Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Print Dispersion Preparation and Viscosity Evaluation
2.3. SSE 3D Printing
2.4. Weight
2.5. Thickness
2.6. Mechanical Properties
2.7. Disintegration Time
2.8. Micro-CT
2.9. Scanning Electron Microscopy
3. Results and Discussions
3.1. SSE 3D Printing, Viscosity Evaluation
3.2. Weight
3.3. Thickness
3.4. Mechanical Properties
3.5. Disintegration Time
3.6. Micro-CT
3.7. Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Planchette, C.; Pichler, H.; Wimmer-Teubenbacher, M.; Gruber, M.; Gruber-Woelfler, H.; Mohr, S.; Tetyczka, C.; Hsiao, W.-K.; Paudel, A.; Roblegg, E.; et al. Printing Medicines as Orodispersible Dosage Forms: Effect of Substrate on the Printed Micro-Structure. Int. J. Pharm. 2016, 509, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Knowles, L.; Luth, W.; Bubela, T. Paving the road to personalized medicine: Recommendations on regulatory, intellectual property and reimbursement challenges. J. Law Biosci. 2017, 4, 453–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.S. Ways to Minimize Adverse Drug Reactions. Postgrad. Med. 1999, 106, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, D.E.; Moeckel, F.; Villa, M.S.; Housman, L.T.; McCarty, C.A.; McLeod, H.L. Strategies for integrating personalized medicine into healthcare practice. Pers. Med. 2017, 14, 141–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamróz, W.; Kurek, M.; Łyszczarz, E.; Szafraniec, J.; Knapik-Kowalczuk, J.; Syrek, K.; Paluch, M.; Jachowicz, R. 3D Printed Orodispersible Films with Aripiprazole. Int. J. Pharm. 2017, 533, 413–420. [Google Scholar] [CrossRef]
- Sjöholm, E.; Sandler, N. Additive Manufacturing of Personalized Orodispersible Warfarin Films. Int. J. Pharm. 2019, 564, 117–123. [Google Scholar] [CrossRef]
- Roden, D.F.; Altman, K.W. Causes of Dysphagia Among Different Age Groups: A Systematic Review of the Literature. Otolaryngol. Clin. N. Am. 2013, 46, 965–987. [Google Scholar] [CrossRef]
- Breitkreutz, J.; Boos, J. Paediatric and Geriatric Drug Delivery. Expert Opin. Drug Deliv. 2007, 4, 37–45. [Google Scholar] [CrossRef]
- Preis, M.; Pein, M.; Breitkreutz, J. Development of a Taste-Masked Orodispersible Film Containing Dimenhydrinate. Pharmaceutics 2012, 4, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Panraksa, P.; Tipduangta, P.; Jantanasakulwong, K.; Jantrawut, P. Formulation of Orally Disintegrating Films as an Amorphous Solid Solution of a Poorly Water-Soluble Drug. Membranes 2020, 10, 376. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Nishimatsu, T.; Tahara, K.; Takeuchi, H. Novel Use of Insoluble Particles as Disintegration Enhancers for Orally Disintegrating Films. J. Drug Deliv. Sci. Technol. 2019, 54, 101310. [Google Scholar] [CrossRef]
- Cilurzo, F.; Musazzi, U.M.; Franzé, S.; Selmin, F.; Minghetti, P. Orodispersible dosage forms: Biopharmaceutical improvements and regulatory requirements. Drug Discov. Today 2018, 23, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavkova, M.; Breitkreutz, J. Orodispersible drug formulations for children and elderly. Eur. J. Pharm. Sci. 2015, 75, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Genina, N.; Janßen, E.M.; Breitenbach, A.; Breitkreutz, J.; Sandler, N. Evaluation of Different Substrates for Inkjet Printing of Rasagiline Mesylate. Eur. J. Pharm. Biopharm. 2013, 85, 1075–1083. [Google Scholar] [CrossRef]
- Hoffmann, E.M.; Breitenbach, A.; Breitkreutz, J. Advances in Orodispersible Films for Drug Delivery. Expert Opin. Drug Deliv. 2011, 8, 299–316. [Google Scholar] [CrossRef]
- Dixit, R.P.; Puthli, S.P. Oral Strip Technology: Overview and Future Potential. J. Control. Release 2009, 139, 94–107. [Google Scholar] [CrossRef]
- Janßen, E.M.; Schliephacke, R.; Breitenbach, A.; Breitkreutz, J. Drug-Printing by Flexographic Printing Technology—A New Manufacturing Process for Orodispersible Films. Int. J. Pharm. 2013, 441, 818–825. [Google Scholar] [CrossRef]
- Seoane-Viaño, I.; Januskaite, P.; Alvarez-Lorenzo, C.; Basit, A.W.; Goyanes, A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control. Release 2021, 332, 367–389. [Google Scholar] [CrossRef]
- Iftimi, L.-D.; Edinger, M.; Bar-Shalom, D.; Rantanen, J.; Genina, N. Edible Solid Foams as Porous Substrates for Inkjet-Printable Pharmaceuticals. Eur. J. Pharm. Biopharm. 2019, 136, 38–47. [Google Scholar] [CrossRef]
- Edinger, M.; Bar-Shalom, D.; Sandler, N.; Rantanen, J.; Genina, N. QR Encoded Smart Oral Dosage Forms by Inkjet Printing. Int. J. Pharm. 2018, 536, 138–145. [Google Scholar] [CrossRef]
- Borges, A.F.; Silva, C.; Coelho, J.F.J.; Simões, S. Oral Films: Current Status and Future Perspectives: I—Galenical Development and Quality Attributes. J. Control. Release 2015, 206, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alomari, M.; Mohamed, F.H.; Basit, A.W.; Gaisford, S. Personalised Dosing: Printing a Dose of One’s Own Medicine. Int. J. Pharm. 2015, 494, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Raijada, D.; Genina, N.; Fors, D.; Wisaeus, E.; Peltonen, J.; Rantanen, J.; Sandler, N. A Step Toward Development of Printable Dosage Forms for Poorly Soluble Drugs. J. Pharm. Sci. 2013, 102, 3694–3704. [Google Scholar] [CrossRef] [PubMed]
- Vraníková, B.; Niederquell, A.; Šklubalová, Z.; Kuentz, M. Relevance of the Theoretical Critical Pore Radius in Mesoporous Silica for Fast Crystallizing Drugs. Int. J. Pharm. 2020, 591, 120019. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Yamakawa, R.; Nishimatsu, T.; Takeuchi, Y.; Hayakawa, K.; Maruyama, N. Design of Rapidly Disintegrating Drug Delivery Films for Oral Doses with Hydoxypropyl Methylcellulose. J. Drug Deliv. Sci. Technol. 2013, 23, 471–475. [Google Scholar] [CrossRef]
- Elbl, J.; Gajdziok, J.; Kolarczyk, J. 3D Printing of Multilayered Orodispersible Films with In-Process Drying. Int. J. Pharm. 2020, 575, 118883. [Google Scholar] [CrossRef]
- Janigová, N.; Elbl, J.; Pavloková, S.; Gajdziok, J. Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films. Pharmaceutics 2022, 14, 250. [Google Scholar] [CrossRef]
- Preis, M.; Gronkowsky, D.; Grytzan, D.; Breitkreutz, J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J. Pharm. Pharmacol. 2014, 66, 1102–1111. [Google Scholar] [CrossRef]
- Preis, M.; Knop, K.; Breitkreutz, J. Mechanical Strength Test for Orodispersible and Buccal Films. Int. J. Pharm. 2014, 461, 22–29. [Google Scholar] [CrossRef]
- Gupta, M.S.; Kumar, T.P.; Gowda, D.V.; Rosenholm, J.M. Orodispersible Films: Conception to Quality by Design. Adv. Drug Deliv. Rev. 2021, 178, 113983. [Google Scholar] [CrossRef]
- Rycerz, K.; Stepien, K.A.; Czapiewska, M.; Arafat, B.T.; Habashy, R.; Isreb, A.; Peak, M.; Alhnan, M.A. Embedded 3D Printing of Novel Bespoke Soft Dosage Form Concept for Pediatrics. Pharmaceutics 2019, 11, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Orally Disintegrating Tablets. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets (accessed on 12 December 2022).
- European Pharmacopoeia 10.8. Available online: https://www.edqm.eu/en/-/european-pharmacopoeia-supplement-10.8-now-available (accessed on 12 December 2022).
- Liew, K.B.; Tan, Y.T.F.; Peh, K.K. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev. Ind. Pharm. 2014, 40, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Buanz, A.B.M.; Saunders, M.H.; Basit, A.W.; Gaisford, S. Preparation of Personalized-Dose Salbutamol Sulphate Oral Films with Thermal Ink-Jet Printing. Pharm. Res. 2011, 28, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
Composition Type | Sample | Excipient Concentration in Dispersion (wt%) | |||||||
---|---|---|---|---|---|---|---|---|---|
PVA | HPMC | Gly | Ex + Et | W | X | Porogen | No of Layers | ||
Bottom layer matrix | FM | 5 | 1.5 | 5 | 2.5 + 2.5 | 83.5 | - | X | 2 or 3 |
Type A top layer | *0.5 | 5 | 1.5 | 5 | 2.5 + 2.5 | 83.0 | - | 0.5 | 3 |
*1 | 5 | 1.5 | 5 | 2.5 + 2.5 | 82.5 | - | 1.0 | 3 | |
*1.5 | 5 | 1.5 | 5 | 2.5 + 2.5 | 82.0 | - | 1.5 | 3 | |
Type B top layer | X*2.5 | 1 | - | - | - | 96.0625 | 0.4375 | 2.5 | 2 |
X*5 | 1 | - | - | - | 93.5750 | 0.4250 | 5.0 | 2 |
Composition Type | Sample | Viscosity (cP) | AVG Weight (mg) | RSD (%) | AVG Thickness (µm) | RSD (%) |
---|---|---|---|---|---|---|
MATRIX | FM | 57.10 | 88.0 ± 3.80 | 4.32 | 124.11 ± 17.75 | 14.26 |
A | A0.5 | 67.25 | 83.8 ± 0.64 | 0.76 | 130.86 ± 30.70 | 23.46 |
A1 | 96.50 | 86.1 ± 0.51 | 0.59 | 134.62 ± 30.50 | 22.66 | |
A1.5 | 118.00 | 85.7 ± 1.27 | 1.48 | 125.24 ± 27.00 | 21.56 | |
F0.5 | 98.25 | 80.6 ± 0.58 | 0.72 | 107.25 ± 17.00 | 15.85 | |
F1 | 108.50 | 80.9 ± 0.67 | 0.83 | 114.15 ± 17.19 | 15.06 | |
F1.5 | 116.80 | 83.9 ± 0.73 | 0.87 | 128.93 ± 22.78 | 17.67 | |
NS0.5 | 79.25 | 80.5 ± 0.66 | 0.82 | 110.04 ± 19.86 | 18.05 | |
NS1 | 112.80 | 83.8 ± 0.68 | 0.81 | 120.61 ± 19.67 | 16.31 | |
NS1.5 | 195.80 | 83.9 ± 0.73 | 0.87 | 115.78 ± 17.38 | 15.01 | |
NUS0.5 | 122.00 | 78.8 ± 1.73 | 2.19 | 107.87 ± 17.93 | 16.62 | |
NUS1 | 127.30 | 79.8 ± 0.73 | 0.92 | 131.77 ± 21.47 | 16.29 | |
NUS1.5 | 136.50 | 83.2 ± 2.62 | 3.15 | 149.87 ± 33.18 | 22.14 | |
NUFL0.5 | 109.50 | 86.4 ± 2.03 | 2.35 | 115.16 ± 19.21 | 16.68 | |
NUFL1 | 174.30 | 85.2 ± 2.01 | 2.36 | 115.26 ± 17.61 | 15.28 | |
NUFL1.5 | 216.80 | 91.1 ± 3.17 | 3.48 | 136.78 ± 23.21 | 16.97 | |
SFP0.5 | 76.75 | 86.3 ± 0.81 | 0.94 | 111.12 ± 14.06 | 12.65 | |
SFP1 | 124.30 | 90.0 ± 0.98 | 1.09 | 112.21 ± 21.30 | 18.98 | |
SFP1.5 | 187.50 | 90.4 ± 0.89 | 0.99 | 110.78 ± 18.08 | 16.32 | |
SX0.5 | 69.25 | 86.6 ± 1.10 | 1.27 | 102.92 ± 15.67 | 15.23 | |
SX1 | 89.25 | 86.9 ± 1.46 | 1.68 | 105.14 ± 10.73 | 10.21 | |
SX1.5 | 111.00 | 89.7 ± 1.46 | 1.63 | 127.05 ± 20.66 | 16.26 | |
B | XA2.5 | 71.00 | 61.6 ± 0.68 | 1.11 | 77.34 ± 7.86 | 10.16 |
XA5 | 95.00 | 63.1 ± 1.53 | 2.43 | 96.73 ± 10.98 | 11.35 | |
XF2.5 | 74.00 | 61.0 ± 2.95 | 4.83 | 82.91 ± 10.53 | 12.70 | |
XF5 | 105.30 | 66.5 ± 1.96 | 2.94 | 113.59 ± 13.97 | 12.30 | |
XNS2.5 | 76.75 | 62.4 ± 0.80 | 1.28 | 77.07 ± 10.38 | 13.47 | |
XNS5 | 84.75 | 66.3 ± 1.33 | 2.01 | 87.43 ± 11.86 | 13.57 | |
XNUS2.5 | 73.25 | 56.3 ± 0.83 | 1.47 | 79.92 ± 10.31 | 12.90 | |
XNUFL2.5 | 77.00 | 59.7 ± 0.46 | 0.77 | 78.26 ± 10.92 | 13.95 | |
XSFP2.5 | 88.50 | 62.4 ± 0.34 | 0.54 | 79.36 ± 15.13 | 19.06 | |
XSX2.5 | 67.25 | 61.9 ± 0.58 | 0.93 | 78.50 ± 8.81 | 11.22 | |
XSX5 | 94.25 | 67.6 ± 0.55 | 0.81 | 114.47 ± 16.17 | 14.13 |
Composition Type | Sample | Tensile Strength (N/mm2) | SD (N/mm2) | Elongation at Break (%) | SD (%) |
---|---|---|---|---|---|
MATRIX | FM | 7.07 | 0.24 | 45.80 | 10.56 |
A | A0.5 | 2.99 | 0.21 | 59.00 | 8.23 |
A1 | 3.09 | 0.11 | 55.50 | 4.83 | |
A1.5 | 3.70 | 0.11 | 59.60 | 6.69 | |
F0.5 | 2.64 | 0.11 | 30.80 | 3.12 | |
F1 | 2.43 | 0.18 | 23.00 | 2.00 | |
F1.5 | 2.11 | 0.14 | 19.30 | 3.20 | |
NS0.5 | 3.50 | 0.07 | 50.70 | 5.10 | |
NS1 | 3.39 | 0.08 | 46.40 | 2.07 | |
NS1.5 | 3.94 | 0.13 | 46.40 | 6.84 | |
NUS0.5 | 3.97 | 0.12 | 52.20 | 6.36 | |
NUS1 | 3.25 | 0.14 | 37.80 | 3.21 | |
NUS1.5 | 2.95 | 0.14 | 35.10 | 4.59 | |
NUFL0.5 | 1.86 | 0.15 | 21.60 | 3.51 | |
NUFL1 | 2.00 | 0.16 | 21.00 | 3.18 | |
NUFL1.5 | 1.68 | 0.11 | 18.80 | 1.28 | |
SFP0.5 | 2.12 | 0.19 | 24.90 | 3.10 | |
SFP1 | 2.01 | 0.14 | 22.40 | 2.48 | |
SFP1.5 | 2.07 | 0.04 | 24.90 | 2.16 | |
SX0.5 | 1.65 | 0.02 | 29.30 | 0.90 | |
SX1 | 2.16 | 0.06 | 29.50 | 0.83 | |
SX1.5 | 1.79 | 0.01 | 24.70 | 1.46 | |
B | XA2.5 | 2.33 | 0.09 | 17.10 | 1.87 |
XA5 | 1.13 | 0.05 | 16.00 | 1.86 | |
XF2.5 | 1.56 | 0.10 | 11.70 | 1.32 | |
XF5 | 0.85 | 0.28 | 7.70 | 2.57 | |
XNS2.5 | 1.98 | 0.27 | 17.10 | 2.68 | |
XNS5 | 1.63 | 0.06 | 11.10 | 0.79 | |
XNUS2.5 | 1.27 | 0.07 | 12.50 | 0.28 | |
XNUFL2.5 | 1.76 | 0.27 | 12.80 | 2.73 | |
XSFP2.5 | 1.19 | 0.25 | 7.80 | 1.45 | |
XSX2.5 | 1.99 | 0.30 | 13.30 | 3.13 | |
XSX5 | 1.22 | 0.10 | 12.40 | 0.84 |
Composition Type | Sample | Puncture Strength (N/mm2) | SD (N/mm2) | Elongation to Puncture (%) | SD (%) |
---|---|---|---|---|---|
MATRIX | FM | 1.95 | 0.26 | 48.51 | 6.56 |
A | A0.5 | 1.09 | 0.07 | 21.34 | 1.16 |
A1 | 0.89 | 0.06 | 16.51 | 0.55 | |
A1.5 | 1.05 | 0.08 | 17.16 | 0.81 | |
F0.5 | 0.6 | 0.03 | 9.69 | 0.44 | |
F1 | 0.52 | 0.06 | 8.05 | 0.44 | |
F1.5 | 0.48 | 0.05 | 6.61 | 0.36 | |
NS0.5 | 0.88 | 0.14 | 18.87 | 1.34 | |
NS1 | 0.64 | 0.01 | 9.84 | 0.35 | |
NS1.5 | 0.58 | 0.08 | 8.75 | 0.69 | |
NUS0.5 | 0.92 | 0.10 | 12.84 | 1.05 | |
NUS1 | 0.94 | 0.07 | 12.1 | 0.56 | |
NUS1.5 | 0.79 | 0.14 | 9.61 | 0.81 | |
NUFL0.5 | 0.33 | 0.04 | 6.23 | 0.21 | |
NUFL1 | 0.32 | 0.03 | 5.58 | 0.41 | |
NUFL1.5 | 0.33 | 0.03 | 5.46 | 0.16 | |
SFP0.5 | 0.49 | 0.03 | 8.96 | 0.35 | |
SFP1 | 0.39 | 0.03 | 6.99 | 0.23 | |
SFP1.5 | 0.36 | 0.01 | 7.25 | 0.27 | |
SX0.5 | 0.31 | 0.02 | 8.32 | 0.18 | |
SX1 | 0.38 | 0.02 | 7.91 | 0.24 | |
SX1.5 | 0.40 | 0.03 | 7.58 | 0.43 | |
B | XA2.5 | 0.22 | 0.03 | 4.21 | 0.49 |
XA5 | 0.13 | 0.01 | 3.91 | 0.45 | |
XF2.5 | 0.15 | 0.03 | 3.21 | 0.44 | |
XF5 | 0.16 | 0.03 | 3.62 | 0.33 | |
XNS2.5 | 0.22 | 0.02 | 4.68 | 0.30 | |
XNS5 | 0.18 | 0.01 | 3.30 | 0.24 | |
XNUS2.5 | 0.15 | 0.01 | 3.72 | 0.23 | |
XNUFL2.5 | 0.21 | 0.01 | 4.53 | 0.21 | |
XSFP2.5 | 0.14 | 0.05 | 2.94 | 0.65 | |
XSX2.5 | 0.25 | 0.02 | 4.63 | 0.28 | |
XSX5 | 0.25 | 0.03 | 5.18 | 0.40 |
Composition Type | Sample | AVG DT (s) | AVG DT to 100 µm (s) | RSD (%) | Porosity |
---|---|---|---|---|---|
MATRIX | FM | 17.90 ± 1.57 | 14.42 ± 1.26 | 8.75 | 8.7 |
A | A0.5 | 13.67 ± 0.80 | 10.45 ± 0.61 | 5.83 | X |
A1 | 12.95 ± 0.47 | 9.62 ± 0.35 | 3.60 | x | |
A1.5 | 12.23 ± 1.25 | 9.76 ± 1.00 | 10.24 | 1.76 | |
F0.5 | 9.95 ± 1.53 | 9.27 ± 1.42 | 15.35 | x | |
F1 | 10.50 ± 1.20 | 9.20 ± 1.05 | 11.41 | x | |
F1.5 | 10.74 ± 1.14 | 8.33 ± 0.88 | 10.61 | 8.94 | |
NS0.5 | 11.98 ± 0.53 | 10.88 ± 0.48 | 4.39 | x | |
NS1 | 13.01 ± 0.65 | 10.79 ± 0.54 | 5.02 | x | |
NS1.5 | 12.08 ± 0.80 | 10.43 ± 0.69 | 6.60 | 1.29 | |
NUS0.5 | 9.82 ± 1.83 | 9.10 ± 1.70 | 18.69 | x | |
NUS1 | 11.10 ± 0.38 | 8.43 ± 0.29 | 3.46 | x | |
NUS1.5 | 9.25 ± 3.16 | 6.17 ± 2.11 | 34.17 | 2.24 | |
NUFL0.5 | 11.50 ± 0.14 | 9.99 ± 0.12 | 1.22 | x | |
NUFL1 | 11.33 ± 1.32 | 9.83 ± 1.15 | 11.66 | x | |
NUFL1.5 | 10.94 ± 1.53 | 8.00 ± 1.12 | 13.99 | 7.38 | |
SFP0.5 | 12.19 ± 0.66 | 10.97 ± 0.60 | 5.43 | x | |
SFP1 | 10.46 ± 1.09 | 9.33 ± 0.97 | 10.40 | x | |
SFP1.5 | 9.39 ± 0.42 | 8.48 ± 0.38 | 4.48 | 2.25 | |
SX0.5 | 9.76 ± 0.41 | 9.48 ± 0.40 | 4.25 | x | |
SX1 | 10.81 ± 0.88 | 10.28 ± 0.84 | 8.16 | x | |
SX1.5 | 10.37 ± 0.54 | 8.17 ± 0.43 | 5.22 | 3.18 | |
B | XA2.5 | 5.57 ± 0.28 | 7.20 ± 0.36 | 4.96 | x |
XA5 | 3.69 ± 0.09 | 3.82 ± 0.09 | 2.42 | 17.64 | |
XF2.5 | 4.61 ± 0.46 | 5.56 ± 0.56 | 10.04 | x | |
XF5 | 3.46 ± 0.49 | 3.05 ± 0.43 | 14.17 | 22.76 | |
XNS2.5 | 4.71 ± 0.46 | 6.12 ± 0.59 | 9.69 | x | |
XNS5 | 5.47 ± 0.58 | 6.26 ± 0.67 | 10.66 | 16.75 | |
XNUS2.5 | 3.55 ± 0.12 | 4.44 ± 0.15 | 3.31 | 10.36 | |
XNUFL2.5 | 5.31 ± 0.33 | 6.78 ± 0.42 | 6.13 | 6.11 | |
XSFP2.5 | 3.85 ± 0.51 | 4.86 ± 0.64 | 13.21 | 21.34 | |
XSX2.5 | 5.45 ± 0.48 | 6.95 ± 0.61 | 8.83 | x | |
XSX5 | 4.27 ± 0.31 | 3.73 ± 0.27 | 7.23 | 14.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbl, J.; Veselý, M.; Blaháčková, D.; Ondruš, J.; Kulich, P.; Mašková, E.; Mašek, J.; Gajdziok, J. Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing. Pharmaceutics 2023, 15, 714. https://doi.org/10.3390/pharmaceutics15020714
Elbl J, Veselý M, Blaháčková D, Ondruš J, Kulich P, Mašková E, Mašek J, Gajdziok J. Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing. Pharmaceutics. 2023; 15(2):714. https://doi.org/10.3390/pharmaceutics15020714
Chicago/Turabian StyleElbl, Jan, Martin Veselý, Dagmar Blaháčková, Jaroslav Ondruš, Pavel Kulich, Eliška Mašková, Josef Mašek, and Jan Gajdziok. 2023. "Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing" Pharmaceutics 15, no. 2: 714. https://doi.org/10.3390/pharmaceutics15020714
APA StyleElbl, J., Veselý, M., Blaháčková, D., Ondruš, J., Kulich, P., Mašková, E., Mašek, J., & Gajdziok, J. (2023). Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing. Pharmaceutics, 15(2), 714. https://doi.org/10.3390/pharmaceutics15020714