Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = P. roxburghii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2241 KiB  
Article
Isolation of Lactic Acid Bacteria from Naturally Ensiled Rosa roxburghii Tratt Pomace and Evaluation of Their Ensiling Potential and Antioxidant Properties
by Xiong Pan, Yafei Zhang, Ningbo Yue, Ke Yu, Lang Zhou, Lijuan Ge, Faju Chen, Juan Yang, Qiji Li, Tingfei Deng and Xiaosheng Yang
Foods 2025, 14(8), 1329; https://doi.org/10.3390/foods14081329 - 11 Apr 2025
Viewed by 683
Abstract
This study isolated five acid-producing strains (XQ1 and YZ1–YZ4) from naturally fermented pomace of Rosa roxburghii Tratt (RRT) in Guizhou’s karst region. Genetic and phenotypic analyses identified XQ1, YZ2, and YZ4 as Lactobacillus [...] Read more.
This study isolated five acid-producing strains (XQ1 and YZ1–YZ4) from naturally fermented pomace of Rosa roxburghii Tratt (RRT) in Guizhou’s karst region. Genetic and phenotypic analyses identified XQ1, YZ2, and YZ4 as Lactobacillus plantarum (L. plantarum), YZ3 as Weissella cibaria, and YZ1 as Bacillus licheniformis. A comparative evaluation with commercial strain AC revealed that XQ1, YZ2, and YZ4 exhibited superior acidification (reaching the stationary phase at 40 h) and tolerance to acidic conditions (pH 3.0), ethanol (6% v/v), bile salts (0.3%), and osmotic stress (6.5% NaCl), along with broad-spectrum antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Shigella dysenteriae, and Pseudomonas aeruginosa. Their cell-free supernatants (CFSs) showed comparable superoxide dismutase activity and total antioxidant capacity (2.54–2.66 FeSO4·7H2O eq mmol/L) to AC (2.68), with DPPH radical scavenging exceeding 50%. YZ3 displayed weaker acid production, tolerance, and limited antimicrobial effects. Safety assessments confirmed non-hemolytic activity and antibiotic susceptibility. In conclusion, the L. plantarum strains XQ1, YZ2, and YZ4 demonstrated strong ensiling potential and remarkable probiotic properties, establishing them as promising indigenous microbial resources for the preservation of RRT pomace and other food products. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 2455 KiB  
Article
Species Diversity, Biomass Production and Carbon Sequestration Potential in the Protected Area of Uttarakhand, India
by Geetanjali Upadhyay, Lalit M. Tewari, Ashish Tewari, Naveen Chandra Pandey, Sheetal Koranga, Zishan Ahmad Wani, Geeta Tewari and Ravi K. Chaturvedi
Plants 2025, 14(2), 291; https://doi.org/10.3390/plants14020291 - 20 Jan 2025
Cited by 1 | Viewed by 1683
Abstract
Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar [...] Read more.
Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities. The study identified 271 vascular plants from 208 genera and 74 families. A notable positive correlation (r2 = 0.085, p < 0.05) was observed between total tree density and total tree basal area (TBA), shrub density (r2 = 0.09), tree diversity (D) (r2 = 0.58), shrub diversity (r2 = 0.81), and tree species richness (SR) (r2 = 0.96). Conversely, a negative correlation was found with the concentration of tree dominance (CD) (r2 = 0.43). The Quercus leucotrichophora, Rhododendron arboreum and Quercus floribunda (QL-RA-QF) community(higher altitudinal zone) exhibited the highest tree biomass (568.8 Mg ha−1), while the (Pinus roxburghii and Quercus leucotrichophora) PR-QL (N) community (lower altitudinal zone) in the north aspect showed the lowest (265.7 Mg ha−1). Carbon sequestration was highest in the Quercus leucotrichophora, Quercus floribunda and Rhododendron arboreum (QL-QF-RA) (higher altitudinal zone) community (7.48 Mg ha−1 yr−1) and lowest in the PR-QL (S) (middle altitudinal zone) community in the south aspect (5.5 Mg ha−1 yr−1). The relationships between carbon stock and various functional parameters such as tree density, total basal area of tree and diversity of tree showed significant positive correlations. The findings of the study revealed significant variations in the structural attributes of trees, shrubs and herbs across different forest stands along altitudinal gradients. This current study’s results highlighted the significance of wildlife sanctuaries, which not only aid in wildlife preservation but also provide compelling evidence supporting forest management practices that promote the planting of multiple vegetation layers in landscape restoration as a means to enhance biodiversity and increase resilience to climate change. Further, comprehending the carbon storage mechanisms of these forests will be critical for developing environmental management strategies aimed at alleviating the impacts of climate change in the years to come. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Graphical abstract

15 pages, 5320 KiB  
Article
Insecticidal and Repellent Activity of Essential Oils from Seven Different Plant Species against Tribolium castaneum (Coleoptera: Tenebrionidae)
by Misha Khalil, Mishal Khizar, Dalal Suleiman Alshaya, Asifa Hameed, Noor Muhammad, Muhammad Binyameen, Muhammad Azeem, Mussurat Hussain, Qaisar Abbas, Kotb A. Attia and Tawaf Ali Shah
Insects 2024, 15(10), 755; https://doi.org/10.3390/insects15100755 - 29 Sep 2024
Cited by 1 | Viewed by 2233
Abstract
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is the most destructive pest of stored grain commodities. To control the attack of this insect pest, it is important to develop non-hazardous alternatives to replace fumigants. This study examined the fumigant toxicity and repellent activity of seven [...] Read more.
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is the most destructive pest of stored grain commodities. To control the attack of this insect pest, it is important to develop non-hazardous alternatives to replace fumigants. This study examined the fumigant toxicity and repellent activity of seven essential oils (Chinopodium ambrosiodes, Pinus roxburghii, Zanthoxylum armatum, Lepidium sativum, Azadirachta indica, Baccharis teindalensis, and Origanum majorana) against adult T. castaneum under controlled laboratory conditions. The fumigant toxicity and repellent activities of essential oils were tested using five different doses (62.5, 125, 250, 500, and 1000 µg) in vapour-phase fumigation and four-arm olfactometer bioassays, respectively. In vapor-phase fumigation bioassays, mortality data were recorded after 24, 48, and 72 h. The results showed that C. ambrosiodes and P. roxburghii essential oils are potential fumigants against adult T. castaneum. In repellency bioassays, a one-week-old adult population of T. castaneum was used to test the repellency potential of the essential oils. The results indicated that C. ambrosiodes and P. roxburghii had significant repellency potential against T. castaneum. Overall, we conclude that these essential oils have strong repellent and fumigant properties and can be used as potential repellent compounds to deter the insects. Full article
Show Figures

Figure 1

23 pages, 1570 KiB  
Article
Dynamic Changes of Active Components and Volatile Organic Compounds in Rosa roxburghii Fruit during the Process of Maturity
by Su Xu, Junyi Deng, Siyao Wu, Qiang Fei, Dong Lin, Haijiang Chen, Guangcan Tao, Lingshuai Meng, Yan Hu and Fengwei Ma
Foods 2024, 13(18), 2893; https://doi.org/10.3390/foods13182893 - 12 Sep 2024
Cited by 4 | Viewed by 1495
Abstract
Rosa roxburghii (R. roxburghii), native to the southwest provinces of China, is a fruit crop of important economic value in Guizhou Province. However, the changes in fruit quality and flavor during R. roxburghii fruit ripening have remained unknown. Here, this study investigated [...] Read more.
Rosa roxburghii (R. roxburghii), native to the southwest provinces of China, is a fruit crop of important economic value in Guizhou Province. However, the changes in fruit quality and flavor during R. roxburghii fruit ripening have remained unknown. Here, this study investigated the changes of seven active components and volatile organic compounds (VOCs) during the ripening of the R. roxburghii fruit at five different ripening stages including 45, 65, 75, 90, and 105 days after anthesis. The results indicated that during the ripening process, the levels of total acid, vitamin C, and soluble sugar significantly increased (p < 0.05), while the levels of total flavonoids, superoxide dismutase (SOD), and soluble tannin significantly decreased (p < 0.05). Additionally, the content of total phenol exhibited a trend of first decreasing significantly and then increasing significantly (p < 0.05). A total of 145 VOCs were detected by HS-SPME-GC-MS at five mature stages, primarily consisting of aldehydes, alcohols, esters, and alkenes. As R. roxburghii matured, both the diversity and total quantity of VOCs in the fruit increased, with a notable rise in the contents of acids, ketones, and alkenes. By calculating the ROAV values of these VOCs, 53 key substances were identified, which included aromas such as fruit, citrus, green, caramel, grass, flower, sweet, soap, wood, and fat notes. The aromas of citrus, caramel, sweet, and wood were predominantly concentrated in the later stages of R. roxburghii fruit ripening. Cluster heatmap analysis revealed distinct distribution patterns of VOCs across five different maturity stages, serving as characteristic chemical fingerprints for each stage. Notably, stages IV and V were primarily characterized by a dominance of alkenes. OPLS-DA analysis categorized the ripening process of R. roxburghii fruit into three segments: the first segment encompassed the initial three stages (I, II, and III), the second segment corresponded to the fourth stage (IV), and the third segment pertained to the fifth stage (V). Following the variable importance in projection (VIP) > 1 criterion, a total of 30 key differential VOCs were identified across the five stages, predominantly comprising ester compounds, which significantly influenced the aroma profiles of R. roxburghii fruit. By integrating the VIP > 1 and ROAV > 1 criteria, 21 differential VOCs were further identified as key contributors to the aroma changes in R. roxburghii fruit during the ripening process. This study provided data on the changes in quality and aroma of R. roxburghii fruit during ripening and laid the foundation for the investigation of the mechanism of compound accumulation during ripening. Full article
Show Figures

Figure 1

17 pages, 4730 KiB  
Article
Stoichiometric Coupling of C, N, P, and K in the Litter and Soil of Rosa roxburghii Tratt Woodlands across Rocky Desertification Grades and Seasons
by Mingjun Li, Mingfeng Du, Huajiang Chen, Yan Shi, Dan Yao and Qiusi Shi
Forests 2024, 15(8), 1415; https://doi.org/10.3390/f15081415 - 13 Aug 2024
Viewed by 1101
Abstract
The purpose of this study was to explore the inherent links between elemental cycling in Rosa roxburghii Tratt litter and soil, as well as their coupled relationships, within barren soil environments typical of karst rocky desertification regions in Guizhou Province. Ecological stoichiometric methods [...] Read more.
The purpose of this study was to explore the inherent links between elemental cycling in Rosa roxburghii Tratt litter and soil, as well as their coupled relationships, within barren soil environments typical of karst rocky desertification regions in Guizhou Province. Ecological stoichiometric methods were used to systematically analyze the nutrient concentrations of C, N, P, and K and their stoichiometry in the litter and soil of Rosa roxburghii, with a focus on the impacts of seasonal variations and rocky desertification regions. High C and K levels and low N and P levels are observed in the litter, whereas the soil has lower concentrations of C, N, P, and K, with nutrient replenishment priorities of N > P > K > C. Strong positive correlations are found among the C/N, C/P, and N/K stoichiometric ratios in both the litter and the soil. Furthermore, nutrient concentrations and stoichiometric ratios vary significantly by season. Seasonal variations influence nutrient concentrations, with notable increases in litter P and K levels and in soil N and P levels in September compared with March. Seasonal variations influence the stoichiometric ratios of C/N, C/P, and N/K in litter and soil, contributing to elemental balance and ecosystem stability. Moreover, significant variations in nutrient contents and stoichiometric ratios are observed across distinct rocky desertification grades. Nonrocky desertified areas present elevated P and K contents in litter, whereas light desertified areas present increased C and N concentrations. Moderately desertified areas presented increased soil P and K concentrations, whereas severely desertified areas presented the highest N levels. These discernible trends in nutrient profiles highlight the synergistic impacts of soil nutrient inadequacy and plant utilization strategies. These findings contribute to a better understanding of element cycling mechanisms in Rosa roxburghii woodland ecosystems, offering valuable information for sustainable forest management practices. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

23 pages, 13195 KiB  
Article
Association of Carbon Pool with Vegetation Composition along the Elevation Gradients in Subtropical Forests in Pakistan
by Inam Khan, Umer Hayat, Gao Lushuang, Faiza Khan, He Xinyi and Wu Shufan
Forests 2024, 15(8), 1395; https://doi.org/10.3390/f15081395 - 10 Aug 2024
Cited by 1 | Viewed by 1294
Abstract
As the most important way to mitigate climate change, forest carbon storage has been the subject of extensive research. A comprehensive study was carried out to investigate the influence of elevation gradients and diameter classes on the forest growth, composition, diversity, and carbon [...] Read more.
As the most important way to mitigate climate change, forest carbon storage has been the subject of extensive research. A comprehensive study was carried out to investigate the influence of elevation gradients and diameter classes on the forest growth, composition, diversity, and carbon pools of the Bagh Drush Khel Forest area. Research revealed that elevation gradients significantly influenced the composition, diversity, and carbon pools in forests. At lower elevations, Eucalyptus camaldulensis was the dominant species, with Olea ferruginea as a co-dominant species, whereas at higher elevations, Pinus roxburghii was the dominant species with Quercus incana as a co-dominant species. Regeneration was higher at higher elevations with the maximum number of saplings and seedlings of P. roxburghii. Species diversity association with elevation was negative (R2 = −0.44; p < 0.05—Shannon Index). Soil organic carbon (SOC association with elevation was non-significant while positive with DBH classes (R2 = 0.37; p < 0.05). Overall, carbon pool association with elevation and diameter at breast height (DBH) were negative (R2 = −0.73; p < 0.05) and (R2 = −0.45; p < 0.05). Litter biomass correlated positively with elevation (R2 = 0.25; p < 0.05) and DBH (R2 = 0.11; p < 0.05), while deadwood biomass correlated negatively with elevation gradients (R2 = −0.25; p < 0.05), and no effect was observed for DBH classes. The highest carbon stock (845.89 t C/ha) was calculated at low elevations, which decreased to (516.27 t C/ha) at high elevations. The overall carbon stock calculated was (2016.41 t C/ha) respectively. A total of six tree species were found at the study site. Future research is essential for forest health monitoring and understanding fine-scale impacts. This study offers a methodological framework for similar investigations in unexplored yet potentially significant forest regions worldwide. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 3175 KiB  
Article
Purification, Characterization, and Anti-Inflammatory Potential of Free and Bound Polyphenols Extracted from Rosa roxburghii Tratt Pomace
by Chao Li, Hengyi Li, Xiong Fu, Qiang Huang and Yinghua Li
Foods 2024, 13(13), 2044; https://doi.org/10.3390/foods13132044 - 27 Jun 2024
Cited by 5 | Viewed by 1818
Abstract
Rosa roxburghii Tratt pomace (RRTP), an underutilized byproduct, is rich in polyphenol compounds. This study aimed to further explore the purification, characterization, anti-inflammatory activities, and underlying molecular mechanisms of free polyphenols (RRTP-FP) and bound polyphenols (RRTP-BP) from RRTP. The results indicated that AB-8 [...] Read more.
Rosa roxburghii Tratt pomace (RRTP), an underutilized byproduct, is rich in polyphenol compounds. This study aimed to further explore the purification, characterization, anti-inflammatory activities, and underlying molecular mechanisms of free polyphenols (RRTP-FP) and bound polyphenols (RRTP-BP) from RRTP. The results indicated that AB-8 macroporous resin emerged as the preferred choice for subsequent separation and purification. The purities of purified RRTP-FP (P-RRTP-FP) and purified RRTP-BP (P-RRTP-BP) increased by 103.34% and 66.01%, respectively. Quantitative analysis identified epigallocatechin, epicatechin, and ellagic acid as the main phenolic compounds in P-RRTP-FP. In P-RRTP-BP, the primary phenolic compounds were ellagic acid, epicatechin, and gallic acid. In vitro antioxidant assays demonstrated the superior DPPH and ABTS radical scavenging activities of P-RRTP-FP and P-RRTP-BP compared to vitamin C. Treatment with P-RRTP-FP and P-RRTP-BP reduced nitric oxide (NO) and reactive oxygen species (ROS) production, mitigated the decline in cellular membrane potential, and significantly downregulated the mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Additionally, P-RRTP-FP and P-RRTP-BP inhibited the phosphorylation of pertinent proteins in the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. This finding suggests potential utility of RRTP-derived polyphenols as anti-inflammatory agents for managing severe inflammatory conditions. Full article
Show Figures

Figure 1

19 pages, 2052 KiB  
Article
Comparison of Planted Pine versus Natural Mix Forests in Nepal
by Hari Prasad Pandey, Tek Narayan Maraseni and Shila Pokhrel
Forests 2024, 15(6), 1070; https://doi.org/10.3390/f15061070 - 20 Jun 2024
Cited by 2 | Viewed by 2061
Abstract
This study aimed to compare the socio-environmental benefits of one of the most widely planted forest species, i.e., Pinus roxburghii (Sarg., hereafter ‘Pine’ or ‘Pinus’) with naturally regenerated mixed forests in two community forests of Nepal. By analyzing tree rings, we [...] Read more.
This study aimed to compare the socio-environmental benefits of one of the most widely planted forest species, i.e., Pinus roxburghii (Sarg., hereafter ‘Pine’ or ‘Pinus’) with naturally regenerated mixed forests in two community forests of Nepal. By analyzing tree rings, we estimate biomass production, carbon accumulation, and growth enhancement in both forest types using regression models, offering insights into sustainable forest management. Pinus forests exhibit instant social benefits through direct economic conversion and a higher rate of carbon sequestration. However, the lack of perpetuated production, due to unimodal stand structures, necessitates anthropogenic interventions for long-term sustainability. Challenges such as the absence of natural regeneration, frequent fires, limited undergrowth, limited species diversity, and likely soil erosion hinder long-term sustainability in Pinus forests. In contrast, natural regenerated mixed forests offer slow carbon sequestration with less opportunity for immediate economic conversion, yet they maintain a proportional age-class distribution and experience minimal fire incidence, abundant regeneration, higher biodiversity, and lower regeneration costs. Although no abrupt environmental disasters were observed through the dendrochronological assessment, a significant positive correlation (p < 0.05) was found between age and girth at breast height, biomass, and volume of the forests. This study underscores the crucial role of human intervention beyond conventional management focusing on the protection motive to production-oriented forests in optimizing the socio-economic and environmental benefits of both forest types in the changing socio-environmental challenges through informed management planning. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 5732 KiB  
Article
Combined Metabolite and Transcriptomic Profiling Unveil a Potential Gene Network Involved in the Triterpenoid Metabolism of Rose roxburghii
by Liangqun Li, Mei Peng, Yanfang Yan, Tingfei Deng, Qiancheng Liang, Xian Tao, Haodong Li, Juan Yang, Guandi He, Sanwei Yang, Xiaojun Pu and Xiaosheng Yang
Int. J. Mol. Sci. 2024, 25(10), 5517; https://doi.org/10.3390/ijms25105517 - 18 May 2024
Viewed by 1535
Abstract
Rose roxburghii, a horticulturally significant species within the Rosa genus of the Rosaceae family, is renowned for its abundance of secondary metabolites and ascorbate, earning it the title ‘king of vitamin C’. Despite this recognition, the mechanisms underlying the biosynthesis and regulation [...] Read more.
Rose roxburghii, a horticulturally significant species within the Rosa genus of the Rosaceae family, is renowned for its abundance of secondary metabolites and ascorbate, earning it the title ‘king of vitamin C’. Despite this recognition, the mechanisms underlying the biosynthesis and regulation of triterpenoid compounds in R. roxburghii remain largely unresolved. In this study, we conducted high-performance liquid chromatography profiling across various organs of R. roxburghii, including fruit, root, stem, and leaves, revealing distinct distributions of triterpenoid compounds among different plant parts. Notably, the fruit exhibited the highest total triterpenoid content, followed by root and stem, with leaf containing the lowest levels, with leaf containing the lowest levels. Transcriptomic analysis unveiled preferential expression of members from the cytochrome P450 (CYP) and glycosyltransferase (UGT) families, likely contributing to the higher accumulation of both ascorbate and triterpenoid compounds in the fruits of R. roxburghii compared to other tissues of R. roxburghii. Transcriptomic analysis unveiled a potential gene network implicated in the biosynthesis of both ascorbate and triterpenoid compounds in R. roxburghii. These findings not only deepen our understanding of the metabolic pathways in this species but also have implications for the design of functional foods enriched with ascorbate and triterpenoids in R. roxburghii. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

14 pages, 6288 KiB  
Article
Phytochemical Profile and Bioactivity of Bound Polyphenols Released from Rosa roxburghii Fruit Pomace Dietary Fiber by Solid-State Fermentation with Aspergillus niger
by Qing Chen, Juan Su, Yue Zhang, Chao Li and Siming Zhu
Molecules 2024, 29(8), 1689; https://doi.org/10.3390/molecules29081689 - 9 Apr 2024
Cited by 7 | Viewed by 1709
Abstract
This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released [...] Read more.
This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released from RPDF through SSF was 17.22 mg GAE/g DW, which was significantly higher than that achieved through alkaline hydrolysis extraction (5.33 mg GAE/g DW). The BPs released through SSF exhibited superior antioxidant and α-glucosidase inhibitory activities compared to that released through alkaline hydrolysis. Chemical composition analysis revealed that SSF released several main compounds, including ellagic acid, epigallocatechin, p-hydroxybenzoic acid, quercetin, and 3,4-dihydroxyphenylpropionic acid. Mechanism analysis indicated that the disruption of tight structure, chemical bonds, and hemicellulose was crucial for the release of BPs from RPDF. This study provides valuable information on the potential application of SSF for the efficient release of BPs from RPDF, contributing to the utilization of RPDF as a functional food ingredient. Full article
Show Figures

Graphical abstract

19 pages, 3752 KiB  
Article
Selenium-Induced Enhancement in Growth and Rhizosphere Soil Methane Oxidation of Prickly Pear
by Yiming Wang, Xuechong Xie, Huijie Chen, Kai Zhang, Benliang Zhao and Rongliang Qiu
Plants 2024, 13(6), 749; https://doi.org/10.3390/plants13060749 - 7 Mar 2024
Viewed by 1421
Abstract
As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, [...] Read more.
As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, Se2.0 mg/kg, and Se10 mg/kg) and a control (Se0 mg/kg) in a two-month pot experiment. The results showed that the height, total biomass, root biomass, and leaf biomass of prickly pear were significantly increased in the Se0.6 and Se2.0 treatments. The root-to-shoot ratio of prickly pear reached a maximum value in the Se2 treatment. The leaf carotenoid contents significantly increased in the three treatments. Antioxidant activities significantly increased in the Se0.6 and Se2 treatments. Low Se contents (0.6, 2 mg/kg) promoted root growth, including dry weight, length, surface area, volume, and root activity. There was a significant linear relationship between root and aboveground Se contents. The Se translocation factor increased as the soil Se content increased, ranging from 0.173 to 0.288. The application of Se can improve the state of rhizosphere soil’s organic C and soil nutrients (N, P, and K). Se significantly promoted the methane oxidation rate in rhizosphere soils, and the Se10 treatment showed the highest methane oxidation rate. The soil Se gradients led to differentiation in the growth, rhizosphere soil properties, and methane oxidation capacity of prickly pear. The root Se content and Se translocation factor were significantly positively correlated with the methane oxidation rate. Prickly pear can accumulate Se when grown in Se-enriched soil. The 2 mg/kg Se soil treatment enhanced growth and methane oxidation in the rhizosphere soil of prickly pear. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Graphical abstract

15 pages, 4488 KiB  
Article
Transcriptomics Reveals the Mechanism of Rosa roxburghii Tratt Ellagitannin in Improving Hepatic Lipid Metabolism Disorder in db/db Mice
by Yunyun Tan, Shuming Tan, Tingyuan Ren, Lu Yu, Pei Li, Guofang Xie, Chao Chen, Meng Yuan, Qing Xu and Zhen Chen
Nutrients 2023, 15(19), 4187; https://doi.org/10.3390/nu15194187 - 28 Sep 2023
Cited by 2 | Viewed by 1968
Abstract
A complex metabolic disorder, type 2 diabetes, was investigated to explore the impact of ellagitannin, derived from Rosa roxburghii Tratt (RTT), on liver lipid metabolism disorders in db/db mice. The findings demonstrated that both RTT ellagitannin (C1) and RTT ellagic acid (C4) considerably [...] Read more.
A complex metabolic disorder, type 2 diabetes, was investigated to explore the impact of ellagitannin, derived from Rosa roxburghii Tratt (RTT), on liver lipid metabolism disorders in db/db mice. The findings demonstrated that both RTT ellagitannin (C1) and RTT ellagic acid (C4) considerably decelerated body mass gain in db/db mice, significantly decreased fasting blood glucose (FBG) levels, and mitigated the aggregation of hepatic lipid droplets. At LDL-C levels, C1 performed substantially better than the C4 group, exhibiting no significant difference compared to the P (positive control) group. An RNA-seq analysis further disclosed that 1245 differentially expressed genes were identified in the livers of experimental mice following the C1 intervention. The GO and KEGG enrichment analysis revealed that, under ellagitannin intervention, numerous differentially expressed genes were significantly enriched in fatty acid metabolic processes, the PPAR signaling pathway, fatty acid degradation, fatty acid synthesis, and other lipid metabolism-related pathways. The qRT-PCR and Western blot analysis results indicated that RTT ellagitannin notably upregulated the gene and protein expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ). In contrast, it downregulated the gene and protein expression levels of sterol regulatory element-binding protein (SREBP), recombinant fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC). Therefore, RTT ellagitannin can activate the PPAR signaling pathway, inhibit fatty acid uptake and de novo synthesis, and ameliorate hepatic lipid metabolism disorder in db/db mice, thus potentially aiding in maintaining lipid homeostasis in type 2 diabetes. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

32 pages, 13938 KiB  
Article
Rust Fungi on Medicinal Plants in Guizhou Province with Descriptions of Three New Species
by Qianzhen Wu, Minghui He, Tiezhi Liu, Hongmin Hu, Lili Liu, Peng Zhao and Qirui Li
J. Fungi 2023, 9(9), 953; https://doi.org/10.3390/jof9090953 - 21 Sep 2023
Cited by 8 | Viewed by 3333 | Correction
Abstract
During the research on rust fungi in medicinal plants of Guizhou Province, China, a total of 9 rust fungal species were introduced, including 3 new species (Hamaspora rubi-alceifolii, Nyssopsora altissima, and Phragmidium cymosum), as well as 6 known species [...] Read more.
During the research on rust fungi in medicinal plants of Guizhou Province, China, a total of 9 rust fungal species were introduced, including 3 new species (Hamaspora rubi-alceifolii, Nyssopsora altissima, and Phragmidium cymosum), as well as 6 known species (Melampsora laricis-populina, Melampsoridium carpini, Neophysopella ampelopsidis, Nyssopsora koelrezidis, P. rosae-roxburghii, P. tormentillae). Notably, N. ampelopsidis and P. tormentillae were discovered for the first time in China, while M. laricis-populina, Me. carpini, and Ny. koelreuteriae were first documented in Guizhou Province. Morphological observation and molecular phylogenetic analyses of these species with similar taxa were compared to confirm their taxonomic identities, and taxonomic descriptions, illustrations and host species of those rust fungi on medicinal plant are provided. Full article
(This article belongs to the Special Issue Rust Fungi)
Show Figures

Figure 1

19 pages, 5383 KiB  
Article
Effect and Correlation of Rosa roxburghii Tratt Juice Fermented by Lactobacillus paracasei SR10-1 on Oxidative Stress and Gut Microflora Dysbiosis in Streptozotocin (STZ)-Induced Type 2 Diabetes Mellitus Mice
by Maoyang Wei, Dandan Feng, Yulong Zhang, Yunyang Zuo, Jiuchang Li, Ling Wang and Ping Hu
Foods 2023, 12(17), 3233; https://doi.org/10.3390/foods12173233 - 28 Aug 2023
Cited by 6 | Viewed by 2267
Abstract
Rosa roxburghii Tratt (RRT) is a kind of excellent fruit, with many healthy functions. RRT fruit dietary interventions have demonstrated a remarkable potential to prevent type 2 diabetes mellitus (T2DM). In the present study, the effects of Lactobacillus paracasei SR10-1 fermented RRT juice [...] Read more.
Rosa roxburghii Tratt (RRT) is a kind of excellent fruit, with many healthy functions. RRT fruit dietary interventions have demonstrated a remarkable potential to prevent type 2 diabetes mellitus (T2DM). In the present study, the effects of Lactobacillus paracasei SR10-1 fermented RRT juice (FRRT) on the oxidative stress, short-chain fatty acids (SCFAs), and gut microbiota in T2DM mice induced by high-sugar and high-fat diets and streptozotocin (STZ) were investigated using GC–MS and 16S rRNA gene sequencing. The results showed that medium-dose FRRT intervention resulted in significantly decreased levels of TG, TC, LDL-C, BUN, creatinine, and MDA (p < 0.05) and significantly increased levels of HDL-C, GSH-PX, CAT, and SOD of T2DM mice (p < 0.05). The levels of acetic acid, propionic acid, butyric acid, and isovaleric acid were significantly increased, by 142.28%, 428.59%, 1968.66%, and 81.04% (p < 0.05), respectively. The relative abundance of Firmicutes, Lachnospiraceae, Verrucomicrobiaceae, Akkermansia, and Allobaculum was significantly increased (p < 0.05), and the relative abundance of Proteobacteria, Enterobacteriaceae, Veillonellaceae, Phascolarctobacterium, and Klebsiella was significantly decreased (p < 0.05). Correlation analysis showed that Phascolarctobacterium was significantly negatively correlated with weight (p < 0.05), SOD (p < 0.01), CAT (p < 0.05), and T-AOC (p < 0.05). Akkermansia was significantly negatively correlated with weight (p < 0.05). Conclusively, medium-dose FRRT potentially improved T2DM by reversing dyslipidemia, decreasing oxidative stress, increasing SCFAs, and regulating gut microbiota composition. The medium-dose FRRT may serve as a novel T2DM dietary strategy to prevent T2DM. Full article
Show Figures

Graphical abstract

12 pages, 6859 KiB  
Article
Molecular and Functional Analysis of Trehalose-6-Phosphate Synthase Genes Enhancing Salt Tolerance in Anoectochilus roxburghii (Wall.) Lindl.
by Lin Yang, Luwei Dai, Hangying Zhang, Fuai Sun, Xuchong Tang, Wenqi Feng, Haoqiang Yu and Juncheng Zhang
Molecules 2023, 28(13), 5139; https://doi.org/10.3390/molecules28135139 - 30 Jun 2023
Cited by 4 | Viewed by 1928
Abstract
Trehalose is a reducing disaccharide, acting as a protectant against various environmental stresses in numerous organisms. In plants, trehalose-6-phosphate synthase (TPS) plays a crucial role in trehalose biosynthesis. Anoectochilus roxburghii (Wall.) Lindl. is a prominent species of the Anoectochilus genus, widely utilized as [...] Read more.
Trehalose is a reducing disaccharide, acting as a protectant against various environmental stresses in numerous organisms. In plants, trehalose-6-phosphate synthase (TPS) plays a crucial role in trehalose biosynthesis. Anoectochilus roxburghii (Wall.) Lindl. is a prominent species of the Anoectochilus genus, widely utilized as a health food. However, the functional analysis of TPS in this species has been limited. In this study, TPS genes were cloned from A. roxburghii. The ArTPS gene, with an open reading frame spanning 2850 bp, encodes 950 amino acids. Comparative and bioinformatics analysis revealed that the homology was presented between the ArTPS protein and TPSs from other plant species. The ORF sequence was utilized to construct a prokaryotic expression vector, Pet28a-ArTPS, which was then transformed into Escherichia coli. The resulting transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mmol/L NaCl. Quantitative RT-PCR analysis demonstrated that the expression of ArTPS genes responded to NaCl stress. The accumulation of G6P was upregulated, whereas the content of T6P exhibited an opposite expression trend. The glycometabolism products, including trehalose, exhibited notable changes under NaCl stress, although their variations may differ in response to stimulation. The content of kinsenoside, a characteristic product of A. roxburghii, was significantly upregulated under NaCl stress. These results suggest that the ArTPS genes function in response to NaCl stimulation and play a key role in polysaccharide and glycoside metabolism in Anoectochilus. This study provides new insights into the engineering modification of the health food A. roxburghii to enhance the medicinal activity of its ingredients. Full article
Show Figures

Figure 1

Back to TopTop