)-based nanoporous composite membranes incorporating aluminum diethylphosphinate (ADEP) for use as a heat-resistant and flame-retardant separator in high-performance and safe lithium-ion batteries (LIBs). ADEP is phosphorus-rich, thermally stable, and flame retardant, and it can effectively suppress the combustibility of PAN nanofibers. Nanofibrous membranes were obtained by electrospinning, and the content of ADEP varied from 0 to 20 wt%. From the vertical burning test, it was demonstrated that the flame retardancy of the composite membranes was enhanced when more than 5 wt% of ADEP was added to PAN, potentially increasing the safety level of LIBs. Moreover, the composite membrane showed higher ionic conductivity and electrolyte uptake (0.83 mS/cm and 137%) compared to those of commercial polypropylene (PP) membranes (Celgard 2400: 0.65 mS/cm and 63%), resulting from interconnected pores and the polar chemical composition in the composite membranes. In terms of battery performance, the composite membrane showed highly stable electrochemical and heat-resistant properties, including superior discharge capacity when compared to Celgard 2400, indicating that the PAN/ADEP composite membrane has the potential to be used as a heat-resistant and flame-retardant separator for safe and high-power LIBs. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

19 pages, 50549 KiB  
Article
Chemical Cleaning Process of Polymeric Nanofibrous Membranes
by Aysegul Gul, Jakub Hruza, Lukas Dvorak and Fatma Yalcinkaya
Polymers 2022, 14(6), 1102; https://doi.org/10.3390/polym14061102 - 9 Mar 2022
Cited by 18 | Viewed by 5636
Abstract
Membrane fouling is one of the most significant issues to overcome in membrane-based technologies as it causes a decrease in the membrane flux and increases operational costs. This study investigates the effect of common chemical cleaning agents on polymeric nanofibrous membranes (PNM) prepared [...] Read more.
Membrane fouling is one of the most significant issues to overcome in membrane-based technologies as it causes a decrease in the membrane flux and increases operational costs. This study investigates the effect of common chemical cleaning agents on polymeric nanofibrous membranes (PNM) prepared by polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and polyamide 6 (PA6) nanofibers. Common alkaline and acid membrane cleaners were selected as the chemical cleaning agents. Membrane surface morphology was investigated. The PAN PNM were selected and fouled by engine oil and then cleaned by the different chemical cleaning agents at various ratios. The SEM results indicated that the use of chemical agents had some effects on the surface of the nanofibrous membranes. Moreover, alkaline cleaning of the fouled membrane using the Triton X 100 surfactant showed a two to five times higher flux recovery than without using a surfactant. Among the tested chemical agents, the highest flux recovery rate was obtained by a binary solution of 5% sodium hydroxide + Triton for alkaline cleaning, and an individual solution of 1% citric acid for acidic cleaning. The results presented here provide one of the first investigations into the chemical cleaning of nanofiber membranes. Full article
(This article belongs to the Special Issue Smart Polymeric Fibrous Materials)
Show Figures

Graphical abstract

15 pages, 5231 KiB  
Article
Mussel-Inspired Fabrication of PDA@PAN Electrospun Nanofibrous Membrane for Oil-in-Water Emulsion Separation
by Haodong Zhao, Yali He, Zhihua Wang, Yanbao Zhao and Lei Sun
Nanomaterials 2021, 11(12), 3434; https://doi.org/10.3390/nano11123434 - 17 Dec 2021
Cited by 19 | Viewed by 4172
Abstract
Emulsified oily wastewater threatens human health seriously, and traditional technologies are unable to separate emulsion containing small sized oil droplets. Currently, oil–water emulsions are usually separated by special wettability membranes, and researchers are devoted to developing membranes with excellent antifouling performance and high [...] Read more.
Emulsified oily wastewater threatens human health seriously, and traditional technologies are unable to separate emulsion containing small sized oil droplets. Currently, oil–water emulsions are usually separated by special wettability membranes, and researchers are devoted to developing membranes with excellent antifouling performance and high permeability. Herein, a novel, simple and low-cost method has been proposed for the separation of emulsion containing surfactants. Polyacrylonitrile (PAN) nanofibers were prepared via electrospinning and then coated by polydopamine (PDA) by using self-polymerization reactions in aqueous solutions. The morphology, structure and oil-in-water emulsion separation properties of the as-prepared PDA@PAN nanofibrous membrane were tested. The results show that PDA@PAN nanofibrous membrane has superhydrophilicity and almost no adhesion to crude oil in water, which exhibits excellent oil–water separation ability. The permeability and separation efficiency of n-hexane/water emulsion are up to 1570 Lm−2 h−1 bar−1 and 96.1%, respectively. Furthermore, after 10 cycles of separation, the permeability and separation efficiency values do not decrease significantly, indicating its good recycling performance. This research develops a new method for preparing oil–water separation membrane, which can be used for efficient oil-in-water emulsion separation. Full article
Show Figures

Figure 1

12 pages, 5406 KiB  
Article
Polyacrylonitrile Nanofibers Containing Viroblock as Promising Material for Protective Clothing
by Mujtaba Hussain, Abdul Salam, Muhammad Fahad Arain, Azeem Ullah, Anh-Tuan Dao, Hai Vu-Manh, Duy-Nam Phan, Aamir Shabbir Ansari, Muhammad Qamar Khan, Zafar Javed and Ick-Soo Kim
Appl. Sci. 2021, 11(23), 11469; https://doi.org/10.3390/app112311469 - 3 Dec 2021
Cited by 11 | Viewed by 2886
Abstract
Antimicrobial viroblock/polyacrylonitrile nanofiber webs fabricated using the electrospinning method were assessed in terms of the antimicrobial activity against infectious agents as a potential material used in mask production. Viroblock (VB) is an amalgam of lipid vesicle and silver. Lipid vesicle depletes the virus [...] Read more.
Antimicrobial viroblock/polyacrylonitrile nanofiber webs fabricated using the electrospinning method were assessed in terms of the antimicrobial activity against infectious agents as a potential material used in mask production. Viroblock (VB) is an amalgam of lipid vesicle and silver. Lipid vesicle depletes the virus outer membrane, which contains cholesterol, while silver ions penetrate the virus, interact with sulfur-bearing moieties, and possess the virus bactericidal property. VB, having anti-coronavirus and anti-influenza properties, was prepared in four different concentrations, 0.5 wt%, 1 wt%, 1.5 wt%, and 2 wt%, in regard to nanofiber weight. The resultant nanofibers were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), water contact angle, water content, and thermogravimetric analysis (TGA). Moreover, all nanofibrous samples were evaluated for cell proliferation assay and ATCC antibacterial tests. Based on characterization results and cytotoxicity, the developed composite nanofibers-based webs showed good promise for utilization in anti-viral masks. Particularly, 2 wt% VB/PAN nanofibers have the highest antibacterial properties against negative and positive bacteria along with excellent cell viability. Full article
(This article belongs to the Topic Sustainable Polymer Technologies)
Show Figures

Figure 1

19 pages, 5708 KiB  
Article
Fabricating Antibacterial and Antioxidant Electrospun Hydrophilic Polyacrylonitrile Nanofibers Loaded with AgNPs by Lignin-Induced In-Situ Method
by Md. Kaiser Haider, Azeem Ullah, Muhammad Nauman Sarwar, Takumi Yamaguchi, Qianyu Wang, Sana Ullah, Soyoung Park and Ick Soo Kim
Polymers 2021, 13(5), 748; https://doi.org/10.3390/polym13050748 - 28 Feb 2021
Cited by 35 | Viewed by 3703
Abstract
Concerning the environmental hazards owing to the chemical-based synthesis of silver nanoparticles (AgNPs), this study aimed to investigate the possibility of synthesizing AgNPs on the surface of polyacrylonitrile (PAN) nanofibers utilizing biomacromolecule lignin. SEM observations revealed that the average diameters of the produced [...] Read more.
Concerning the environmental hazards owing to the chemical-based synthesis of silver nanoparticles (AgNPs), this study aimed to investigate the possibility of synthesizing AgNPs on the surface of polyacrylonitrile (PAN) nanofibers utilizing biomacromolecule lignin. SEM observations revealed that the average diameters of the produced nanofibers were slightly increased from ~512 nm to ~673 nm due to several factors like-swellings that happened during the salt treatment process, surface-bound lignin, and the presence of AgNPs. The presence of AgNPs was validated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The amount of synthesized AgNPs on PAN nanofibers was found to be dependent on both precursor silver salt and reductant lignin concentration. Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectra confirm the presence of lignin on PAN nanofibers. Although the X-ray diffraction pattern did not show any AgNPs band, the reduced intensity of the stabilized PAN characteristics bands at 2θ = 17.28° and 29.38° demonstrated some misalignment of PAN polymeric chains. The water contact angle (WCA) of hydrophobic PAN nanofibers was reduced from 112.6 ± 4.16° to 21.4 ± 5.03° for the maximum AgNPs coated specimen. The prepared membranes exhibited low thermal stability and good swelling capacity up to 20.1 ± 0.92 g/g and 18.05 ± 0.68 g/g in distilled water and 0.9 wt% NaCl solution, respectively. Coated lignin imparts antioxidant activity up to 78.37 ± 0.12% at 12 h of incubation. The resultant nanofibrous membranes showed a proportional increase in antibacterial efficacy with the rise in AgNPs loading against both Gram-positive S. aureus and Gram-negative E. coli bacterial strains by disc diffusion test (AATCC 147-1998). Halos for maximum AgNPs loading was calculated to 18.89 ± 0.15 mm for S. aureus and 21.38 ± 0.17 mm for E. coli. An initial burst release of silver elements within 24 h was observed in the inductively coupled plasma-atomic emission spectrometry (ICP-AES) test, and the release amounts were proportionally expansive with the increase in Ag contents. Our results demonstrated that such types of composite nanofibers have a strong potential to be used in biomedicine. Full article
(This article belongs to the Special Issue Metal Nanoparticles–Polymers Hybrid Materials II)
Show Figures

Graphical abstract

14 pages, 9449 KiB  
Article
Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil–Water Emulsion Separation
by Evren Boyraz and Fatma Yalcinkaya
Polymers 2021, 13(2), 197; https://doi.org/10.3390/polym13020197 - 7 Jan 2021
Cited by 41 | Viewed by 6454
Abstract
In order to protect the environment, it is important that oily industrial wastewater is degreased before discharging. Membrane filtration is generally preferred for separation of oily wastewater as it does not require any specialised chemical knowledge, and also for its ease of processing, [...] Read more.
In order to protect the environment, it is important that oily industrial wastewater is degreased before discharging. Membrane filtration is generally preferred for separation of oily wastewater as it does not require any specialised chemical knowledge, and also for its ease of processing, energy efficiency and low maintenance costs. In the present work, hybrid polyacrylonitrile (PAN) nanofibrous membranes were developed for oily wastewater filtration. Membrane surface modification changed nitrile groups on the surface into carboxylic groups, which improve membrane wettability. Subsequently, TiO2 nanoparticles were grafted onto the modified membranes to increase flux and permeability. Following alkaline treatment (NaOH, KOH) of the hydrolysed PAN nanofibres, membrane water permeability increased two- to eight-fold, while TiO2 grafted membrane permeability increase two- to thirteen-fold, compared to unmodified membranes. TiO2 grafted membranes also displayed amphiphilic properties and a decrease in water contact angle from 78.86° to 0°. Our results indicate that modified PAN nanofibrous membranes represent a promising alternative for oily wastewater filtration. Full article
(This article belongs to the Special Issue Polymer-Inorganic Composites for Special Applications)
Show Figures

Graphical abstract

15 pages, 3136 KiB  
Article
Electrospun Weak Anion-Exchange Fibrous Membranes for Protein Purification
by Shu-Ting Chen, S. Ranil Wickramasinghe and Xianghong Qian
Membranes 2020, 10(3), 39; https://doi.org/10.3390/membranes10030039 - 1 Mar 2020
Cited by 17 | Viewed by 4558
Abstract
Membrane based ion-exchange (IEX) and hydrophobic interaction chromatography (HIC) for protein purification is often used to remove impurities and aggregates operated under the flow-through mode. IEX and HIC are also limited by capacity and recovery when operated under bind-and-elute mode for the fractionation [...] Read more.
Membrane based ion-exchange (IEX) and hydrophobic interaction chromatography (HIC) for protein purification is often used to remove impurities and aggregates operated under the flow-through mode. IEX and HIC are also limited by capacity and recovery when operated under bind-and-elute mode for the fractionation of proteins. Electrospun nanofibrous membrane is characterized by its high surface area to volume ratio and high permeability. Here tertiary amine ligands are grafted onto the electrospun polysulfone (PSf) and polyacrylonitrile (PAN) membrane substrates using UV-initiated polymerization. Static and dynamic binding capacities for model protein bovine serum albumin (BSA) were determined under appropriate bind and elute buffer conditions. Static and dynamic binding capacities in the order of ~100 mg/mL were obtained for the functionalized electrospun PAN membranes whereas these values reached ~200 mg/mL for the functionalized electrospun PSf membranes. Protein recovery of over 96% was obtained for PAN-based membranes. However, it is only 56% for PSf-based membranes. Our work indicates that surface modification of electrospun membranes by grafting polymeric ligands can enhance protein adsorption due to increased surface area-to-volume ratio. Full article
(This article belongs to the Special Issue Membrane Chromatography for Biomolecules Purification)
Show Figures

Figure 1

Back to TopTop