Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Nogo receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 49683 KiB  
Article
Niemann-Pick C-like Endolysosomal Dysfunction in DHDDS Patient Cells, a Congenital Disorder of Glycosylation, Can Be Treated with Miglustat
by Hannah L. Best, Sophie R. Cook, Helen Waller-Evans and Emyr Lloyd-Evans
Int. J. Mol. Sci. 2025, 26(4), 1471; https://doi.org/10.3390/ijms26041471 - 10 Feb 2025
Viewed by 1272
Abstract
DHDDS (dehydrodolichol diphosphate synthetase) and NgBR (Nogo-B Receptor) collectively form an enzymatic complex important for the synthesis of dolichol, a key component of protein N-glycosylation. Mutations in DHDDS and the gene encoding NgBR (NUS1) are associated with neurodevelopmental disorders that clinically present [...] Read more.
DHDDS (dehydrodolichol diphosphate synthetase) and NgBR (Nogo-B Receptor) collectively form an enzymatic complex important for the synthesis of dolichol, a key component of protein N-glycosylation. Mutations in DHDDS and the gene encoding NgBR (NUS1) are associated with neurodevelopmental disorders that clinically present with epilepsy, motor impairments, and developmental delay. Previous work has demonstrated both DHDDS and NgBR can also interact with NPC2 (Niemann-Pick C (NPC) type 2), a protein which functions to traffic cholesterol out of the lysosome and, when mutated, can cause a lysosomal storage disorder (NPC disease) characterised by an accumulation of cholesterol and glycosphingolipids. Abnormal cholesterol accumulation has also been reported in cells from both individuals and animal models with mutations in NUS1, and suspected lipid storage has been shown in biopsies from individuals with mutations in DHDDS. Our findings provide further evidence for overlap between NPC2 and DHDDS disorders, showing that DHDDS patient fibroblasts have increased lysosomal volume, store cholesterol and ganglioside GM1, and have altered lysosomal Ca2+ homeostasis. Treatment of DHDDS cells, with the approved NPC small molecule therapy, miglustat, improves these disease-associated phenotypes, identifying a possible therapeutic option for DHDDS patients. These data suggest that treatment options currently approved for NPC disease may be translatable to DHDDS/NUS1 patients. Full article
(This article belongs to the Special Issue The Role of Lipids in Health and Diseases)
Show Figures

Figure 1

19 pages, 2721 KiB  
Article
Nogo Receptor Antagonist LOTUS Promotes Neurite Outgrowth through Its Interaction with Teneurin-4
by Yuji Kurihara, Yuki Kawaguchi, Yuki Ohta, Nana Kawasaki, Yuki Fujita and Kohtaro Takei
Cells 2024, 13(16), 1369; https://doi.org/10.3390/cells13161369 - 17 Aug 2024
Viewed by 1438
Abstract
Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo [...] Read more.
Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo receptor-1 (NgR1). We previously reported that lateral olfactory tract usher substance (LOTUS) functions as an endogenous antagonist for NgR1 in forming neuronal circuits in the developing brain and improving axonal regeneration in the adult injured CNS. However, another molecular and cellular function of LOTUS remains unknown. In this study, we found that cultured retinal explant neurons extend their neurites on the LOTUS-coating substrate. This action was also observed in cultured retinal explant neurons derived from Ngr1-deficient mouse embryos, indicating that the promoting action of LOTUS on neurite outgrowth may be mediated by unidentified LOTUS-binding protein(s). We therefore screened the binding partner(s) of LOTUS by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS analysis and pull-down assay showed that LOTUS interacts with Teneurin-4 (Ten-4), a cell adhesion molecule. RNAi knockdown of Ten-4 inhibited neurite outgrowth on the LOTUS substrate in retinoic acid (RA)-treated Neuro2A cells. Furthermore, a soluble form of Ten-4 attenuates the promoting action on neurite outgrowth in cultured retinal explant neurons on the LOTUS substrate. These results suggest that LOTUS promotes neurite outgrowth by interacting with Ten-4. Our findings may provide a new molecular mechanism of LOTUS to contribute to neuronal circuit formation in development and to enhance axonal regeneration after CNS injury. Full article
Show Figures

Figure 1

15 pages, 5686 KiB  
Article
Novel Function of Nogo-A as Negative Regulator of Endothelial Progenitor Cell Angiogenic Activity: Impact in Oxygen-Induced Retinopathy
by Pakiza Ruknudin, Ali Riza Nazari, Maelle Wirth, Isabelle Lahaie, Emmanuel Bajon, Alain Rivard, Sylvain Chemtob and Michel Desjarlais
Int. J. Mol. Sci. 2023, 24(17), 13185; https://doi.org/10.3390/ijms241713185 - 24 Aug 2023
Cited by 3 | Viewed by 1739
Abstract
Endothelial Progenitor Cells (EPCs) can actively participate in revascularization in oxygen-induced retinopathy (OIR). Yet the mechanisms responsible for their dysfunction is unclear. Nogo-A, whose function is traditionally related to the inhibition of neurite function in the central nervous system, has recently been documented [...] Read more.
Endothelial Progenitor Cells (EPCs) can actively participate in revascularization in oxygen-induced retinopathy (OIR). Yet the mechanisms responsible for their dysfunction is unclear. Nogo-A, whose function is traditionally related to the inhibition of neurite function in the central nervous system, has recently been documented to display anti-angiogenic pro-repellent properties. Based on the significant impact of EPCs in retinal vascularization, we surmised that Nogo-A affects EPC function, and proceeded to investigate the role of Nogo-A on EPC function in OIR. The expression of Nogo-A and its specific receptor NgR1 was significantly increased in isolated EPCs exposed to hyperoxia, as well as in EPCs isolated from rats subjected to OIR compared with respective controls (EPCs exposed to normoxia). EPCs exposed to hyperoxia displayed reduced migratory and tubulogenic activity, associated with the suppressed expression of prominent EPC-recruitment factors SDF-1/CXCR4. The inhibition of Nogo-A (using a Nogo-66 neutralizing antagonist peptide) or siRNA-NGR1 in hyperoxia-exposed EPCs restored SDF-1/CXCR4 expression and, in turn, rescued the curtailed neovascular functions of EPCs in hyperoxia. The in vivo intraperitoneal injection of engineered EPCs (Nogo-A-inhibited or NgR1-suppressed) in OIR rats at P5 (prior to exposure to hyperoxia) prevented retinal and choroidal vaso-obliteration upon localization adjacent to vasculature; coherently, the inhibition of Nogo-A/NgR1 in EPCs enhanced the expression of key angiogenic factors VEGF, SDF-1, PDGF, and EPO in retina; CXCR4 knock-down abrogated suppressed NgR1 pro-angiogenic effects. The findings revealed that hyperoxia-induced EPC malfunction is mediated to a significant extent by Nogo-A/NgR1 signaling via CXCR4 suppression; the inhibition of Nogo-A in EPCs restores specific angiogenic growth factors in retina and the ensuing vascularization of the retina in an OIR model. Full article
(This article belongs to the Special Issue Retinal Degeneration—from Genetics to Therapy: Second Edition)
Show Figures

Figure 1

23 pages, 1804 KiB  
Review
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis
by Danica Nheu, Olivia Ellen, Sining Ye, Ezgi Ozturk, Maurice Pagnin, Stephen Kertadjaja, Paschalis Theotokis, Nikolaos Grigoriadis, Catriona McLean and Steven Petratos
Cells 2022, 11(23), 3768; https://doi.org/10.3390/cells11233768 - 25 Nov 2022
Cited by 4 | Viewed by 3858
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in [...] Read more.
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

14 pages, 1884 KiB  
Review
Vertebrate Animal Models of RP59: Current Status and Future Prospects
by Steven J. Fliesler, Sriganesh Ramachandra Rao, Mai N. Nguyen, Mahmoud Tawfik KhalafAllah and Steven J. Pittler
Int. J. Mol. Sci. 2022, 23(21), 13324; https://doi.org/10.3390/ijms232113324 - 1 Nov 2022
Cited by 1 | Viewed by 2351
Abstract
Retinitis pigmentosa-59 (RP59) is a rare, recessive form of RP, caused by mutations in the gene encoding DHDDS (dehydrodolichyl diphosphate synthase). DHDDS forms a heterotetrameric complex with Nogo-B receptor (NgBR; gene NUS1) to form a cis-prenyltransferase (CPT) enzyme complex, which is [...] Read more.
Retinitis pigmentosa-59 (RP59) is a rare, recessive form of RP, caused by mutations in the gene encoding DHDDS (dehydrodolichyl diphosphate synthase). DHDDS forms a heterotetrameric complex with Nogo-B receptor (NgBR; gene NUS1) to form a cis-prenyltransferase (CPT) enzyme complex, which is required for the synthesis of dolichol, which in turn is required for protein N-glycosylation as well as other glycosylation reactions in eukaryotic cells. Herein, we review the published phenotypic characteristics of RP59 models extant, with an emphasis on their ocular phenotypes, based primarily upon knock-in of known RP59-associated DHDDS mutations as well as cell type- and tissue-specific knockout of DHDDS alleles in mice. We also briefly review findings in RP59 patients with retinal disease and other patients with DHDDS mutations causing epilepsy and other neurologic disease. We discuss these findings in the context of addressing “knowledge gaps” in our current understanding of the underlying pathobiology mechanism of RP59, as well as their potential utility for developing therapeutic interventions to block the onset or to dampen the severity or progression of RP59. Full article
Show Figures

Figure 1

15 pages, 35635 KiB  
Article
Endothelial Nogo-B Suppresses Cancer Cell Proliferation via a Paracrine TGF-β/Smad Signaling
by Hengyu Li, Zhuo Cheng, Pinghua Yang, Wei Huang, Xizhou Li, Daimin Xiang and Xiaojun Wu
Cells 2022, 11(19), 3084; https://doi.org/10.3390/cells11193084 - 30 Sep 2022
Viewed by 2381
Abstract
Nogo-B has been reported to play a critical role in angiogenesis and the repair of damaged blood vessels; however, its role in the tumor microenvironment remains unclear. Here, we observed the differential expression of Nogo-B in endothelial cells from hepatocellular carcinoma (HCC) and [...] Read more.
Nogo-B has been reported to play a critical role in angiogenesis and the repair of damaged blood vessels; however, its role in the tumor microenvironment remains unclear. Here, we observed the differential expression of Nogo-B in endothelial cells from hepatocellular carcinoma (HCC) and glioma samples. Downregulation of Nogo-B expression correlated with the malignant phenotype of cancer and a poor prognosis for patients. In subsequent studies, endothelial Nogo-B inhibition robustly promoted the growth of HCC or glioma xenografts in nude mice. Intriguingly, endothelial Nogo-B silencing dramatically suppressed endothelial cell expansion and tumor angiogenesis, but potently enhanced the proliferation of neighboring HCC and glioma cells. Based on the results of the ELISA assay, Nogo-B silencing reduced TGF-β production in endothelial cells, which attenuated the phosphorylation and nuclear translocation of Smad in neighboring cancer cells. The endothelial Nogo-B silencing-mediated increase in cancer cell proliferation was abolished by either a TGF-β neutralizing antibody or TGF-β receptor inhibitor, indicating the essential role for TGF-β in endothelial Nogo-B-mediated suppression of cancer growth. These findings not only broaden our understanding of the crosstalk between cancer cells and endothelial cells but also provide a novel prognostic biomarker and a therapeutic target for cancer treatments. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

22 pages, 3401 KiB  
Article
Development of Neurogenic Detrusor Overactivity after Thoracic Spinal Cord Injury Is Accompanied by Time-Dependent Changes in Lumbosacral Expression of Axonal Growth Regulators
by Sílvia Sousa Chambel, Ana Ferreira, Raquel Oliveira, Rafael Miranda, Luís Vale, Carlos Reguenga, Martin E. Schwab and Célia Duarte Cruz
Int. J. Mol. Sci. 2022, 23(15), 8667; https://doi.org/10.3390/ijms23158667 - 4 Aug 2022
Cited by 6 | Viewed by 3187
Abstract
Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal [...] Read more.
Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI. Here, we confirmed lumbosacral upregulation of the growth-associated protein GAP43 in SCI animals with bladder dysfunction, indicating the occurrence of axonal sprouting. Neurocan and Phosphacan (CSPGs), as well as Nogo-A (MAI), at the same spinal segments were upregulated 7 days post injury (dpi) but returned to baseline values 28 dpi. In turn, qPCR analysis of the mRNA levels for receptors of those repulsive molecules in dorsal root ganglia (DRG) neurons showed a time-dependent decrease in receptor expression. In vitro assays with DRG neurons from SCI rats demonstrated that exposure to high levels of NGF downregulated the expression of some, but not all, receptors for those regulators of axonal growth. The present results, therefore, show significant molecular changes at the lumbosacral cord and DRGs after thoracic lesion, likely critically involved in neuroplastic events leading to urinary impairment. Full article
(This article belongs to the Special Issue Spinal Cord Injury: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

14 pages, 2649 KiB  
Article
Nogo-A Induced Polymerization of Microtubule Is Involved in the Inflammatory Heat Hyperalgesia in Rat Dorsal Root Ganglion Neurons
by Ling Chen, Qiguo Hu, Huaicun Liu, Yan Zhao, Sun-On Chan and Jun Wang
Int. J. Mol. Sci. 2021, 22(19), 10360; https://doi.org/10.3390/ijms221910360 - 26 Sep 2021
Cited by 4 | Viewed by 3056
Abstract
The microtubule, a major constituent of cytoskeletons, was shown to bind and interact with transient receptor potential vanilloid subfamily member 1 (TRPV1), and serves a pivotal role to produce thermal hyperalgesia in inflammatory pain. Nogo-A is a modulator of microtubule assembly and plays [...] Read more.
The microtubule, a major constituent of cytoskeletons, was shown to bind and interact with transient receptor potential vanilloid subfamily member 1 (TRPV1), and serves a pivotal role to produce thermal hyperalgesia in inflammatory pain. Nogo-A is a modulator of microtubule assembly and plays a key role in maintaining the function of TRPV1 in inflammatory heat pain. However, whether the microtubule dynamics modulated by Nogo-A in dorsal root ganglion (DRG) neurons participate in the inflammatory pain is not elucidated. Here we reported that the polymerization of microtubules in the DRG neurons, as indicated by the acetylated α-tubulin, tubulin polymerization-promoting protein 3 (TPPP3), and microtubule numbers, was significantly elevated in the complete Freund’s adjuvant (CFA) induced inflammatory pain. Consistent with our previous results, knock-out (KO) of Nogo-A protein significantly attenuated the heat hyperalgesia 72 h after CFA injection and decreased the microtubule polymerization via up-regulation of phosphorylation of collapsin response mediator protein 2 (CRMP2) in DRG. The colocalization of acetylated α-tubulin and TRPV1 in DRG neurons was also reduced dramatically in Nogo-A KO rats under inflammatory pain. Moreover, the down-regulation of TRPV1 in DRG of Nogo-A KO rats after injection of CFA was reversed by intrathecal injection of paclitaxel, a microtubule stabilizer. Furthermore, intrathecal injection of nocodazole (a microtubule disruptor) attenuated significantly the CFA-induced inflammatory heat hyperalgesia and the mechanical pain in a rat model of spared nerve injury (SNI). In these SNI cases, the Nogo-A and acetylated α-tubulin in DRG were also significantly up-regulated. We conclude that the polymerization of microtubules promoted by Nogo-A in DRG contributes to the development of inflammatory heat hyperalgesia mediated by TRPV1. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Pain 2.0)
Show Figures

Figure 1

14 pages, 1277 KiB  
Article
Plasticity-Enhancing Effects of Levodopa Treatment after Stroke
by Daniela Talhada, Niklas Marklund, Tadeusz Wieloch, Enida Kuric and Karsten Ruscher
Int. J. Mol. Sci. 2021, 22(19), 10226; https://doi.org/10.3390/ijms221910226 - 23 Sep 2021
Cited by 10 | Viewed by 2937
Abstract
Dopaminergic treatment in combination with rehabilitative training enhances long-term recovery after stroke. However, the underlying mechanisms on structural plasticity are unknown. Here, we show an increased dopaminergic innervation of the ischemic territory during the first week after stroke induced in Wistar rats subjected [...] Read more.
Dopaminergic treatment in combination with rehabilitative training enhances long-term recovery after stroke. However, the underlying mechanisms on structural plasticity are unknown. Here, we show an increased dopaminergic innervation of the ischemic territory during the first week after stroke induced in Wistar rats subjected to transient occlusion of the middle cerebral artery (tMCAO) for 120 min. This response was also found in rats subjected to permanent focal ischemia induced by photothrombosis (PT) and mice subjected to PT or tMCAO. Dopaminergic branches were detected in the infarct core of mice and rats in both stroke models. In addition, the Nogo A pathway was significantly downregulated in rats treated with levodopa (LD) compared to vehicle-treated animals subjected to tMCAO. Specifically, the number of Nogo A positive oligodendrocytes as well as the levels of Nogo A and the Nogo A receptor were significantly downregulated in the peri-infarct area of LD-treated animals, while the number of Oligodendrocyte transcription factor 2 positive cells increased in this region after treatment. In addition, we observed lower protein levels of Growth Associated Protein 43 in the peri-infarct area compared to sham-operated animals without treatment effect. The results provide the first evidence of the plasticity-promoting actions of dopaminergic treatment following stroke. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

24 pages, 9012 KiB  
Article
Caesalpinia mimosoides Leaf Extract Promotes Neurite Outgrowth and Inhibits BACE1 Activity in Mutant APP-Overexpressing Neuronal Neuro2a Cells
by Panthakarn Rangsinth, Chatrawee Duangjan, Chanin Sillapachaiyaporn, Ciro Isidoro, Anchalee Prasansuklab and Tewin Tencomnao
Pharmaceuticals 2021, 14(9), 901; https://doi.org/10.3390/ph14090901 - 4 Sep 2021
Cited by 14 | Viewed by 4456
Abstract
Alzheimer’s disease (AD) is implicated in the imbalance of several proteins, including Amyloid-β (Aβ), amyloid precursor protein (APP), and BACE1. APP overexpression interferes with neurite outgrowth, while BACE1 plays a role in Aβ generation. Medicinal herbs with effects on neurite outgrowth stimulation and [...] Read more.
Alzheimer’s disease (AD) is implicated in the imbalance of several proteins, including Amyloid-β (Aβ), amyloid precursor protein (APP), and BACE1. APP overexpression interferes with neurite outgrowth, while BACE1 plays a role in Aβ generation. Medicinal herbs with effects on neurite outgrowth stimulation and BACE1 inhibition may benefit AD. This study aimed to investigate the neurite outgrowth stimulatory effect, along with BACE1 inhibition of Caesalpinia mimosoides (CM), using wild-type (Neuro2a) and APP (Swedish mutant)-overexpressing (Neuro2a/APPSwe) neurons. The methanol extract of CM leaves stimulated neurite outgrowth in wild-type and APP-overexpressing cells. After exposure to the extract, the mRNA expression of the neurite outgrowth activation genes growth-associated protein-43 (GAP-43) and teneurin-4 (Ten-4) was increased in both Neuro2a and Neuro2a/APPSwe cells, while the mRNA expression of neurite outgrowth negative regulators Nogo receptor (NgR) and Lingo-1 was reduced. Additionally, the extract suppressed BACE1 activity in the APP-overexpressing neurons. Virtual screening demonstrated that quercetin-3′-glucuronide, quercetin-3-O-glucoside, clausarinol, and theogallin were possible inhibitors of BACE1. ADMET was analyzed to predict drug-likeness properties of CM-constituents. These results suggest that CM extract promotes neurite outgrowth and inhibits BACE1 activity in APP-overexpressing neurons. Thus, CM may serve as a source of drugs for AD treatment. Additional studies for full identification of bioactive constituents and to confirm the neuritogenesis in vivo are needed for translation into clinic of the present findings. Full article
Show Figures

Figure 1

22 pages, 3307 KiB  
Article
Nogo-A Modulates the Synaptic Excitation of Hippocampal Neurons in a Ca2+-Dependent Manner
by Kristin Metzdorf, Steffen Fricke, Maria Teresa Balia, Martin Korte and Marta Zagrebelsky
Cells 2021, 10(9), 2299; https://doi.org/10.3390/cells10092299 - 3 Sep 2021
Cited by 3 | Viewed by 2972
Abstract
A tight regulation of the balance between inhibitory and excitatory synaptic transmission is a prerequisite for synaptic plasticity in neuronal networks. In this context, the neurite growth inhibitor membrane protein Nogo-A modulates synaptic plasticity, strength, and neurotransmitter receptor dynamics. However, the molecular mechanisms [...] Read more.
A tight regulation of the balance between inhibitory and excitatory synaptic transmission is a prerequisite for synaptic plasticity in neuronal networks. In this context, the neurite growth inhibitor membrane protein Nogo-A modulates synaptic plasticity, strength, and neurotransmitter receptor dynamics. However, the molecular mechanisms underlying these actions are unknown. We show that Nogo-A loss-of-function in primary mouse hippocampal cultures by application of a function-blocking antibody leads to higher excitation following a decrease in GABAARs at inhibitory and an increase in the GluA1, but not GluA2 AMPAR subunit at excitatory synapses. This unbalanced regulation of AMPAR subunits results in the incorporation of Ca2+-permeable GluA2-lacking AMPARs and increased intracellular Ca2+ levels due to a higher Ca2+ influx without affecting its release from the internal stores. Increased neuronal activation upon Nogo-A loss-of-function prompts the phosphorylation of the transcription factor CREB and the expression of c-Fos. These results contribute to the understanding of the molecular mechanisms underlying the regulation of the excitation/inhibition balance and thereby of plasticity in the brain. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

21 pages, 3028 KiB  
Article
Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Transection is Driven by Cellular Intravitreal Sciatic Nerve Grafts
by Zubair Ahmed, Ellen L. Suggate, Ann Logan and Martin Berry
Cells 2020, 9(6), 1335; https://doi.org/10.3390/cells9061335 - 27 May 2020
Cited by 9 | Viewed by 3650
Abstract
Neurotrophic factors (NTF) secreted by Schwann cells in a sciatic nerve (SN) graft promote retinal ganglion cell (RGC) axon regeneration after either transplantation into the vitreous body of the eye or anastomosis to the distal stump of a transected optic nerve. In this [...] Read more.
Neurotrophic factors (NTF) secreted by Schwann cells in a sciatic nerve (SN) graft promote retinal ganglion cell (RGC) axon regeneration after either transplantation into the vitreous body of the eye or anastomosis to the distal stump of a transected optic nerve. In this study, we investigated the neuroprotective and growth stimulatory properties of SN grafts in which Schwann cells had been killed (acellular SN grafts, ASN) or remained intact (cellular SN grafts, CSN). We report that both intravitreal (ivit) implanted and optic nerve anastomosed CSN promote RGC survival and when simultaneously placed in both sites, they exert additive RGC neuroprotection. CSN and ASN were rich in myelin-associated glycoprotein (MAG) and axon growth-inhibitory ligand common to both the central nervous system (CNS) and peripheral nervous system (PNS) myelin. The penetration of the few RGC axons regenerating into an ASN at an optic nerve transection (ONT) site is limited into the proximal perilesion area, but is increased >2-fold after ivit CSN implantation and increased 5-fold into a CSN optic nerve graft after ivit CSN implantation, potentiated by growth disinhibition through the regulated intramembranous proteolysis (RIP) of p75NTR (the signalling trans-membrane moiety of the nogo-66 trimeric receptor that binds MAG and associated suppression of RhoGTP). Mϋller cells/astrocytes become reactive after all treatments and maximally after simultaneous ivit and optic nerve CSN/ASN grafting. We conclude that simultaneous ivit CSN plus optic nerve CSN support promotes significant RGC survival and axon regeneration into CSN optic nerve grafts, despite being rich in axon growth inhibitory molecules. RGC axon regeneration is probably facilitated through RIP of p75NTR, which blinds axons to myelin-derived axon growth-inhibitory ligands present in optic nerve grafts. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

11 pages, 729 KiB  
Article
Genetic Screening of Plasticity Regulating Nogo-Type Signaling Genes in Migraine
by Gabriella Smedfors, Franziska Liesecke, Caroline Ran, Lars Olson, Tobias E. Karlsson and Andrea Carmine Belin
Brain Sci. 2020, 10(1), 5; https://doi.org/10.3390/brainsci10010005 - 20 Dec 2019
Viewed by 3434
Abstract
Migraine is the sixth most prevalent disease in the world and a substantial number of experiments have been conducted to analyze potential differences between the migraine brain and the healthy brain. Results from these investigations point to the possibility that development and aggravation [...] Read more.
Migraine is the sixth most prevalent disease in the world and a substantial number of experiments have been conducted to analyze potential differences between the migraine brain and the healthy brain. Results from these investigations point to the possibility that development and aggravation of migraine may include grey matter plasticity. Nogo-type signaling is a potent plasticity regulating system in the CNS and consists of ligands, receptors, co-receptors and modulators with a dynamic age- and activity-related expression in cortical and subcortical regions. Here we investigated a potential link between migraine and five key Nogo-type signaling genes: RTN4, OMGP, MAG, RTN4R and LINGO1, by screening 15 single nucleotide polymorphisms (SNPs) within these genes. In a large Swedish migraine cohort (749 migraine patients and 4032 controls), using a logistic regression with sex as covariate, we found that there was no such association. In addition, a haplotype analysis was performed which revealed three haplotype blocks. These blocks had no significant association with migraine. However, to robustly conclude that Nogo-type genotypes signaling do not influence the prevalence of migraine, further studies are encouraged. Full article
Show Figures

Graphical abstract

19 pages, 4567 KiB  
Article
Nogo-B Receptor Directs Mitochondria-Associated Membranes to Regulate Vascular Smooth Muscle Cell Proliferation
by Yi-Dong Yang, Man-Man Li, Gang Xu, Lan Feng, Er-Long Zhang, Jian Chen, De-Wei Chen and Yu-Qi Gao
Int. J. Mol. Sci. 2019, 20(9), 2319; https://doi.org/10.3390/ijms20092319 - 10 May 2019
Cited by 23 | Viewed by 4816
Abstract
Mitochondria-associated membranes (MAM) are a well-recognized contact link between the mitochondria and endoplasmic reticulum that affects mitochondrial biology and vascular smooth muscle cells (VSMCs) proliferation via the regulation of mitochondrial Ca2+(Ca2+m) influx. Nogo-B receptor (NgBR) plays a vital [...] Read more.
Mitochondria-associated membranes (MAM) are a well-recognized contact link between the mitochondria and endoplasmic reticulum that affects mitochondrial biology and vascular smooth muscle cells (VSMCs) proliferation via the regulation of mitochondrial Ca2+(Ca2+m) influx. Nogo-B receptor (NgBR) plays a vital role in proliferation, epithelial-mesenchymal transition, and chemoresistance of some tumors. Recent studies have revealed that downregulation of NgBR, which stimulates the proliferation of VSMCs, but the underlying mechanism remains unclear. Here, we investigated the role of NgBR in MAM and VSMC proliferation. We analyzed the expression of NgBR in pulmonary arteries using a rat model of hypoxic pulmonary hypertension (HPH), in which rats were subjected to normoxic recovery after hypoxia. VSMCs exposed to hypoxia and renormoxia were used to assess the alterations in NgBR expression in vitro. The effect of NgBR downregulation and overexpression on VSMC proliferation was explored. The results revealed that NgBR expression was negatively related with VSMCs proliferation. Then, MAM formation and the phosphorylation of inositol 1,4,5-trisphosphate receptor type 3 (IP3R3) was detected. We found that knockdown of NgBR resulted in MAM disruption and augmented the phosphorylation of IP3R3 through pAkt, accompanied by mitochondrial dysfunction including decreased Ca2+m, respiration and mitochondrial superoxide, increased mitochondrial membrane potential and HIF-1α nuclear localization, which were determined by confocal microscopy and Seahorse XF-96 analyzer. By contrast, NgBR overexpression attenuated IP3R3 phosphorylation and HIF-1α nuclear localization under hypoxia. These results reveal that dysregulation of NgBR promotes VSMC proliferation via MAM disruption and increased IP3R3 phosphorylation, which contribute to the decrease of Ca2+m and mitochondrial impairment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 4152 KiB  
Article
Novel Gastric Cancer Stem Cell-Related Marker LINGO2 Is Associated with Cancer Cell Phenotype and Patient Outcome
by Jung Hyun Jo, Soo Been Park, Semi Park, Hee Seung Lee, Chanyang Kim, Dawoon E. Jung and Si Young Song
Int. J. Mol. Sci. 2019, 20(3), 555; https://doi.org/10.3390/ijms20030555 - 28 Jan 2019
Cited by 31 | Viewed by 5917
Abstract
The expression of leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) has been reported in Parkinson’s disease; however, its role in other diseases is unknown. Gastric cancer is the second leading cause of cancer death. Cancer stem cells (CSC) are a [...] Read more.
The expression of leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) has been reported in Parkinson’s disease; however, its role in other diseases is unknown. Gastric cancer is the second leading cause of cancer death. Cancer stem cells (CSC) are a subpopulation of cancer cells that contribute to the initiation and invasion of cancer. We identified LINGO2 as a CSC-associated protein in gastric cancers both in vitro and in patient-derived tissues. We studied the effect of LINGO2 on cell motility, stemness, tumorigenicity, and angiogenic capacity using cells sorted based on LINGO2 expression and LINGO2-silenced cells. Tissue microarray analysis showed that LINGO2 expression was significantly elevated in advanced gastric cancers. The overall survival of patients expressing high LINGO2 was significantly shorter than that of patients with low LINGO2. Cells expressing high LINGO2 showed elevated cell motility, angiogenic capacity, and tumorigenicity, while LINGO2 silencing reversed these properties. Silencing LINGO2 reduced kinase B (AKT)/extracellular signal-regulated kinase (ERK)/ERK kinase (MEK) phosphorylation and decreased epithelial-mesenchymal transition (EMT)-associated markers—N-Cadherin and Vimentin and stemness-associated markers— POU class 5 homeobox 1 (OCT4) and Indian hedgehog (IHH), and markedly decreased the CD44+ population. These indicate the involvement of LINGO2 in gastric cancer initiation and progression by altering cell motility, stemness, and tumorigenicity, suggesting LINGO2 as a putative target for gastric cancer treatment. Full article
(This article belongs to the Special Issue Molecular Biology of Cancer Stem Cells)
Show Figures

Graphical abstract

Back to TopTop