Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = OROV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1358 KiB  
Article
Persistence and Active Replication Status of Oropouche Virus in Different Body Sites: Longitudinal Analysis of a Traveler Infected with a Strain Spreading in Latin America
by Andrea Matucci, Elena Pomari, Antonio Mori, Silvia Accordini, Natasha Gianesini, Rebeca Passarelli Mantovani, Federico Giovanni Gobbi, Concetta Castilletti and Maria Rosaria Capobianchi
Viruses 2025, 17(6), 852; https://doi.org/10.3390/v17060852 - 16 Jun 2025
Viewed by 597
Abstract
An unprecedented outbreak of Oropouche virus (OROV) is occurring in the Americas, characterized by thousands of confirmed cases and a wide geographical spread, including areas outside the Amazon Basin. Little is known about this neglected arbovirus regarding its pathophysiological aspects and potentially different [...] Read more.
An unprecedented outbreak of Oropouche virus (OROV) is occurring in the Americas, characterized by thousands of confirmed cases and a wide geographical spread, including areas outside the Amazon Basin. Little is known about this neglected arbovirus regarding its pathophysiological aspects and potentially different transmission modes. This study describes the clinical course of a man who returned from a trip to Cuba and presented to our hospital 4 days after the onset of febrile symptoms. The patient was diagnosed with Oropouche fever and was followed for 177 days after the onset of symptoms. We performed a longitudinal investigation of the samples collected from several body sites (whole blood, serum, urine, and semen) with the aim of providing further insights into OROV infection dynamics, using the detection of antigenomic RNA as a marker of active viral replication. Clinical samples that were longitudinally collected over the course of OROV infection showed consistently higher amounts of antigenomic RNA compared to genomic RNA, even after viral clearance from serum. Moreover, our case study showed the persistence of OROV RNA in serum of less than 15 days from the onset of symptoms, as compared to up to one month in urine, three months in semen, and four months in whole blood. Our study suggests that Oropouche virus may persist in an actively replicating state in different body sites for long periods of time, with important implications for transmission dynamics. Furthermore, our results provide a diagnostic indication, suggesting that serum is inferior to both urine and whole blood as preferred diagnostic samples. Further studies are needed to determine the pathogenetic implications of these findings, as they have been derived from a single case and must be confirmed using a larger number of cases. Full article
(This article belongs to the Special Issue Bunyaviruses 2025)
Show Figures

Graphical abstract

20 pages, 5108 KiB  
Article
Case Series of Adverse Pregnancy Outcomes Associated with Oropouche Virus Infection
by Daniele Barbosa de Almeida Medeiros, Juarez Antônio Simões Quaresma, Raimunda do Socorro da Silva Azevedo, Ana Cecilia Ribeiro Cruz, Sandro Patroca da Silva, Arnaldo Jorge Martins Filho, Bruno Tardelli Diniz Nunes, Lucas Rafael Santana Pinheiro, Jorge Rodrigues de Sousa, Jannifer Oliveira Chiang, Lívia Carício Martins, Consuelo Silva Oliveira, Ivy Tissuya Essashika Prazeres, Daniele Feitas Henriques, Camille Ferreira Oliveira, Valéria Lima Carvalho, Clarice Neuenschwander Lins Morais, Bartolomeu Acioli-Santos, Keilla Maria Paze Silva, Diego Arruda Falcão, Mayara Matias de Oliveira Marques Costa, Eduardo Augusto Duque Bezerra, Ana Márcia Drechsler Rio, Neijla Cristina Vieira Cardoso, Juliana Carla Serafim da Silva, Simone Gurmão Ramos, Erika Cavalcante Maranhão, José Lancart de Lima, Pedro Fernando da Costa Vasconcelos, Bruno Issao Matos Ishigami and Lívia Medeiros Neves Cassebadd Show full author list remove Hide full author list
Viruses 2025, 17(6), 816; https://doi.org/10.3390/v17060816 - 5 Jun 2025
Viewed by 1232
Abstract
The Oropouche virus (OROV) is an arbovirus (Peribunyaviridae: Orthobunyavirus) that traditionally causes febrile outbreaks in Latin America’s Amazon region. Previously, OROV was not associated with severe pregnancy outcomes. During the 2022–2024 outbreak in Brazil, OROV expanded geographically, revealing links to adverse pregnancy outcomes. [...] Read more.
The Oropouche virus (OROV) is an arbovirus (Peribunyaviridae: Orthobunyavirus) that traditionally causes febrile outbreaks in Latin America’s Amazon region. Previously, OROV was not associated with severe pregnancy outcomes. During the 2022–2024 outbreak in Brazil, OROV expanded geographically, revealing links to adverse pregnancy outcomes. This study describes six cases with varied fetal outcomes, including miscarriage, antepartum, intrauterine fetal demise (IFD), and normal development, correlating with maternal symptoms but not symptom severity. Vertical transmission was confirmed by detecting OROV through RT-qPCR, ELISA, and immunohistochemistry in fetal tissues. Genome sequencing from an IFD case identified a novel reassortment pattern reported in the 2022–2024 outbreak. Severe encephalomalacia, meningoencephalitis, vascular compromise, and multi-organ damage were evident, underscoring the significant risk OROV poses to fetal development and emphasizing the need for further investigation. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

5 pages, 173 KiB  
Commentary
Oropouche Virus (OROV) and Breastfeeding Safety: Analysis of Related Orthobunyaviruses for Mother-Infant Vertical Transmission in Breast Milk
by David A. Schwartz, Creuza Rachel Vicente and Mija Ververs
Viruses 2025, 17(6), 738; https://doi.org/10.3390/v17060738 - 22 May 2025
Viewed by 1689
Abstract
The discovery that the Oropouche virus (OROV) can be transmitted vertically from an infected pregnant mother to the fetus, resulting in fetal and placental OROV infection, miscarriage, stillbirth, and congenital malformations including microcephaly, has emphasized its public health significance. Because of the importance [...] Read more.
The discovery that the Oropouche virus (OROV) can be transmitted vertically from an infected pregnant mother to the fetus, resulting in fetal and placental OROV infection, miscarriage, stillbirth, and congenital malformations including microcephaly, has emphasized its public health significance. Because of the importance of breastfeeding in those areas affected by the Oropouche fever outbreak, public health agencies have continued to encourage nursing among mothers who have had OROV infection or who reside or travel in endemic regions. However, the basis for this recommendation has not been stated. At the present time, there have been no reports of the OROV being transmitted from mothers having had Oropouche fever during pregnancy to their infants through breast milk. To further evaluate the potential risk of OROV transmission through breastfeeding, we have examined the peer-reviewed literature to determine if related Orthobunyavirus species infecting humans and animals are transmissible via breast milk. Bibliographic search engines, including PubMed, Scopus, and Google Scholar, were extensively reviewed using keywords, MeSH terms, and other sources cited in the articles examined. Studies investigating Orthobunyavirus species that infect humans and animals, including reassortant strains of OROV and viruses within the Simbu serogroup, were reviewed. We found that there have been no reported events of vertical transmission of any Orthobunyavirus through breast milk. Based on these results, we believe that the advantages of breastfeeding following maternal OROV infection outweigh any negligible risk for vertical transmission. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
26 pages, 16481 KiB  
Article
Systems Biology-Driven Discovery of Host-Targeted Therapeutics for Oropouche Virus: Integrating Network Pharmacology, Molecular Docking, and Drug Repurposing
by Pranab Dev Sharma, Abdulrahman Mohammed Alhudhaibi, Abdullah Al Noman, Emad M. Abdallah, Tarek H. Taha and Himanshu Sharma
Pharmaceuticals 2025, 18(5), 613; https://doi.org/10.3390/ph18050613 - 23 Apr 2025
Cited by 1 | Viewed by 1178
Abstract
Background: Oropouche virus (OROV), part of the Peribunyaviridae family, is an emerging pathogen causing Oropouche fever, a febrile illness endemic in South and Central America. Transmitted primarily through midge bites (Culicoides paraensis), OROV has no specific antiviral treatment or vaccine. This [...] Read more.
Background: Oropouche virus (OROV), part of the Peribunyaviridae family, is an emerging pathogen causing Oropouche fever, a febrile illness endemic in South and Central America. Transmitted primarily through midge bites (Culicoides paraensis), OROV has no specific antiviral treatment or vaccine. This study aims to identify host-targeted therapeutics against OROV using computational approaches, offering a potential strategy for sustainable antiviral drug discovery. Methods: Virus-associated host targets were identified using the OMIM and GeneCards databases. The Enrichr and DSigDB platforms were used for drug prediction, filtering compounds based on Lipinski’s rule for drug likeness. A protein–protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape 3.10.3 software. Four key host targets—IL10, FASLG, PTPRC, and FCGR3A—were prioritized based on their roles in immune modulation and OROV pathogenesis. Molecular docking simulations were performed using the PyRx software to evaluate the binding affinities of selected small-molecule inhibitors—Acetohexamide, Deptropine, Methotrexate, Retinoic Acid, and 3-Azido-3-deoxythymidine—against the identified targets. Results: The PPI network analysis highlighted immune-mediated pathways such as Fc-gamma receptor signaling, cytokine control, and T-cell receptor signaling as critical intervention points. Molecular docking revealed strong binding affinities between the selected compounds and the prioritized targets, suggesting their potential efficacy as host-targeting antiviral candidates. Acetohexamide and Deptropine showed strong binding to multiple targets, indicating broad-spectrum antiviral potential. Further in vitro and in vivo validations are needed to confirm these findings and translate them into clinically relevant treatments. Conclusions: This study highlights the potential of using computational approaches to identify host-targeted therapeutics for Oropouche virus (OROV). By targeting key host proteins involved in immune modulation—IL10, FASLG, PTPRC, and FCGR3A—the selected compounds, Acetohexamide and Deptropine, demonstrate strong binding affinities, suggesting their potential as broad-spectrum antiviral candidates. Further experimental validation is needed to confirm their efficacy and potential for clinical application, offering a promising strategy for sustainable antiviral drug discovery. Full article
(This article belongs to the Special Issue Computational Methods in Drug Development)
Show Figures

Graphical abstract

18 pages, 2106 KiB  
Article
Oropouche orthobunyavirus in Urban Mosquitoes: Vector Competence, Coinfection, and Immune System Activation in Aedes aegypti
by Silvana F. de Mendonça, Lívia V. R. Baldon, Yaovi M. H. Todjro, Bruno A. Marçal, Maria E. C. Rodrigues, Rafaela L. Moreira, Ellen C. Santos, Marcele N. Rocha, Isaque J. da S. de Faria, Bianca D. M. Silva, Thiago N. Pereira, Amanda C. de Freitas, Myrian M. Duarte, Felipe C. de M. Iani, Natália R. Guimarães, Talita E. R. Adelino, Marta Giovanetti, Luiz C. J. Alcantara, Álvaro G. A. Ferreira and Luciano A. Moreira
Viruses 2025, 17(4), 492; https://doi.org/10.3390/v17040492 - 28 Mar 2025
Cited by 1 | Viewed by 1173
Abstract
Oropouche orthobunyavirus (OROV) is an emerging public health concern due to its expanding geographic range and increasing case numbers. In Brazil, 13,785 cases were confirmed in 2024, with an additional 3680 reported by January 2025, according to the Ministry of Health. Initially restricted [...] Read more.
Oropouche orthobunyavirus (OROV) is an emerging public health concern due to its expanding geographic range and increasing case numbers. In Brazil, 13,785 cases were confirmed in 2024, with an additional 3680 reported by January 2025, according to the Ministry of Health. Initially restricted to the Amazon region, OROV has recently been detected in new areas, highlighting the need for enhanced surveillance and vector control strategies. While Culicoides paraensis is the primary vector, the potential role of other species in transmitting the currently circulating OROV strain in Brazil remains unclear. Here, we experimentally assessed the infectivity and dissemination of a recently isolated Oropouche orthobunyavirus (OROV) strain in two widespread mosquito species, Aedes aegypti and Culex quinquefasciatus, collected from diverse regions of Brazil. Our results demonstrated that both mosquito species were refractory to oral infection, suggesting that natural transmission through these vectors is unlikely. However, in artificial systemic infection, Ae. aegypti showed viral replication and immune system activation, indicating its potential to support OROV replication under specific conditions. Additionally, to assess the potential impact of coinfection, we investigated whether Chikungunya virus (CHIKV), an arbovirus that naturally infects Ae. aegypti, could facilitate OROV infection dynamics in this mosquito species. Our results suggest that coinfection does not promote OROV oral infection. Furthermore, we examined whether OROV systemic infection induced an immune response in Ae aegypti. We analyzed the major immune response pathways—RNAi, Toll, IMD, and JAK-STAT—and observed that the RNAi pathway was the most strongly activated in response to OROV infection in Ae. aegypti. These findings highlight the importance of ongoing surveillance and further studies on OROV evolution, vector adaptation, and transmission dynamics, particularly in urban settings where vector populations and viral interactions may facilitate new epidemiological scenarios. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

18 pages, 1778 KiB  
Review
A Comprehensive Review of the Neglected and Emerging Oropouche Virus
by Fengwei Bai, Prince M. D. Denyoh, Cassandra Urquhart, Sabin Shrestha and Donald A. Yee
Viruses 2025, 17(3), 439; https://doi.org/10.3390/v17030439 - 19 Mar 2025
Cited by 3 | Viewed by 2604
Abstract
Oropouche virus (OROV) is a neglected and emerging arbovirus that infects humans and animals in South and Central America. OROV is primarily transmitted to humans through the bites of infected midges and possibly some mosquitoes. It is the causative agent of Oropouche fever, [...] Read more.
Oropouche virus (OROV) is a neglected and emerging arbovirus that infects humans and animals in South and Central America. OROV is primarily transmitted to humans through the bites of infected midges and possibly some mosquitoes. It is the causative agent of Oropouche fever, which has high morbidity but low mortality rates in humans. The disease manifests in humans as high fever, headache, myalgia, arthralgia, photophobia, and, in some cases, meningitis and encephalitis. Additionally, a recent report suggests that OROV may cause fetal death, miscarriage, and microcephaly in newborns when women are infected during pregnancy, similar to the issues caused by the Zika virus (ZIKV), another mosquito-borne disease in the same regions. OROV was first reported in the mid-20th century in the Amazon basin. Since then, over 30 epidemics and more than 500,000 infection cases have been reported. The actual case numbers may be much higher due to frequent misdiagnosis, as OROV infection presents similar clinical symptoms to other co-circulating viruses, such as dengue virus (DENV), chikungunya virus (CHIKV), ZIKV, and West Nile virus (WNV). Due to climate change, increased travel, and urbanization, OROV infections have occurred at an increasing pace and have spread to new regions, with the potential to reach North America. According to the World Health Organization (WHO), over 10,000 cases were reported in 2024, including in areas where it was not previously detected. There is an urgent need to develop vaccines, antivirals, and specific diagnostic tools for OROV diseases. However, little is known about this surging virus, and no specific treatments or vaccines are available. In this article, we review the most recent progress in understanding virology, transmission, pathogenesis, diagnosis, host–vector dynamics, and antiviral vaccine development for OROV, and provide implications for future research directions. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

15 pages, 2173 KiB  
Case Report
Congenital Oropouche in Humans: Clinical Characterization of a Possible New Teratogenic Syndrome
by Bethânia de Freitas Rodrigues Ribeiro, André Rodrigues Façanha Barreto, André Pessoa, Raimunda do Socorro da Silva Azevedo, Flávia de Freitas Rodrigues, Bruna da Cruz Beyruth Borges, Natália Pimentel Moreno Mantilla, Davi Dantas Muniz, Jannifer Oliveira Chiang, Lucas Rosa Fraga, Fernanda Sales Luiz Vianna, Maria Teresa Vieira Sanseverino, Lilith Schuler Faccini, Fernanda Eduarda das Neves Martins, Rafael da Silva Azevedo, Lívia Carício Martins, Livia Medeiros Neves Casseb, Consuelo Silva Oliveira, Pedro Fernando da Costa Vasconcelos, Juarez Antônio Simões Quaresma, Alberto Mantovani Abeche, Vania de Mesquita Gadelha Prazeres, Lucia Andreia Nunes de Oliveira, Simone de Menezes Karam, Giulia Radin, Miguel Del Campo, Camila V. Ventura and Lavinia Schuler-Facciniadd Show full author list remove Hide full author list
Viruses 2025, 17(3), 397; https://doi.org/10.3390/v17030397 - 11 Mar 2025
Cited by 1 | Viewed by 1789
Abstract
Oropouche fever is caused by the Oropouche virus (OROV; Bunyaviridae, Orthobunyavirus), one of the most frequent arboviruses that infect humans in the Brazilian Amazon. This year, an OROV outbreak was identified in Brazil, and its vertical transmission was reported, which was associated with [...] Read more.
Oropouche fever is caused by the Oropouche virus (OROV; Bunyaviridae, Orthobunyavirus), one of the most frequent arboviruses that infect humans in the Brazilian Amazon. This year, an OROV outbreak was identified in Brazil, and its vertical transmission was reported, which was associated with fetal death and microcephaly. We describe the clinical manifestations identified in three cases of congenital OROV infection with confirmed serology (OROV-IgM) in the mother-newborn binomial. One of the newborns died, and post-mortem molecular analysis using real-time RT-qPCR identified the OROV genome in several tissues. All three newborns were born in the Amazon region in Brazil, and the mothers reported fever, rash, headache, myalgia, and/or retro-orbital pain during pregnancy. The newborns presented with severe microcephaly secondary to brain damage and arthrogryposis, suggestive of an embryo/fetal disruptive process at birth. Brain and spinal images identified overlapping sutures, cerebral atrophy, brain cysts, thinning of the spinal cord, corpus callosum, and posterior fossa abnormalities. Fundoscopic findings included macular chorioretinal scars, focal pigment mottling, and vascular attenuation. The clinical presentation of vertical OROV infection resembled congenital Zika syndrome to some extent but presents some distinctive features on brain imaging and in several aspects of its neurological presentation. A recognizable syndrome with severe brain damage, neurological alterations, arthrogryposis, and fundoscopic abnormalities can be associated with in utero OROV infection. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
Show Figures

Figure 1

17 pages, 9975 KiB  
Article
Oropouche Virus: Isolation and Ultrastructural Characterization from a Human Case Sample from Rio de Janeiro, Brazil, Using an In Vitro System
by Ana Luisa Teixeira de Almeida, Igor Pinto Silva da Costa, Maycon Douglas do Nascimento Garcia, Marcos Alexandre Nunes da Silva, Yasmim Gonçalves Lazzaro, Ana Maria Bispo de Filippis, Fernanda de Bruycker Nogueira and Debora Ferreira Barreto-Vieira
Viruses 2025, 17(3), 373; https://doi.org/10.3390/v17030373 - 5 Mar 2025
Viewed by 1540
Abstract
The Oropouche virus (OROV) is a segmented negative-sense RNA arbovirus member of the Peribunyaviridae family, associated with recurring epidemics of Oropouche fever in Central and South America. Since its identification in 1955, OROV has been responsible for outbreaks in both rural and urban [...] Read more.
The Oropouche virus (OROV) is a segmented negative-sense RNA arbovirus member of the Peribunyaviridae family, associated with recurring epidemics of Oropouche fever in Central and South America. Since its identification in 1955, OROV has been responsible for outbreaks in both rural and urban areas, with transmission involving sylvatic and urban cycles. This study focuses on the characterization of an OROV isolate from a human clinical sample collected in the state of Rio de Janeiro, a non-endemic region in Brazil, highlighting ultrastructural and morphological aspects of the viral replicative cycle in Vero cells. OROV was isolated in Vero cell monolayers which, following viral inoculation, exhibited marked cytopathic effects (CPEs), mainly represented by changes in cell morphology, including membrane protrusions and vacuolization, as well as cell death. Studies by transmission electron microscopy (TEM) revealed significant ultrastructural changes, such as apoptosis, intense remodeling of membrane-bound organelles and signs of rough endoplasmic reticulum and mitochondrial stress. Additionally, the formation of specialized cytoplasmic vacuoles and intra- and extracellular vesicles emphasized trafficking and intercellular communication as essential mechanisms in OROV infection. RT-qPCR studies confirmed the production of viral progeny in high titers, corroborating the efficiency of this experimental model. These findings contribute to a better understanding of the cytopathogenic mechanisms of OROV infection and the contribution of cellular alterations in OROV morphogenesis. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

8 pages, 219 KiB  
Editorial
Oropouche Virus (OROV): Expanding Threats, Shifting Patterns, and the Urgent Need for Collaborative Research in Latin America
by André Ricardo Ribas Freitas, David A. Schwartz, Antônio Silva Lima Neto, Rosana Rodrigues, Luciano Pamplona Goes Cavalcanti and Pedro María Alarcón-Elbal
Viruses 2025, 17(3), 353; https://doi.org/10.3390/v17030353 - 28 Feb 2025
Cited by 5 | Viewed by 1255
Abstract
Recent outbreaks of Oropouche virus (OROV) in Latin America demonstrate shifting epidemiological trends, with increasing clinical severity and geographic expansion driven by environmental and anthropogenic factors, many of which remain uncertain. Viral evolution with new reassortant strains, changes in vectors, environmental degradation, and [...] Read more.
Recent outbreaks of Oropouche virus (OROV) in Latin America demonstrate shifting epidemiological trends, with increasing clinical severity and geographic expansion driven by environmental and anthropogenic factors, many of which remain uncertain. Viral evolution with new reassortant strains, changes in vectors, environmental degradation, and human activities have been postulated as factors that have facilitated its spread into new areas beyond the Amazon Basin. Multiple reports starting in July 2024 of pregnant women with Oropouche fever developing vertical infections and adverse perinatal outcomes, including placental infection, stillbirth, and fetal infections with microcephaly and malformation syndromes, have reinforced the public health significance of this disease. Here, we describe the evidence surrounding this re-emerging epidemic threat, examine these changes, and propose specific strategies for enhanced surveillance and a public health response. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
13 pages, 2163 KiB  
Article
Rising Incidence and Spatiotemporal Dynamics of Emerging and Reemerging Arboviruses in Brazil
by Matheus Daudt-Lemos, Alice Ramos-Silva, Renan Faustino, Tatiana Guimarães de Noronha, Renata Artimos de Oliveira Vianna, Mauro Jorge Cabral-Castro, Claudete Aparecida Araújo Cardoso, Andrea Alice Silva and Fabiana Rabe Carvalho
Viruses 2025, 17(2), 158; https://doi.org/10.3390/v17020158 - 24 Jan 2025
Cited by 1 | Viewed by 1506
Abstract
Background: Brazil has witnessed the co-circulation of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV), with outbreaks exacerbated by environmental factors, social determinants, and poor sanitation. The recent re-emergence of Oropouche virus (OROV) has added complexity to vector control strategies, emphasizing [...] Read more.
Background: Brazil has witnessed the co-circulation of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV), with outbreaks exacerbated by environmental factors, social determinants, and poor sanitation. The recent re-emergence of Oropouche virus (OROV) has added complexity to vector control strategies, emphasizing the need for integrated approaches to curb arboviruses spread. We aimed to analyze temporal trends and spatial distributions with national scope of these emerging arboviruses. Methods: An ecological study using data from the Brazilian Notifiable Diseases Information System the period from 2023 to 2024 was undertaken. Temporal trends were evaluated using Joinpoint regression, while spatial analysis was conducted using Moran’s I, and local indicators of spatial association. Results: Dengue fever cases increased by 322%, while Oropouche fever (OF) increased by 300%. The states of Amazonas and Espírito Santo reported increases in OF cases. Moran’s I test revealed spatial clustering of DENV and CHIKV. Two municipalities in the state of Mato Grosso do Sul showed cocirculation of DENV, CHIKV, and ZIKV. Conclusions: This study identified a surge in arbovirus cases between 2023 and 2024, with peak incidences from January to March and October to December, linked to favorable climatic conditions. Clustering patterns and co-circulation of arboviruses highlight the need for tailored control and prevention strategies and targeted interventions to mitigate their impact. Full article
(This article belongs to the Special Issue Recent Advances on Arboviruses Pathogenesis and Evolution)
Show Figures

Figure 1

13 pages, 1078 KiB  
Commentary
Novel Reassortants of Oropouche Virus (OROV) Are Causing Maternal–Fetal Infection During Pregnancy, Stillbirth, Congenital Microcephaly and Malformation Syndromes
by David A. Schwartz
Genes 2025, 16(1), 87; https://doi.org/10.3390/genes16010087 - 15 Jan 2025
Cited by 7 | Viewed by 2705
Abstract
Oropouche virus (OROV) is an orthobunyavirus endemic in the Brazilian Amazon that has caused numerous outbreaks of febrile disease since its discovery in 1955. During 2024, Oropouche fever spread from the endemic regions of Brazil into non-endemic areas and other Latin American and [...] Read more.
Oropouche virus (OROV) is an orthobunyavirus endemic in the Brazilian Amazon that has caused numerous outbreaks of febrile disease since its discovery in 1955. During 2024, Oropouche fever spread from the endemic regions of Brazil into non-endemic areas and other Latin American and Caribbean countries, resulting in 13,014 confirmed infections. Similarly to other orthobunyaviruses, OROV can undergo genetic reassortment events with itself as well as other viruses. This occurred during this current outbreak, resulting in novel strains with increased pathogenicity and levels of transmission. For the first time, pregnant women with Oropouche fever have sustained poor perinatal outcomes, including miscarriage, fetal demise, stillbirths and malformation syndromes including microcephaly. In July 2024, PAHO issued an Epidemiological Alert warning of the association of OROV with vertical transmission. OROV has now been identified in the fetal blood, cerebrospinal fluid, placenta and umbilical cords, and fetal somatic organs including the liver, kidneys, brain, spleen, heart, and lungs using nucleic acid and antigen testing. Perinatal autopsy pathology has confirmed central nervous system infection from OROV in infants with congenital infection including microcephaly, ventriculomegaly, agenesis of corpus callosum, and neuronal necrosis. The latest data from Brazil show 3 confirmed cases of OROV vertical transmission; 2 cases of fetal death; 1 case of congenital malformation; and ongoing investigations into the role of OROV in 15 cases of fetal death, 3 cases of congenital malformations and 5 spontaneous miscarriages. This Commentary discusses the mechanisms and significance of development of novel reassortant strains of OROV during the current outbreak and their recent recognition as causing vertical infection and adverse perinatal outcomes among pregnant women with Oropouche fever. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

10 pages, 1123 KiB  
Article
Full Genome Characterization of the First Oropouche Virus Isolate Imported in Europe from Cuba
by Michela Deiana, Simone Malagò, Antonio Mori, Silvia Accordini, Andrea Matucci, Rebeca Passarelli Mantovani, Natasha Gianesini, Ralph Huits, Chiara Piubelli, Federico Giovanni Gobbi, Maria Rosaria Capobianchi and Concetta Castilletti
Viruses 2024, 16(10), 1586; https://doi.org/10.3390/v16101586 - 9 Oct 2024
Cited by 8 | Viewed by 2291
Abstract
On 27 May 2024, the Cuban Ministry of Health reported the first outbreak of Oropouche fever on the island. The etiologic agent, Oropouche virus (OROV), is a poorly understood arbovirus that has been known since the 1960s and represents a public health burden [...] Read more.
On 27 May 2024, the Cuban Ministry of Health reported the first outbreak of Oropouche fever on the island. The etiologic agent, Oropouche virus (OROV), is a poorly understood arbovirus that has been known since the 1960s and represents a public health burden in Latin America. We report the whole-genome characterization of the first European OROV isolate from a returning traveler from Cuba with Oropouche fever-like symptoms. The isolate was obtained from the patient’s serum; whole-genome sequencing was performed by next-generation sequencing, followed by phylogenetic analysis and genetic variability studies. The analysis showed that the most closely related sequence was from the French Guiana 2020 outbreak. Interestingly, our isolate is a reassortant virus, included in a highly supported monophyletic clade containing recent OROV cases (Brazil 2015–Colombia 2021), separated from the other four previously known genotypes. More deeply, it was found to be included in a distinct branch containing the sequences of the Brazil 2022–2024 outbreak. The reassortment event involved the S and L segments, which have high similarity with sequences belonging to a new cluster (here defined as OROV_SCDC_2024), while the M segment shows high similarity with older sequences. These results likely describe the viral strain responsible for the current outbreak in Cuba, which may also reflect the ongoing outbreak in Latin America. Further studies are needed to understand how OROV evolves towards traits that facilitate its spread and adaptation outside its original basin, and to track its spread and evolution in the European continent. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

42 pages, 11813 KiB  
Systematic Review
(Re-)Emergence of Oropouche Virus (OROV) Infections: Systematic Review and Meta-Analysis of Observational Studies
by Matteo Riccò, Silvia Corrado, Marco Bottazzoli, Federico Marchesi, Renata Gili, Francesco Paolo Bianchi, Emanuela Maria Frisicale, Stefano Guicciardi, Daniel Fiacchini, Silvio Tafuri, Antonio Cascio, Pasquale Gianluca Giuri and Roberta Siliquini
Viruses 2024, 16(9), 1498; https://doi.org/10.3390/v16091498 - 22 Sep 2024
Cited by 14 | Viewed by 4907
Abstract
Oropouche Virus (OROV; genus of Orthobunyavirus) is the causal agent of Oropouche Fever (OF). Due to the lack of specific signs and symptoms and the limited availability of diagnostic tests, the actual epidemiology of OROV infections and OF has been extensively disputed. In [...] Read more.
Oropouche Virus (OROV; genus of Orthobunyavirus) is the causal agent of Oropouche Fever (OF). Due to the lack of specific signs and symptoms and the limited availability of diagnostic tests, the actual epidemiology of OROV infections and OF has been extensively disputed. In this systematic review with meta-analysis, a literature search was carried out in PubMed, Scopus, EMBASE, and MedRxiv in order to retrieve relevant articles on the documented occurrence of OROV infections. Pooled detection rates were then calculated for anti-OROV antibodies and virus detection (i.e., viral RNA detected by viral cultures and/or real-time polymerase chain reaction [RT-qPCR]). Where available, detection rates for other arboviruses (i.e., Dengue [DENV], Chikungunya [CHKV], and Zika Virus [ZIKV]) were calculated and compared to those for OROV. A total of 47 studies from South America and the Caribbean were retrieved. In individuals affected by febrile illness during OROV outbreaks, a documented prevalence of 0.45% (95% confidence interval [95%CI] 0.16 to 1.12) for virus isolation, 12.21% (95%CI 4.96 to 27.09) for seroprevalence (including both IgM and IgG class antibodies), and 12.45% (95%CI 3.28 to 37.39) for the detection of OROV-targeting IgM class antibodies were eventually documented. In the general population, seroprevalence was estimated to be 24.45% (95%CI 7.83 to 55.21) for IgG class antibodies. The OROV detection rate from the cerebrospinal fluids of suspected cases of viral encephalitis was estimated to be 2.40% (95%CI 1.17 to 5.03). The occurrence of OROV infections was consistently lower than that of DENV, CHKV, and ZIKV during outbreaks (Risk Ratio [RR] 24.82, 95%CI 21.12 to 29.16; RR 2.207, 95%CI 1.427 to 3.412; and RR 7.900, 95%CI 5.386 to 11.578, respectively) and in the general population (RR 23.614, 95%CI 20.584 to 27.129; RR 3.103, 95%CI 2.056 to 4.685; and RR 49.500, 95%CI 12.256 to 199.921, respectively). In conclusion, our study stresses the possibly high underestimation of OROV prevalence in the general population of South America, the potential global threat represented by this arbovirus infection, and the potential preventive role of a comprehensive “One Health approach”. Full article
(This article belongs to the Collection Emerging Arboviruses, Volume II)
Show Figures

Figure 1

9 pages, 237 KiB  
Perspective
Oropouche Virus (OROV) in Pregnancy: An Emerging Cause of Placental and Fetal Infection Associated with Stillbirth and Microcephaly following Vertical Transmission
by David A. Schwartz, Pradip Dashraath and David Baud
Viruses 2024, 16(9), 1435; https://doi.org/10.3390/v16091435 - 9 Sep 2024
Cited by 28 | Viewed by 4783
Abstract
Oropouche virus (OROV) is an emerging arbovirus endemic in Latin America and the Caribbean that causes Oropouche fever, a febrile illness that clinically resembles some other arboviral infections. It is currently spreading through Brazil and surrounding countries, where, from 1 January to 1 [...] Read more.
Oropouche virus (OROV) is an emerging arbovirus endemic in Latin America and the Caribbean that causes Oropouche fever, a febrile illness that clinically resembles some other arboviral infections. It is currently spreading through Brazil and surrounding countries, where, from 1 January to 1 August 2024, more than 8000 cases have been identified in Bolivia, Brazil, Columbia, and Peru and for the first time in Cuba. Travelers with Oropouche fever have been identified in the United States and Europe. A significant occurrence during this epidemic has been the report of pregnant women infected with OROV who have had miscarriages and stillborn fetuses with placental, umbilical blood and fetal somatic organ samples that were RT-PCR positive for OROV and negative for other arboviruses. In addition, there have been four cases of newborn infants having microcephaly, in which the cerebrospinal fluid tested positive for IgM antibodies to OROV and negative for other arboviruses. This communication examines the biology, epidemiology, and clinical features of OROV, summarizes the 2023–2024 Oropouche virus epidemic, and describes the reported cases of vertical transmission and congenital infection, fetal death, and microcephaly in pregnant women with Oropouche fever, addresses experimental animal infections and potential placental pathology findings of OROV, and reviews other bunyavirus agents that can cause vertical transmission. Recommendations are made for pregnant women travelling to the regions affected by the epidemic. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
8 pages, 500 KiB  
Brief Report
ddPCR for the Detection and Absolute Quantification of Oropouche Virus
by Elena Pomari, Andrea Matucci, Silvia Accordini, Rebeca Passarelli Mantovani, Natasha Gianesini, Antonio Mori and Concetta Castilletti
Viruses 2024, 16(9), 1426; https://doi.org/10.3390/v16091426 - 7 Sep 2024
Cited by 2 | Viewed by 2536
Abstract
Background: Oropouche virus (OROV) is a segmented RNA virus belonging to the genus Orthobunyavirus in the family Peribunyaviridae. Herein, an in-house droplet digital PCR (ddPCR) assay was used for the detection and quantification of OROV. Methods: The ddPCR reaction was assessed as [...] Read more.
Background: Oropouche virus (OROV) is a segmented RNA virus belonging to the genus Orthobunyavirus in the family Peribunyaviridae. Herein, an in-house droplet digital PCR (ddPCR) assay was used for the detection and quantification of OROV. Methods: The ddPCR reaction was assessed as duplex assay using the human housekeeping gene RPP30. Limit of detection (LoD) analysis was performed in whole blood, serum, and urine. The assay was executed on a total of 28 clinical samples (whole blood n = 9, serum n = 11, and urine n = 8), of which 16 specimens were tested positive at the routine molecular diagnostics (endpoint and real-time PCRs). Results: The LoD of the ddPCR performed using 10-fold serial dilution of OROV detected up to 1 cp/µL in all the biological matrices. Compared to the routine molecular diagnostics, the ddPCR assay showed 100% sensitivity for whole blood and serum and 75% for urine, highlighting higher positive rate of ddPCR. Conclusion: We have established a quantitative RNA detection method of OROV with high sensitivity and specificity based on ddPCR. This test is capable of quantitatively monitoring the viral load of OROV and can contribute, in addition to laboratory diagnosis, to shed light on the pathogenesis, filling in the knowledge gaps of this neglected disease and to the vector control programs. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Graphical abstract

Back to TopTop