Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Neusilin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1845 KB  
Article
Comprehensive Analytical Studies on the Solubility and Dissolution Rate Enhancement of Tadalafil with Type IV Lipid Formulations
by Günay Husuzade, Burcu Demiralp, Hakan Nazlı, Tuğçe Boran and Sevgi Güngör
Pharmaceutics 2025, 17(11), 1436; https://doi.org/10.3390/pharmaceutics17111436 - 7 Nov 2025
Viewed by 1199
Abstract
Background: This work aimed to enhance the solubility of Tadalafil (TDL), a BCS Class II drug, by preparing Type IV lipid-based formulations. Methods: Type IV formulations were prepared using surfactants and/or hydrophilic co-surfactants, resulting in oil-free systems. Results: Based on [...] Read more.
Background: This work aimed to enhance the solubility of Tadalafil (TDL), a BCS Class II drug, by preparing Type IV lipid-based formulations. Methods: Type IV formulations were prepared using surfactants and/or hydrophilic co-surfactants, resulting in oil-free systems. Results: Based on the solubility test, Transcutol® HP exhibited the highest solubility for TDL (48.33 ± 0.004 mg/mL) and was selected as the co-surfactant. Among surfactants, Kolliphor® PS80 (42.74 ± 2.29 mg/mL), Kolliphor® EL (41.87 ± 2.50 mg/mL), Kollisolv® PEG 400 (40.70 ± 0.30 mg/mL), and Kolliphor® HS15 (31.40 ± 3.63 mg/mL) demonstrated high solubilization capacity. These were used to prepare formulations without the addition of an oil phase. The developed formulations resulted in a system with a nano-droplet size (<50 nm) and PDI values < 0.3, which was clear, transparent, and resistant to pH dilutions. The optimum Type IV lipid formulations were further characterized and demonstrated good thermodynamic stability under temperature and pH changes. The optimized formulation was adsorbed onto different carriers and transformed into solid TDL-loaded formulations. The in vitro dissolution rate of the drug from the solidified lipid formulations was studied in various dissolution media. It was observed that the solid formulations prepared with Neusilin US2® (2:1) exhibited a significantly higher dissolution of over 95% within 5 min compared to the marketed product. The in vitro lipolysis studies demonstrated that F2 formulation maintained TDL in a supersaturated state throughout digestion, with limited enzymatic degradation of the excipients. Cytotoxicity evaluation using the MTT assay in Caco-2 cells confirmed the biocompatibility of both drug-free and TDL-loaded formulations, with IC50 values of 19.55 µg/mL and 17.55 µg/mL, respectively. Conclusions: The overall results suggested that the developed solid Type IV lipid formulations can improve the dissolution rate of TDL, which would potentially lead to an improvement in its oral bioavailability and, consequently, a reduction in the treatment dose as a safe delivery system. Full article
Show Figures

Graphical abstract

24 pages, 3919 KB  
Article
High Drug Loading of Amorphous Solid Dispersion by Hot Melt Extrusion: The Role of Magnesium Aluminometasilicate (Neusilin® US2)
by Nithin Vidiyala, Pavani Sunkishala, Prashanth Parupathi, Preethi Mandati, Srujan Kumar Mantena, Raghu Rami Reddy Kasu and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(3), 30; https://doi.org/10.3390/scipharm93030030 - 16 Jul 2025
Cited by 2 | Viewed by 2280
Abstract
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of [...] Read more.
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of drug loading using Kollidon VA 64 (Copovidone) as a polymer matrix and Neusilin US2 as a porous carrier. The solid-state characterization of EZB was studied using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). The formulation blends were characterized for flow properties, and CTC (compressibility, tabletability, compactibility) profile. The in-vitro drug release profiles were studied in 0.1 N HCl (pH 1.2). The incorporation of Neusilin US2 has facilitated the development of ASDs up to 40% of drug loading. The CTC profile has demonstrated excellent tabletability for the ternary (EZB, copovidone and Neusilin) dispersions over binary dispersion (EZB and copovidone) formulations. The tablet formulations with binary (20%) and ternary (30% and 40%) dispersions have demonstrated complete dissolution of the drug in 30 min in 0.1 N HCl (pH 1.2). The incorporation of copovidone has prevented the recrystallization of the drug in the solution state. Upon storage of formulations at accelerated conditions, the stability of ternary dispersion tablets was preserved attributing to the entrapment of the drug within Neusilin pores thereby inhibiting molecular mobility. Based on the observations, the current research concludes that it is feasible to incorporate Neusilin US2 to improve the drug loading and stability of ASD systems. Full article
Show Figures

Figure 1

17 pages, 5405 KB  
Article
Development, Analysis, and Determination of Pharmacokinetic Properties of a Solid SMEDDS of Voriconazole for Enhanced Antifungal Therapy
by Hitesh Kumar Dewangan, Rajiv Sharma, Kamal Shah and Perwez Alam
Life 2024, 14(11), 1417; https://doi.org/10.3390/life14111417 - 2 Nov 2024
Cited by 4 | Viewed by 1820
Abstract
Background: Voriconazole is an antifungal drug, which is classified under Bio-Classification System-II and has low water solubility (0.71 mg/mL) and high permeability. Hardly any endeavors have been made to increase the bioavailability of voriconazole. Objective: To develop and evaluate a solid SMEDDS (self-microemulsifying [...] Read more.
Background: Voriconazole is an antifungal drug, which is classified under Bio-Classification System-II and has low water solubility (0.71 mg/mL) and high permeability. Hardly any endeavors have been made to increase the bioavailability of voriconazole. Objective: To develop and evaluate a solid SMEDDS (self-microemulsifying drug delivery system) for antifungal activity. Methods: Based on solubility studies of Labrafil-M 1994 CS (oil), Cremophor-RH 40 (a surfactant) and Transcutol-HP (a co-surfactant) were selected as components of the SMEDDS and a pseudo-ternary phase diagram was prepared. Thereafter, the oil, surfactant, and co-surfactant were mixed with altered weight ratios (1:1/1:2/2:1) and evaluated through various in vitro, in vivo analyses. Results: The particle size of the optimized formulation was observed to be 19.04 nm and the polydispersity index (PDI) value was found to be 0.162 with steady-state zeta potential. The optimized liquid SMEDDS was converted into a solid SMEDDS. Various adsorbents, such as Aerosil-200, Avicel-PH101, Neusilin-US2, and Neusilin UFL2 were screened to better detect the oil-absorbing capacity and flow properties of the powder. Neusilin UFL2 was selected as an adsorbent due to its better oil-absorbing capacity. DSC, X-ray diffraction, and dissolution studies were carried out to characterize the formulation. Further, the Pharmacokinetic profile was also studied in Wistar rats and the Cmax, tmax, and AUC0→t were calculated. The Cmax and AUC0→t plasma concentration is considerably better for the SMEDDS than for the pure drug and marketed formulation. Conclusions: This investigation clearly reveals the potential of developing a solid SMEDDS for candidiasis and invasive aspergillosis treatment, with better efficacy as compared to the commercially available marketed formulation. Full article
Show Figures

Figure 1

24 pages, 1698 KB  
Article
Hop Flower Supercritical Carbon Dioxide Extracts Coupled with Carriers with Solubilizing Properties—Antioxidant Activity and Neuroprotective Potential
by Anna Stasiłowicz-Krzemień and Judyta Cielecka-Piontek
Antioxidants 2023, 12(9), 1722; https://doi.org/10.3390/antiox12091722 - 5 Sep 2023
Cited by 6 | Viewed by 2405
Abstract
Lupuli flos shows many biological activities like antioxidant potential, extended by a targeted effect on selected enzymes, the expression of which is characteristic for neurodegenerative changes within the nervous system. Lupuli flos extracts (LFE) were prepared by supercritical carbon dioxide (scCO2) [...] Read more.
Lupuli flos shows many biological activities like antioxidant potential, extended by a targeted effect on selected enzymes, the expression of which is characteristic for neurodegenerative changes within the nervous system. Lupuli flos extracts (LFE) were prepared by supercritical carbon dioxide (scCO2) extraction with various pressure and temperature parameters. The antioxidant, chelating activity, and inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase by extracts were studied. The extracts containing ethanol were used as references. The most beneficial neuroprotective effects were shown by the extract obtained under 5000 PSI and 50 °C. The neuroprotective effect of active compounds is limited by poor solubility; therefore, carriers with solubilizing properties were used for scCO2 extracts, combined with post-scCO2 ethanol extract. Hydroxypropyl-β-cyclodextrin (HP-β-CD) in combination with magnesium aluminometasilicate (Neusilin US2) in the ratio 1:0.5 improved dissolution profiles to the greatest extent, while the apparent permeability coefficients of these compounds determined using the parallel artificial membrane permeability assay in the gastrointestinal (PAMPA GIT) model were increased the most by only HP-β-CD. Full article
Show Figures

Figure 1

24 pages, 2019 KB  
Article
Co-Dispersion Delivery Systems with Solubilizing Carriers Improving the Solubility and Permeability of Cannabinoids (Cannabidiol, Cannabidiolic Acid, and Cannabichromene) from Cannabis sativa (Henola Variety) Inflorescences
by Anna Stasiłowicz-Krzemień, Piotr Szulc and Judyta Cielecka-Piontek
Pharmaceutics 2023, 15(9), 2280; https://doi.org/10.3390/pharmaceutics15092280 - 4 Sep 2023
Cited by 13 | Viewed by 4406
Abstract
Cannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabichromene (CBC) are lipophilic compounds with limited water solubility, resulting in challenges related to their bioavailability and therapeutic efficacy upon oral administration. To overcome these limitations, we developed co-dispersion cannabinoid delivery systems with the biopolymer polyvinyl [...] Read more.
Cannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabichromene (CBC) are lipophilic compounds with limited water solubility, resulting in challenges related to their bioavailability and therapeutic efficacy upon oral administration. To overcome these limitations, we developed co-dispersion cannabinoid delivery systems with the biopolymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) and magnesium aluminometasilicate (Neusilin US2) to improve solubility and permeability. Recognizing the potential therapeutic benefits arising from the entourage effect, we decided to work with an extract instead of isolated cannabinoids. Cannabis sativa inflorescences (Henola variety) with a confirming neuroprotective activity were subjected to dynamic supercritical CO2 (scCO2) extraction and next they were combined with carriers (1:1 mass ratio) to prepare the co-dispersion cannabinoid delivery systems (HiE). In vitro dissolution studies were conducted to evaluate the solubility of CBD, CBDA, and CBC in various media (pH 1.2, 6.8, fasted, and fed state simulated intestinal fluid). The HiE-Soluplus delivery systems consistently demonstrated the highest dissolution rate of cannabinoids. Additionally, HiE-Soluplus exhibited the highest permeability coefficients for cannabinoids in gastrointestinal tract conditions than it was during the permeability studies using model PAMPA GIT. All three cannabinoids exhibited promising blood-brain barrier (BBB) permeability (Papp higher than 4.0 × 10−6 cm/s), suggesting their potential to effectively cross into the central nervous system. The improved solubility and permeability of cannabinoids from the HiE-Soluplus delivery system hold promise for enhancement in their bioavailability. Full article
(This article belongs to the Special Issue Dosage Form Formulation Technologies for Improving Bioavailability)
Show Figures

Graphical abstract

22 pages, 4286 KB  
Article
Screening of the Anti-Neurodegenerative Activity of Caffeic Acid after Introduction into Inorganic Metal Delivery Systems to Increase Its Solubility as the Result of a Mechanosynthetic Approach
by Anna Stasiłowicz-Krzemień, Natalia Rosiak, Andrzej Miklaszewski and Judyta Cielecka-Piontek
Int. J. Mol. Sci. 2023, 24(11), 9218; https://doi.org/10.3390/ijms24119218 - 24 May 2023
Cited by 11 | Viewed by 2791
Abstract
The proven anti-neurodegenerative properties of caffeic acid in vivo are limited due to its poor solubility, which limits bioavailability. Therefore, caffeic acid delivery systems have been developed to improve caffeic acid solubility. Solid dispersions of caffeic acid and magnesium aluminometasilicate (Neusilin US2—Neu) were [...] Read more.
The proven anti-neurodegenerative properties of caffeic acid in vivo are limited due to its poor solubility, which limits bioavailability. Therefore, caffeic acid delivery systems have been developed to improve caffeic acid solubility. Solid dispersions of caffeic acid and magnesium aluminometasilicate (Neusilin US2—Neu) were prepared using the ball milling and freeze-drying techniques. The solid dispersions of caffeic acid:Neu obtained by ball milling in a 1:1 mass ratio turned out to be the most effective. The identity of the studied system in comparison to the physical mixture was confirmed using the X-Ray Powder Diffractionand Fourier-transform infrared spectroscopy techniques. For caffeic acid with improved solubility, screening tests were carried out to assess its anti-neurodegenerative effect. The obtained results on the inhibition of acetylcholinesterase, butyrylcholinesterase, tyrosinase, and antioxidant potential provide evidence for improvement of caffeic acid’s anti-neurodegenerative activity. As a result of in silico studies, we estimated which caffeic acid domains were involved in interactions with enzymes showing expression relevant to the neuroprotective activity. Importantly, the confirmed improvement in permeability of the soluble version of caffeic acid through membranes simulating the walls of the gastrointestinal tract and blood-brain barrier further strengthen the credibility of the results of in vivo anti-neurodegenerative screening tests. Full article
(This article belongs to the Special Issue Phytochemicals in Neuroprotection)
Show Figures

Graphical abstract

19 pages, 4093 KB  
Article
Preparation and Evaluation of a Dosage Form for Individualized Administration of Lyophilized Probiotics
by Nicole Fülöpová, Natália Chomová, Jan Elbl, Dagmar Mudroňová, Patrik Sivulič, Sylvie Pavloková and Aleš Franc
Pharmaceutics 2023, 15(3), 910; https://doi.org/10.3390/pharmaceutics15030910 - 10 Mar 2023
Cited by 8 | Viewed by 4145
Abstract
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also [...] Read more.
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 Biocenol™ has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy. Full article
(This article belongs to the Special Issue Advance in Development of Patient-Centric Dosage Form, 2nd Edition)
Show Figures

Figure 1

19 pages, 2980 KB  
Article
Application of Machine-Learning Algorithms for Better Understanding the Properties of Liquisolid Systems Prepared with Three Mesoporous Silica Based Carriers
by Teodora Glišić, Jelena Djuriš, Ivana Vasiljević, Jelena Parojčić and Ivana Aleksić
Pharmaceutics 2023, 15(3), 741; https://doi.org/10.3390/pharmaceutics15030741 - 23 Feb 2023
Cited by 6 | Viewed by 2399
Abstract
The processing of liquisolid systems (LSS), which are considered a promising approach to improving the oral bioavailability of poorly soluble drugs, has proven challenging due to the relatively high amount of liquid phase incorporated within them. The objective of this study was to [...] Read more.
The processing of liquisolid systems (LSS), which are considered a promising approach to improving the oral bioavailability of poorly soluble drugs, has proven challenging due to the relatively high amount of liquid phase incorporated within them. The objective of this study was to apply machine-learning tools to better understand the effects of formulation factors and/or tableting process parameters on the flowability and compaction properties of LSS with silica-based mesoporous excipients as carriers. In addition, the results of the flowability testing and dynamic compaction analysis of liquisolid admixtures were used to build data sets and develop predictive multivariate models. In the regression analysis, six different algorithms were used to model the relationship between tensile strength (TS), the target variable, and eight other input variables. The AdaBoost algorithm provided the best-fit model for predicting TS (coefficient of determination = 0.94), with ejection stress (ES), compaction pressure, and carrier type being the parameters that influenced its performance the most. The same algorithm was best for classification (precision = 0.90), depending on the type of carrier used, with detachment stress, ES, and TS as variables affecting the performance of the model. Furthermore, the formulations with Neusilin® US2 were able to maintain good flowability and satisfactory values of TS despite having a higher liquid load compared to the other two carriers. Full article
(This article belongs to the Special Issue Recent Advances in Solid Dosage Form)
Show Figures

Figure 1

15 pages, 2192 KB  
Article
Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing
by Jan Elbl, Martin Veselý, Dagmar Blaháčková, Jaroslav Ondruš, Pavel Kulich, Eliška Mašková, Josef Mašek and Jan Gajdziok
Pharmaceutics 2023, 15(2), 714; https://doi.org/10.3390/pharmaceutics15020714 - 20 Feb 2023
Cited by 17 | Viewed by 4444
Abstract
The direct tailoring of the size, composition, or number of layers belongs to the advantages of 3D printing employment in producing orodispersible films (ODFs) compared to the frequently utilized solvent casting method. This study aimed to produce porous ODFs as a substrate for [...] Read more.
The direct tailoring of the size, composition, or number of layers belongs to the advantages of 3D printing employment in producing orodispersible films (ODFs) compared to the frequently utilized solvent casting method. This study aimed to produce porous ODFs as a substrate for medicated ink deposited by a 2D printer. The innovative semi-solid extrusion 3D printing method was employed to produce multilayered ODFs, where the bottom layer assures the mechanical properties. In contrast, the top layer provides a porous structure for ink entrapment. Hydroxypropyl methylcellulose and polyvinyl alcohol were utilized as film-forming polymers, glycerol as a plasticizer, and sodium starch glycolate as a disintegrant in the bottom matrix. Several porogen agents (Aeroperl® 300, Fujisil®, Syloid® 244 FP, Syloid® XDP 3050, Neusilin® S2, Neusilin® US2, and Neusilin® UFL2) acted as porosity enhancers in the two types of top layer. ODFs with satisfactory disintegration time were prepared. The correlation between the porogen content and the mechanical properties was proved. A porous ODF structure was detected in most samples and linked to the porogen content. SSE 3D printing represents a promising preparation method for the production of porous ODFs as substrates for subsequent drug deposition by 2D printing, avoiding the difficulties arising in casting or printing medicated ODFs directly. Full article
(This article belongs to the Special Issue 3D Printing Technology for Pharmaceutical and Biomedical Application)
Show Figures

Figure 1

27 pages, 3598 KB  
Article
Influences of Glimepiride Self-Nanoemulsifying Drug Delivery System Loaded Liquisolid Tablets on the Hypoglycemic Activity and Pancreatic Histopathological Changes in Streptozotocin-Induced Hyperglycemic Rats
by Tarek A. Ahmed, Hanadi A. Alotaibi, Alshaimaa M. Almehmady, Martin K. Safo and Khalid M. El-Say
Nanomaterials 2022, 12(22), 3966; https://doi.org/10.3390/nano12223966 - 10 Nov 2022
Cited by 7 | Viewed by 3230
Abstract
The development of an oral anti-diabetic medication characterized by enhanced hypoglycemic activity is in high demand. The goal was to study the hypoglycemic activity and pancreatic histopathology after the black-seed-based self-nanoemulsifying drug delivery system (SNEDDS) loaded with glimepiride liquisolid tablets to diabetic rats. [...] Read more.
The development of an oral anti-diabetic medication characterized by enhanced hypoglycemic activity is in high demand. The goal was to study the hypoglycemic activity and pancreatic histopathology after the black-seed-based self-nanoemulsifying drug delivery system (SNEDDS) loaded with glimepiride liquisolid tablets to diabetic rats. The solubility of glimepiride in various vehicles was investigated. An optimization SNEDDS formulation was developed using a mixture of the experimental design approach. Box–Behnken design (BBD) was used to develop glimepiride liquisolid tablets utilizing Avicel PH 101 and Neusilin as a carrier mixture and FujiSil as a coating material. The quality attributes of the prepared tablets were assessed. Following the administration of the optimized tablets to diabetic rats, the pharmacodynamics and histopathological changes were investigated and compared to a commercial drug product. Results revealed that the optimized SNEDDS formulation that contains 15.43% w/w black seed oil, 40% w/w Tween 80, and 44.57% w/w Polyethylene glycol 400 showed an average droplet size of 34.64 ± 2.01 nm and a drug load of 36.67 ± 3.13 mg/mL. The optimized tablet formulation contained 0.31% Avicel in the carrier mixture, a 14.99 excipient ratio, and 8% superdisintegrant. Pre- and post-compression properties were satisfactory, and the optimized glimepiride liquisolid tablet showed a two-fold increase in dissolution. The optimized tablet demonstrated superior pharmacodynamics. The pancreatic tissues of the group treated with the optimized tablet displayed normal histological structure. The obtained data offered a commercially viable alternative for manufacturing solid dosage forms containing water-insoluble drugs, but additional clinical research is required. Full article
Show Figures

Figure 1

21 pages, 5692 KB  
Article
High-Shear Wet Granulation of SMEDDS Based on Mesoporous Carriers for Improved Carvedilol Solubility
by Mila Kovačević, Ilija German Ilić, Katarina Bolko Seljak and Alenka Zvonar Pobirk
Pharmaceutics 2022, 14(10), 2077; https://doi.org/10.3390/pharmaceutics14102077 - 29 Sep 2022
Cited by 15 | Viewed by 4007
Abstract
Mesoporous carriers are a convenient choice for the solidification of self-microemulsifying drug delivery systems (SMEDDS) designed to improve the solubility of poorly water-soluble drugs. They are known for high liquid load capacity and the ability to maintain characteristics of dry, free-flowing powders. Therefore, [...] Read more.
Mesoporous carriers are a convenient choice for the solidification of self-microemulsifying drug delivery systems (SMEDDS) designed to improve the solubility of poorly water-soluble drugs. They are known for high liquid load capacity and the ability to maintain characteristics of dry, free-flowing powders. Therefore, five different mesoporous carriers were used for the preparation of carvedilol-loaded SMEDDS granules by wet granulation methods—in paten (manually) and using a high-shear (HS) granulator. Granules with the highest SMEDDS content (63% and 66% of total granules mass, respectively) and suitable flow properties were obtained by Syloid® 244FP and Neusilin® US2. SMEDDS loaded granules produced by HS granulation showed superior flow characteristics compared to those obtained manually. All SMEDDS granules exhibited fast in vitro release, with 93% of carvedilol releasing from Syloid® 244FP-based granules in 5 min. Upon compaction into self-microemulsifying tablets, suitable tablet hardness and very fast disintegration time were achieved, thus producing orodispersible tablets. The compaction slightly slowed down the carvedilol release rate; nevertheless, upon 1 h (at pH 1.2) or 4 h (at pH 6.8) of in vitro dissolution testing, the amount of released drug was comparable with granules, confirming the suitability of orodispersible tablets for the production of the SMEDDS loaded single unit oral dosage form. Full article
(This article belongs to the Special Issue Strategies for Enhancing the Bioavailability of Poorly Soluble Drugs)
Show Figures

Figure 1

21 pages, 4798 KB  
Article
Rational Design of Self-Emulsifying Pellet Formulation of Thymol: Technology Development Guided by Molecular-Level Structure Characterization and Ex Vivo Testing
by Jan Macku, Katerina Kubova, Martina Urbanova, Jan Muselik, Ales Franc, Gabriela Koutna, Miroslava Pavelkova, David Vetchy, Josef Masek, Eliska Maskova and Jiri Brus
Pharmaceutics 2022, 14(8), 1545; https://doi.org/10.3390/pharmaceutics14081545 - 25 Jul 2022
Cited by 4 | Viewed by 3364
Abstract
The growing need for processing natural lipophilic and often volatile substances such as thymol, a promising candidate for topical treatment of intestinal mucosa, led us to the utilization of solid-state nuclear magnetic resonance (ss-NMR) spectroscopy for the rational design of enteric pellets with [...] Read more.
The growing need for processing natural lipophilic and often volatile substances such as thymol, a promising candidate for topical treatment of intestinal mucosa, led us to the utilization of solid-state nuclear magnetic resonance (ss-NMR) spectroscopy for the rational design of enteric pellets with a thymol self-emulsifying system (SES). The SES (triacylglycerol, Labrasol®, and propylene glycol) provided a stable o/w emulsion with particle size between 1 and 7 µm. The ex vivo experiment confirmed the SES mucosal permeation and thymol delivery to enterocytes. Pellets W90 (MCC, Neusilin®US2, chitosan) were prepared using distilled water (90 g) by the M1–M3 extrusion/spheronisation methods varying in steps number and/or cumulative time. The pellets (705–740 µm) showed mostly comparable properties—zero friability, low intraparticular porosity (0–0.71%), and relatively high density (1.43–1.45%). They exhibited similar thymol release for 6 h (burst effect in 15th min ca. 60%), but its content increased (30–39.6 mg/g) with a shorter process time. The M3-W90 fluid-bed coated pellets (Eudragit®L) prevented undesirable thymol release in stomach conditions (<10% for 3 h). A detailed, ss-NMR investigation revealed structural differences across samples prepared by M1–M3 methods concerning system stability and internal interactions. The suggested formulation and methodology are promising for other lipophilic volatiles in treating intestinal diseases. Full article
(This article belongs to the Collection Advanced Pharmaceutical Research in the Czech Republic)
Show Figures

Graphical abstract

34 pages, 5655 KB  
Article
Solid Self-Nano Emulsifying Nanoplatform Loaded with Tamoxifen and Resveratrol for Treatment of Breast Cancer
by Nupur Shrivastava, Ankit Parikh, Rikeshwer Prasad Dewangan, Largee Biswas, Anita Kamra Verma, Saurabh Mittal, Javed Ali, Sanjay Garg and Sanjula Baboota
Pharmaceutics 2022, 14(7), 1486; https://doi.org/10.3390/pharmaceutics14071486 - 18 Jul 2022
Cited by 38 | Viewed by 5247
Abstract
The solid self-nanoemulsifying drug delivery system (s-SNEDDS) is a growing platform for the delivery of drugs via oral route. In the present work, tamoxifen (TAM) was loaded in SNEDDS with resveratrol (RES), which is a potent chemotherapeutic, antioxidant, anti-inflammatory and P-gp inhibitor for [...] Read more.
The solid self-nanoemulsifying drug delivery system (s-SNEDDS) is a growing platform for the delivery of drugs via oral route. In the present work, tamoxifen (TAM) was loaded in SNEDDS with resveratrol (RES), which is a potent chemotherapeutic, antioxidant, anti-inflammatory and P-gp inhibitor for enhancing bioavailability and to obtain synergistic anti-cancer effect against breast cancer. SNEDDS were developed using capmul MCM as oil, Tween 80 as surfactant and transcutol-HP as co-surfactant and optimized by central composite rotatable design. Neusilin US2 concentration was optimized for adsorption of liquid SNEDDS to prepare s-SNEDDS. The developed formulation was characterized and investigated for various in vitro and cell line comparative studies. Optimized TAM-RES-s-SNEDDS showed spherical droplets of a size less than 200 nm. In all in vitro studies, TAM-RES-s-SNEDDS showed significantly improved (p ˂ 0.05) release and permeation across the dialysis membrane and intestinal lumen. Moreover, TAM-RES-s-SNEDDS possessed significantly greater therapeutic efficacy (p < 0.05) and better internalization on the MCF-7 cell line as compared to the conventional formulation. Additionally, oral bioavailability of TAM from SNEDDS was 1.63 folds significantly higher (p < 0.05) than that of combination suspension and 4.16 folds significantly higher (p < 0.05) than TAM suspension. Thus, findings suggest that TAM- RES-s-SNEDDS can be the future delivery system that potentially delivers both drugs to cancer cells for better treatment. Full article
(This article belongs to the Special Issue Nanocarriers for Cancer Therapy and Diagnosis)
Show Figures

Graphical abstract

18 pages, 2069 KB  
Article
Comparative Study of Powder Carriers Physical and Structural Properties
by Klára Kostelanská, Barbora Blahová Prudilová, Sylva Holešová, Jakub Vlček, David Vetchý and Jan Gajdziok
Pharmaceutics 2022, 14(4), 818; https://doi.org/10.3390/pharmaceutics14040818 - 8 Apr 2022
Cited by 24 | Viewed by 5645
Abstract
High specific surface area (SSA), porous structure, and suitable technological characteristics (flow, compressibility) predetermine powder carriers to be used in pharmaceutical technology, especially in the formulation of liquisolid systems (LSS) and solid self-emulsifying delivery systems (s-SEDDS). Besides widely used microcrystalline cellulose, other promising [...] Read more.
High specific surface area (SSA), porous structure, and suitable technological characteristics (flow, compressibility) predetermine powder carriers to be used in pharmaceutical technology, especially in the formulation of liquisolid systems (LSS) and solid self-emulsifying delivery systems (s-SEDDS). Besides widely used microcrystalline cellulose, other promising materials include magnesium aluminometasilicates, mesoporous silicates, and silica aerogels. Clay minerals with laminar or fibrous internal structures also provide suitable properties for liquid drug incorporation. This work aimed at a comparison of 14 carriers’ main properties. Cellulose derivatives, silica, silicates, and clay minerals were evaluated for flow properties, shear cell experiments, SSA, hygroscopicity, pH, particle size, and SEM. The most promising materials were magnesium aluminometasilicates, specifically Neusilin® US2, due to its proper flow, large SSA, etc. Innovative materials such as FujiSil® or Syloid® XDP 3050 were for their properties evaluated as suitable. The obtained data can help choose a suitable carrier for formulations where the liquid phase is incorporated into the solid dosage form. All measurements were conducted by the same methodology and under the same conditions, allowing a seamless comparison of property evaluation between carriers, for which available company or scientific sources do not qualify due to different measurements, conditions, instrumentation, etc. Full article
(This article belongs to the Collection Advanced Pharmaceutical Research in the Czech Republic)
Show Figures

Graphical abstract

18 pages, 3848 KB  
Article
Exploration of Neusilin® US2 as an Acceptable Filler in HPMC Matrix Systems—Comparison of Pharmacopoeial and Dynamic Biorelevant Dissolution Study
by Tomáš Bílik, Jakub Vysloužil, Martina Naiserová, Jan Muselík, Miroslava Pavelková, Josef Mašek, Drahomíra Čopová, Martin Čulen and Kateřina Kubová
Pharmaceutics 2022, 14(1), 127; https://doi.org/10.3390/pharmaceutics14010127 - 5 Jan 2022
Cited by 5 | Viewed by 3644
Abstract
Modern pharmaceutical technology still seeks new excipients and investigates the further use in already known ones. An example is magnesium aluminometasilicate Neusilin® US2 (NEU), a commonly used inert filler with unique properties that are usable in various pharmaceutical fields of interest. We [...] Read more.
Modern pharmaceutical technology still seeks new excipients and investigates the further use in already known ones. An example is magnesium aluminometasilicate Neusilin® US2 (NEU), a commonly used inert filler with unique properties that are usable in various pharmaceutical fields of interest. We aimed to explore its application in hypromellose matrix systems (HPMC content 10–30%) compared to the traditionally used microcrystalline cellulose (MCC) PH 102. The properties of powder mixtures and directly compressed tablets containing individual fillers NEU or MCC, or their blend with ratios of 1.5:1, 1:1, and 0.5:1 were investigated. Besides the routine pharmaceutical testing, we have enriched the matrices’ evaluation with a biorelevant dynamic dissolution study and advanced statistical analysis. Under the USP apparatus 2 dissolution test, NEU, individually, did not provide advantages compared to MCC. The primary limitations were the burst effect increase followed by faster drug release at the 10–20% HPMC concentrations. However, the biorelevant dynamic dissolution study did not confirm these findings and showed similarities in dissolution profiles. It indicates the limitations of pharmacopoeial methods in matrix tablet development. Surprisingly, the NEU/MCC blend matrices at the same HPMC concentration showed technologically advantageous properties. Besides improved flowability, tablet hardness, and a positive impact on the in vitro drug dissolution profile toward zero-order kinetics, the USP 2 dissolution data of the samples N75M50 and N50M50 showed a similarity to those obtained from the dynamic biorelevant apparatus with multi-compartment structure. This finding demonstrates the more predictable in vivo behaviour of the developed matrix systems in human organisms. Full article
(This article belongs to the Collection Advanced Pharmaceutical Research in the Czech Republic)
Show Figures

Figure 1

Back to TopTop