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Abstract: Research involving anisotropic-reflectance correction (ARC) of multispectral imagery
to account for topographic effects has been ongoing for approximately 40 years. A large body
of research has focused on evaluating empirical ARC methods, resulting in inconsistent results.
Consequently, our research objective was to evaluate commonly used ARC methods using first-order
radiation-transfer modeling to simulate ASTER multispectral imagery over Nanga Parbat, Himalaya.
Specifically, we accounted for orbital dynamics, atmospheric absorption and scattering, direct- and
diffuse-skylight irradiance, land cover structure, and surface biophysical variations to evaluate
their effectiveness in reducing multi-scale topographic effects. Our results clearly reveal that the
empirical methods we evaluated could not reasonably account for multi-scale topographic effects at
Nanga Parbat. The magnitude of reflectance and the correlation structure of biophysical properties
were not preserved in the topographically-corrected multispectral imagery. The CCOR and SCS+C
methods were able to remove topographic effects, given the Lambertian assumption, although
atmospheric correction was required, and we did not account for other primary and secondary
topographic effects that are thought to significantly influence spectral variation in imagery acquired
over mountains. Evaluation of structural-similarity index images revealed spatially variable results
that are wavelength dependent. Collectively, our simulation and evaluation procedures strongly
suggest that empirical ARC methods have significant limitations for addressing anisotropic reflectance
caused by multi-scale topographic effects. Results indicate that atmospheric correction is essential,
and most methods failed to adequately produce the appropriate magnitude and spatial variation of
surface reflectance in corrected imagery. Results were also wavelength dependent, as topographic
effects influence radiation-transfer components differently in different regions of the electromagnetic
spectrum. Our results explain inconsistencies described in the literature, and indicate that numerical
modeling efforts are required to better account for multi-scale topographic effects in various
radiation-transfer components.
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1. Introduction

Remote-sensing science and technology is essential for studying and understanding the
complexities associated with bio-physical/geophysical parameters and landscape dynamics [1,2].
This is especially the case in mountain environments where climate and tectonic forcings govern
topography, high-magnitude surface processes, rapid environmental change and geohazards [3–6].
The inherent coupling of atmospheric, surface and tectonic processes highlights the complexity
associated with mountain geodynamics, and the need for quantitative information about surface
parameters, process rates and resource availability. Due to logistic, geopolitical, geohazard and
physical limitations associated with fieldwork in many mountains, remote sensing represents the most
effective approach for producing spatiotemporal quantitative and thematic information [7].

Remote sensing of mountain environments, however, is notoriously difficult, as multi-scale
topographic effects govern the anisotropic nature of the radiation-transfer cascade (RTC) including
atmospheric scattering, irradiance components, and surface reflectance [1,8]. Research indicates that it
is essential to address the anisotropic nature of spectral variation caused by various radiation-transfer
parameters that are strongly controlled by topographic effects [1].

Anisotropic-reflectance correction (ARC) research has been ongoing for about 40 years,
e.g., [9–13]. Numerous approaches to ARC have been characterized as: (1) spectral-feature extraction
methods; (2) statistical-empirical methods; (3) semi-empirical methods; and (4) radiation-transfer
modeling [14,15]. The most frequently utilized methods from the first three categories can all
be considered empirical in nature, as proxy parameters are used as surrogates for representing
radiation- transfer parameters [1]. Furthermore, they are popular and have been compared to
each other in various environments, because researchers and practitioners do not usually have
access to spatiotemporal data, information and parameters that are required by more rigorous
radiation-transfer models.

Commonly used empirical ARC methods used in comparative studies include the
Statistical-Empirical Correction, B-Correction, Variable Empirical Coefficient Algorithm, Cosine
Correction, C-Correction, Soil-Canopy Correction, SCS+C Correction, and Minnaert Correction.
These and other approaches can be utilized based on variations in computing parameters using
stratification of topography and land cover conditions in an attempt to optimize results. Given that
these parameterization schemes are simplistic and cannot account for topographic anisotropy and the
anisotropic nature of irradiance and reflectance, evaluation of these methods is subject to substantial
uncertainties. An array of assumptions, exclusion of significant RTC parameters, and inconsistent
results regarding best methods and parameterization schemes [16–18] strongly suggest that these ARC
methods are not being adequately evaluated, given that the nature-of-the-problem is fundamentally a
radiometric calibration issue.

Fundamental issues related to the complexity of the problem include the following: (1) Can
ARC methods be used to produce reliable quantitative surface parameters? This will require the
magnitude of surface reflectance to be valid given the viewing geometry. (2) Can ARC methods be
used to process entire scenes of imagery? This will require that methods can address spatial variations
in solar geometry, topographic geometry and land cover conditions. (3) Can various methods account
for wavelength dependence of topographic effects? (4) Can they account for multi-scale topographic
effects? (5) To what degree are methods or approaches dependent upon sensor characteristics? (6) Can
they account for landscape complexity, or only work for homogeneous land cover conditions? (7) To
what degree are various methods influenced by the Lambertian assumption or by the bidirectional
reflectance distribution function (BRDF)? (8) Do these methods result in information compression
which may be interpreted as a reduction in topographic effects? These issues have not been adequately
addressed by comparative studies, although it is assumed that different methods work better in
different mountain environments [16,18].

Consequently, our overall research objective was to utilize radiation-transfer modeling to improve
our understanding of ARC issues by evaluating commonly used empirical methods. We generated



Remote Sens. 2019, 11, 2728 3 of 41

a first-order approximation of the RTC over the Nanga Parbat Himalaya, Pakistan, and produced
spectrally simulated ASTER satellite imagery. The Nanga Parbat massif is ideally suited to investigate
issues associated with topographic effects and reflectance variations, as it exhibits extreme relief,
the full range of slope and slope-azimuth angles, extreme spatial variability in morphometric
properties including topographic shielding, and a wide variety of surface composition and land cover
classes [19,20]. Specifically, we accounted for Earth–Sun orbit dynamics, atmospheric absorption
and scattering, direct- and diffuse-skylight irradiance, land cover spatial structure, and surface
biophysical variations in order to evaluate widely utilized empirical ARC methods for their ability
to accurately account for multi-scale topographic effects, and adequately predict the magnitude
and spatial variation of surface reflectance. In our research, multi-scale topographic effects were
defined to be morphometric (morphology of the topography) constraints and parameters that
partially govern radiation-transfer parameters. The analysis of the topography and the generation of
topographic parameters and RT parameters were scale dependent with respect to direction and distance
(i.e., multi-scale). It was not the purpose of this research to evaluate the influence of sensor-system
characteristics on topographic-correction methods, as spatial, spectral and radiometric sensitivity
also governs the variance structure in imagery. Limitations of this study include utilizing the
Lambertian assumption for surface reflectance, and not accounting for the surface BRDF and the
adjacent-terrain irradiance.

2. Background

2.1. Radiation-Transfer Cascade

The ARC problem requires addressing the RT components of the RTC. Specifically, the spatial,
temporal, and spectral dimensions of numerous RTC parameters must be accounted for. This includes
orbital, solar, atmospheric, topographic, surface composition and sensor-system characteristics.

Solar geometry variations are strongly controlled by orbital dynamics, as orbital parameters such
as eccentricity, obliquity, and longitude-of-perihelion govern the Earth–Sun distance, solar declination,
and solar-zenith and -azimuth angles [21,22]. The magnitude of the exoatmospheric irradiance at the
top of the Earth’s atmosphere (E0,[W m−2µm−1]) is a function of the spectral exitance of the sun and
the Earth–Sun distance. The atmosphere attenuates the solar beam irradiance via gaseous absorption
and molecular and aerosol scattering [22,23]. Atmospheric processes are highly wavelength dependent
and controlled by spatiotemporal variations in various atmospheric constituents, e.g., aerosols, water
vapor; [22,24].

Atmospheric transmittance accounts for the primary constituents, such that the total downward
and upward transmittance (T↓↑) is represented as [25]:

T↓↑(θs, λ) = Tr(θs, λ)Ta(θs, λ)Tg(θs, λ)To(θs, λ)Tw(θs, λ), (1)

where Tr represents transmittance due to Rayleigh scatter, Ta is transmittance due to aerosol scattering,
Tg is transmittance due to primary gas absorption, To is transmittance due to ozone absorption, Tw is
transmittance due to water vapor absorption, θs is the solar-zenith angle (θv should be substituted
for θs for upward transmittance; θv is the sensor zenith-viewing angle), and λ is the wavelength of
light. The total atmospheric transmittance is a function of the total optical depth of the atmosphere
that is related to the hypsometry of the topography, such that variations in topographic relief can
cause mesoscale variations in the atmospheric optical depth and volumetric scattering of radiation.
Many ARC investigations do not account for this topographic effect by applying adequate atmospheric
correction procedures, although atmospheric–topographic coupling must be accounted for [1].

Various other topographic effects govern the surface irradiance (E) such that [15]:

E(λ) = Eb(λ) + Ed(λ) + Et(λ), (2)
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where Eb represents the direct-beam irradiance from the Sun, Ed represents the diffuse-skylight
irradiance given atmospheric scattering, and Et is the adjacent-terrain irradiance given the irradiance
scattered from the surrounding terrain. Each irradiance component is partially regulated by the
atmosphere and by multi-scale topographic effects, such that it is very difficult to address topographic
effects without accounting for the coupled influence of the atmosphere [26]. These components should
be accounted for in mountain environments, as they can significantly influence spectral variability in
satellite imagery [8].

2.1.1. Direct Irradiance

The direct-beam irradiance is the dominant irradiance component [8]. It is strongly controlled by
local and meso-scale topographic effects. The parameterization scheme for an exact computation of
this RTC parameter is:

Eb(λ) = E0(λ)T↓ cos iS, (3)

where E0 is the exoatmospheric irradiance, which is modified by the Earth–Sun distance correction
factor, T↓ is the downward total transmittance, cos i is the cosine of the incidence angle (i), and S
is a binary coefficient that accounts for cast shadows being present (S = 0.0) or absent (S = 1.0)
on the landscape. The total transmittance can be computed from Equation (1). Numerous other
atmospheric constituents can be accounted for using various atmospheric-correction models (e.g., 6S
and MOTRAN). Depending upon the climatic and tectonic setting that governs erosion, uplift and
relief production, atmospheric transmittance may or may not be a significant RTC parameter for ARC.
It is not usually accounted for in representing Eb, because cos i is used as a proxy in most empirical
ARC methods.

It is necessary to address local topographic effects that account for the relationship between the
solar and terrain geometry. Specifically, the incidence angle of illumination (i) between the sun and
normal to the ground surface is defined as:

cos i = cos θs cos θt + sin θs sin θt cos (φs − φt) , (4)

where θs is the apparent solar-zenith angle that accounts for altitude variations and atmospheric
refraction given the atmospheric temperature and pressure profiles, θt represents the terrain slope
angle, φs is the solar-azimuth angle, and φt is the terrain slope-azimuth angle. Calculation of cos i is
possible with the use of a digital elevation model (DEM), and negative values must be corrected to
0.0. The solar geometry is governed by orbital parameters that vary over time. The magnitude of
variation increases over larger time periods. Most researchers do not compute the solar geometry for
every pixel, thereby assuming the small-angle approximation, using one estimate for these parameters
obtained from imagery for the entire scene or subscene. Nevertheless, as solar geometry is a function
of location and time, the solar geometry varies for each pixel in a scene. It is unclear to what degree the
small-angle approximation governs the accuracy of ARC efforts, as researchers usually do not evaluate
full scenes of satellite imagery.

Finally, the meso-scale relief structure of the topography, coupled with temporally-dependent
solar geometry, governs the presence of cast shadows on the landscape. Ray-tracing algorithms can be
used to account for this influence on Eb [27–30]. It should be noted that this parameter is independent
of the computation of cos i, and many studies do not account for it. It may or may not be an issue in
ARC investigations depending upon the time of image acquisition and the magnitude of relief in the
direction of the solar azimuth.

2.1.2. Diffuse-Skylight Irradiance

Atmospheric scattering will produce a hemispherical source of irradiance that contains isotropic
and anisotropic components [8,31]. The anisotropic nature of Ed has been the largest source of error
associated with estimating this component, as it is governed by circumsolar brightening due to
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forward scattering of aerosols, and horizontal brightening due to multiple Rayleigh scattering [31].
An approximation model assumes that:

Ed(λ) = Er(λ) + Ea(λ) + Eg(λ), (5)

where Er is the Rayleigh-scattering component, Ea is the aerosol-scattering component, and Eg is the
ground/sky-backscattering component caused by multiple interactions between the ground surface
and the atmosphere [1,8,24]. One can account for single-scattering or a multiple-scattering Rayleigh
atmosphere. The single-scattering albedo is required to account for aerosol scattering which is a
function of both wavelength and humidity. Aerosol type and models such as rural, urban, maritime
or tropospheric can also be accounted for [24]. Finally, the ground-backscattering component can be
modeled by accounting for the zonal-ground reflectance from the direct irradiance, the reflectance
from the diffuse irradiance, and the overall sky reflectance [24].

To account for the diffuse irradiance for every pixel, numerous topographic effects must be
accounted for and computed. Proy et al. [8] provided the computation solution such that:

Ed(λ) =
∫ 2π

φi=0

∫ π/2

θi=0
L↓ (αs, θi, φi) cos I sin θidθidφi, (6)

where L↓ is the downward radiance from incident directions θi and φi, which are the zenith and
azimuth angles of the incident energy from the hemisphere, respectively; αs is the solar elevation
angle (αs = π/2− θs); and I is the incidence angle of the direction defined by hemisphere and terrain
geometry, similar to Equation (4) using incident geometry.

Such an exact computation is computationally intensive given that Ed is wavelength dependent,
and hemispherical-topographic shielding must be accounted for. Multiple approaches to account for
topographic shielding are based on the computation of a maximum relief angle θmax for φi, e.g., [27,32].
The so-called skyview-factor coefficient is usually multiplied by estimates of diffuse irradiance for a
horizontal surface to compute Ed. Many researchers do not utilize this parameter due to computational
intensity, but estimate it based on the slope angle, e.g., [33,34]. It is rare for investigators to account for
both cos I and θmax(φi), thereby accounting for local and meso-scale topographic effects.

2.1.3. Adjacent-Terrain Irradiance

The aforementioned irradiance components and surface reflectance interact with the surrounding
terrain geometry to produce the Et irradiance component. Numerous researchers have indicated that
this component must be accounted for in mountains due to snow, vegetation and steep slopes [8,33,35].
It is an extremely complicated parameter to compute, as it is governed by numerous multi-scale
topographic effects and surface anisotropic-reflectance conditions. A first-order approximation to
Et was formulated by Proy et al. [8], assuming Lambertian reflectance. It is rarely accounted for in
empirical ARC studies.

Its exact computation is:

L (θe
i , φe

i , θe
v, φe

v, λ) = ρbrd f (θ
e
i , φe

i , θe
v, φe

v, λ) E(λ), (7a)

Et(λ) =
∫ 2π

φi=0

∫ π

θi=0
L (θe

i , φe
i , θe

v, φe
v, λ) T↓↑t (θe

v, λ) cos ItStdθidφi, (7b)

where L is the surface-reflected radiance coming from the effective incident direction, ρbrd f is the
surface BRDF, θi is the incident vertical-hemispherical zenith angle to account for terrain radiance
above and below a pixel location, T↓↑t is the atmospheric transmittance given the optical depth of
the atmosphere due to relief and propagation zenith angle through the atmosphere (θv) between two
locations, It represents the terrain-incidence angle given the influence of the local terrain geometry in
relation to the incident directional geometry, and St represents terrain blocking of the surface radiance
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between any two points of the surrounding terrain. The superscript e represents the effective zenith
and azimuth angles that account for the influence of the terrain slope and slope-azimuth angles on the
incident (θe

i , φe
i ) and viewing geometry (θe

v, φe
v) of the surface BRDF compared to a horizontal surface.

The computation of Et should account for the terrain conditions extending out to approximately 5 km
from each pixel location [8]. Another complicating factor is that each pixel exhibits a unique BRDF,
as topography and varying land cover structure and biophysical properties govern the BRDF [36–38].

Most empirical ARC investigations do not adequately account for Et, as they assume Lambertian
reflectance, insignificant atmospheric attenuation, and do not iteratively compute estimates of Et over
time (Et is partially governed by Et). Such assumptions are not valid in many mountain environments,
as steep slopes and highly variable biophysical properties caused by high-magnitude surface processes,
create anisotropic reflectance conditions and extreme relief [11,35,39–45]. Furthermore, topographic
effects on the surface BRDF are not fully understood, although we know that the viewing geometry
changes for every pixel, given variations in terrain slope and slope-azimuth angles [1].

2.1.4. Bi-Directional Reflectance Distribution Function

The characteristics of surface-reflectance properties can range between diffuse and specular [1,46].
A diffuse or Lambertian surface reflects radiation in all directions equally, and is considered an isotropic
reflector. We know, however, that this assumption is not valid in mountains, and the surface BRDF
should be accounted for to enable effective ARC [1]. The BRDF is used to describe the anisotropic
nature of surface reflectance characteristics. It is a scattering function and can theoretically describe
anisotropic reflectance given all input–output angles. It is characterized as:

ρbrd f (θ
e
i , φe

i , θe
v, φe

v, λ) =
L(λ)
E(λ)

. (8)

The effective illumination (θe
i , φe

i ) and viewing directions (θe
v, φe

v) are a function of θs, φs, θt, φt, θv,
and φv. Consequently, the topography has a significant effect on the BRDF [1]. The BRDF, however, is
difficult to measure accurately, and, in practice, the bidirectional reflectance factor (BRF) is commonly
used [1,47]. The application of different BRDF models in ARC studies has been relatively limited, and
most studies utilize semi-empirical models because they can be fit to measured data [1]. These models
are very flexible and account for a geometric component due to land cover structure and a diffuse
volume component. Empirical coefficients can be used to determine the relative strength of these
two scattering characteristics. The importance of topographic effects on the BRDF in ARC research
cannot be overstated. They partially govern Ed, Et, L, and Lp (the ground component of additive-path
radiance). Clearly, empirical ARC methods are too simplistic to account for the spectral variation of
numerous radiation-transfer parameters that are part of the RTC.

2.2. ARC

The strong influence that topography has on spectral response as measured by satellite-scanner
systems in rugged terrain has long been recognized, e.g., [48]. Various approaches have been
introduced in an attempt to reduce or remove these effects. Nevertheless, a topographic-correction
method has not emerged that is consistently superior in all cases [16,18]. In addition, commonly
applied topographic-correction methods do not provide a fully comprehensive ARC solution.
Topographic-correction approaches can be organized into three categories: spectral-feature extraction
methods, empirical modeling, and radiation-transfer modeling [49–51]. Empirical methods
can be divided into those based on a Lambertian assumption of surface reflectance and those
based on a non-Lambertian assumption. The following background section discusses empirical
topographic-correction approaches, as these represent the most commonly used methods and were
evaluated in this study.
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Empirical Corrections

In contrast to spectral-feature extraction methods such as band ratios, which involve a linear
transformation of spectral values without incorporating ancillary data [52,53], empirical topographic
corrections utilize slope and slope-azimuth angles computed from a DEM, and attempt to simulate
the direct-beam irradiance using the cosine of the incidence angle. Some empirical methods rely on
using statistical analysis to adjust spectral response values based on mean spectral values calculated
for shaded and sunlit slopes, e.g., [54], for entire images or for selected cover types. Other methods
use regression analysis to derive coefficients in an attempt to represent physical properties such as
the diffuse-skylight irradiance, or the BRDF of surface cover types. These methods are all essentially
empirical, as their calculations and generation of coefficients depend on the specific spatial and
temporal characteristics of individual study areas (e.g., slope and slope azimuth, solar geometry,
land cover).

Perhaps the most often used, and reportedly successful method adjusting spectral response based
on mean values is the Statistical-Empirical Correction (SEC; see Equation (19b)) [55,56]. The SEC
equation has also been referred to as the Teillet regression [14,18,57]. The SEC is a statistically
based model that assumes that the mean spectral values on a horizontal surface are equal to
those on tilted surfaces [58]. A number of authors have indicated the superior performance of the
SEC when comparing topographic-correction algorithms, e.g., [59–62]. As with other topographic
correction methods reported in the literature, different algorithms have been used to represent the
SEC, e.g., [13,51,63].

The variable empirical coefficient algorithm (VECA) method (see Equation (22c)) was introduced
by Gao and Zhang [14] and has been favorably compared to other topographic-correction
methods [12,62]. The VECA was developed to overcome some of the challenges of applying more
complex correction methods [14]. Similar to the SEC, the VECA algorithm adjusts the reflectance of
pixels on an inclined surface based on a linear regression, incorporating cosi, and using the mean
radiance values for pixels on horizontal and tilted surfaces [14,57,62]. The B-correction as proposed
by Vincini et al. [64] can be calculated using either a linear isotropic (BLC, see Equation (20c)) or
non-linear anisotropic form (BNC, see Equation (21b)). According to Gao and Zhang [14], the VECA
and B-corrections proved to be capable of removing topographic effects in a Landsat ETM+ image,
although the success of the algorithms were wavelength dependent and they each performed better in
different bands [14].

If the Lambertian assumption accurately describes a surface, then topographic correction can be
accomplished using a simple Cosine Correction (COSC, see Equation (23)) [39]. Numerous studies
have found that the Cosine Correction overcorrected for local topographic effects, particularly on
northern slopes, e.g., [65–67]. These overcorrections have been attributed to only Eb being accounted
for, as weakly illuminated areas can actually receive a significant amount of Ed [56,68], and the inability
of the Cosine Correction to account for BRDF variations of land cover surfaces [65].

Teillet et al. [55] modified the Cosine Correction with an additive term C (CCOR, see
Equation (24c)) that the authors stated may emulate the effect of indirect illumination, although,
the analogy is not exact. The C coefficient has been used to prevent the overcorrection of images [69],
and notwithstanding the ambiguity of the original authors, has often been credited with accounting
for Ed , e.g., [16,26,61]. As a Lambertian model, the C-Correction does not take into account the BRDF
of land cover features. Results from applying the C-Correction in studies comparing topographic
correction methods have been mixed, with the correction performing well in some studies, e.g., [61,63],
and not as well in others [51,70]. For example, Fan et al. [57] found the C-Correction to be theoretically
and empirically inappropriate for forested terrain.

Topographic-correction methods have been applied to correct spectral-reflectance values for single
and multiple cover types using sun–terrain–sensor (STS) geometry. To improve the representation of
the geotropic nature of trees, Gu and Gillespie [71] introduced a method based on sun–canopy–sensor
(SCS) geometry, which incorporates slope into the Cosine Correction (see Equation (25)) [54].
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Application of the SCS method has often resulted in overcorrection, e.g., [14,69,72]. To address
overcorrections, Soenen et al. [72] introduced the SCS+C method (see Equation (26)) incorporating
the additive term C to attempt to account for Ed, in a similar fashion to how the C coefficient adjusts
the Cosine Correction [69]. Generally, the SCS+C correction has outperformed the SCS method,
e.g., [18,69,73].

A commonly applied non-Lambertian topographic correction method that attempts to incorporate
a representation of land cover BRDF is the Minnaert Correction (GMC, see Equation (27)). According to
Smith et al. [39], the Minnaert constant k [74] is related to surface roughness. Calculation of k varies
based on combinations of slope, slope azimuth and land cover, e.g., [9,11]. A global Minnaert k value
is calculated per band using reflectance values from multiple cover types across an entire image,
e.g., [75]. However, calculating the empirical coefficients C and k over large areas is problematic
due to their dependence on land cover variation [57,61,62]. Attempts have been made to calculate
k for land cover classes, e.g., [19], and using stratifications based on slope, slope azimuth, and land
cover, such as the Modified Minnaert [16] and the Pixel-Based Minnaert (PMC; see Equation (28)) [76].
Minnaert corrections do not incorporate contributions from Ed and Et [9].

2.3. ARC Evaluation

Effective topographic correction should result in a reduction of spectral variation globally across
an image caused by multi-scale topographic effects, and an increase in local spectral variation in
poorly illuminated areas due to biophysical property or land cover variations [15]. The performance of
topographic-correction methods is dependent upon evaluation strategies [18]. Various approaches have
been used to evaluate the effectiveness of topographic-correction methods; however, evaluation results
are difficult to compare and there is still not a simple and objective approach for evaluating correction
effectiveness [63]. Diagnostic methods generally fall within four categories according to a review of
recent articles comparing topographic-correction methods. These categories include visual assessment,
statistical methods, classification accuracy, and comparisons to simulated/synthetic images.

The most common and usually initial method for evaluating topographically-corrected images
is a visual assessment. Visual assessments have been employed since correction methods were first
attempted, e.g., [55] and continue to be applied, e.g., [13]. Usually singular images are evaluated,
although image bands have been draped across DEMs to create an orthographic image for
interpretation [60]. Even though visual assessment is used extensively as an evaluation method [16],
it is fundamentally a subjective approach that is based heavily on the experience and skill of the
analyst, e.g., [57] and must be combined with a quantitative assessment [62]. Visual assessment results
may differ markedly from quantitative evaluations. For example, corrected images can appear similar
and be statistically different [16,60]. In addition, variance compression may occur during topographic
correction, which can visually be interpreted as a reduction of topographic effects [19].

Univariate and multi-variate statistical analysis methods have been applied towards evaluating
the effectiveness of topographic-correction approaches including intraclass interquartile range
reduction [63] and comparisons with in-situ observations of spectral reflectance [70]. Two of the most
common methods for comparing imagery before and after correction include assessing a reduction in
standard deviation (SD), and comparing the coefficient of variation (CV). Evaluations of the reduction
of SD have been made across images [50] or within the same cover types on different slopes and
aspects [18,61,73]. Ideally, an effective correction will maintain the mean of the original band or cover
type and the SD will be reduced [50,66]. Essentially, these as well as other statistical diagnostic methods
are testing for an increase in the homogeneity of reflectance values after correction, e.g., [50,62]. It is not
valid, however, to presume spectral homogeneity across an image with different land covers or within
the same land cover, such as vegetation with different stand ages, understory, or crown canopies,
which can result in different spectral responses, e.g., [18]. Additionally, effective corrections do not
always substantially change standard deviations and histogram distributions of imagery data [60].
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Therefore, these methods may not account for the spatially-dependent variance structure across an
image or within some land cover types.

A range of inferential-statistical methods have been used to evaluate the effectiveness of
topographic corrections such as the univariate analysis of variance [69], multivariate analysis of
variance [77], and homogeneity of variance [11]. Geo-statistical analyses, such as semi-variogram
analysis [19], have also been applied. Perhaps the most common statistical method for evaluating pre-
and post-corrected imagery is based on a linear regression (coefficient of determination, r2) with the
spectral values represented as the dependent variable and cos i as the independent variable, e.g., [39].
The spectral values have been represented as digital numbers (DN), e.g., [56,59,60,73] and radiance
values, e.g., [14,63,70]. The assumption is that an effective correction will result in the removal of
reflectance dependence on cosi. However, in areas where land cover distribution is affected by slope
and aspect [61], this assumption is not valid [63]. In mountainous areas with large elevation gradients,
spatial patterns of land cover will be dependent upon topographic variables, and a residual correlation
would be expected between reflectance values and cosi after correction [18,63]. Additionally, cosi
accounts only for local topography and does not incorporate multi-scale topographic effects [15].
Decorrelation of the linear regression is not sufficient to indicate a successful correction [57].

Two of the primary purposes for performing topographic corrections is to improve land cover
classification [9,18,78] and biophysical parameter extraction [63]. An improvement in classification
accuracy is a common method for determining the effectiveness of topographic correction. Classification
methods have been evaluated such as maximum likelihood [26,50,59], artificial neural networks [50,54],
and object-based classification [73]. The primary difficulty in using classification accuracy as a
diagnostic method is that many factors and potential sources of error are inherent in the classification
process [19,50]. Classification analysis is affected by study area characteristics, land cover types,
within-class covariance, quality of reference data, sensors, DEMs, atmospheric effects and corrections,
geometric corrections, classification algorithms, and topographic effects [26,57,62]. The uncertainties
inherent in these factors and their various combinations make it difficult to relate quantitative
classification results directly to the quality of topographic corrections, and to compare study
results [26,63,79]. Classification provides an indirect evaluation [57], and is not a good indicator
of topographic-correction effectiveness [19,50,57,79].

Given the shortcomings and difficulties in comparing results when using traditional evaluation
strategies, the development of a more standardized and objective procedure is warranted. The
comparison of a corrected image to a synthetic image could provide the basis for this type of
approach [18,79]. The synthetic image represents idealized radiance according to specific conditions,
and can be generated representing a flat surface or incorporating topography [79]. Quantitative
evaluation of the comparison between corrected and synthetic images can be undertaken using a
structural-similarity index [79,80], or comparable similarity indices [63,81]. Potential drawbacks to
this approach include the complicated process required for producing synthetic images [81].

2.4. Study Area

We simulated a first-order approximation of the RTC over the Nanga Parbat, Himalaya in northern
Pakistan (Figure 1). This geographic region is excellent for testing empirical-correction procedures, as
it exhibits extreme relief and steep slopes due to relief production caused by high-magnitude erosion
and uplift [3,20,82,83]. We specifically simulated the RTC over a 60 km × 60 km area to evaluate the
ability of empirical-correction procedures to account for the spatial complexity of an entire scene of
ASTER imagery.

Topographic conditions over the region are highly variable due to complex spatiotemporal
surface-process dynamics [3] that are governed by climate and topographic forcing. Glaciation,
rapid river bedrock incision, and ubiquitous mass movements govern the dynamic nature of the
sediment fluxes, and differential denudation coupled with uplift has resulted in significant relief
production [83]. Consequently, surface conditions are very spatially variable from material composition
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and surface/landcover structural perspectives. Such conditions dictate anisotropic-reflectance
conditions. Surface-process dynamics and landcover conditions are also regulated by two climatic
systems that include the westerlies and the monsoon [20,82]. For more details regarding the study area
characteristics, see Bishop and Shroder [20] and Bishop et al. [3].

Figure 1. The Nanga Parbat Massif in northern Pakistan. The study area exhibits extreme relief and
steep slopes due to relatively high erosion and uplift rates. Land cover conditions vary vertically due
to temperature and precipitation variations along the 7 km altitudinal gradient on the north side of
the massif.

3. Materials and Methods

3.1. Data

The ASTER Global Digital Elevation Model Version 2 (ASTER GDEM; [84]) was utilized to
represent the topography and account for several multi-scale topographic effects governing the RTC.
We spectrally simulated ASTER imagery (bands 1, 2, 3 and 5) for an entire scene which accounted
for a 2000× 2000 grid cell area centered over Nanga Parbat peak. We used a 4000× 4000 dataset for
computation of the cast shadows and topographic-shielding parameters to avoid edge effects. This
study also utilized ASTER satellite imagery acquired over the area on 13 September 2004, to provide
information about the spatial structure of the land cover characteristics that are described in greater
detail below. Mean Exo-atmospheric irradiance values from Bird and Riordan [25] were used in
simulating the RTC. Reference reflectance spectra were acquired from the United States Geological
Survey Spectral Library Version 7 [85] and the ASTER Spectral Library [86].

3.2. Radiation-Transfer Modeling

We simulated ASTER multispectral imagery in order to evaluate frequently used empirical
ARC methods. This involves implementing a first-order radiation-transfer model to simulate
the RTC from the sun to the at-satellite sensor. We account for multi-scale topographic effects
for each radiation-transfer parameter used in our simulation. Although higher-order modeling
parameterization schemes can be utilized, they are not required to test and evaluate the most
fundamental topographic effects, as the most common ARC methods account for only 1–3 proxy
parameters representing the RTC. Furthermore, our approach permits detailed quantitative analysis of
the significance of individual parameters and their wavelength dependence.
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3.2.1. Exoatmospheric Irradiance and Solar Geometry

The mean exoatmospheric irradiance spectrum of Bird and Riordan [25] was modified using
temporally dependent orbital parameters to compute the spatiotemporal dependent exoatmospheric
irradiance spectrum (E0(λ)). Earth–sun orbital parameters control the magnitude of E0; therefore,
orbital forcing must account for eccentricity (e), obliquity (ε) and other parameters such as the longitude
of perihelion [21]. We used the Berger [21] amplitudes, rates and phases of trigonometric expansions
to predict these orbital parameters for 15 September 2018 to compute the Earth–Sun distance (d), the
distance-correction factor ( fr) and solar geometry at 10: local time, such that:

E0(λ) = Ē0(λ) fr cos θs, (9)

where θs is the solar-zenith angle.
Orbital parameters are also required to compute the spatial variation in the solar geometry

such that:
δ = arcsin (sin ε sin λl) , (10)

where δ is the solar declination and λl is the true longitude of the Earth relative to the vernal equinox.
The solar-zenith angle (θs) and solar-azimuth angle (φs) vary for each pixel if spatial and

topographic factors are accounted for. The geocentric solar-zenith angle is:

cos θs = sin ϕ sin δ− cos ϕ cos δ cos H, (11)

where ϕ is latitude, and H is the hour angle of the sun. This parameter, however, must be modified
using a parallax correction to compute the apparent solar-zenith angle from the Earth’s surface given
topography. Parallax correction accounts for the radius of the Earth at a particular latitude, the height
relative to the ellipsoid, and the distance from the sun, and is added to the geocentric solar-zenith
angle. Finally, we accounted for atmospheric-refraction correction based on the parameterization
scheme of U.S. Naval Observatory and Nautical Alamanc Office [87], where we accounted for the
atmospheric profile of temperature and pressure of the US standard atmosphere [88].

The solar-azimuth angle for each pixel was computed as:

φs = π atan2(Ys, Xs), (12a)

where the sine and cosine components are computed as:

Ys =
(− cos δ sin H)

cos αs
, (12b)

and

Xs =
(sin αs sin ϕ− sin δ)

(cos αs cos ϕ)
, (12c)

where αs is the solar elevation angle. The solar-azimuth angle was then corrected for grid convergence,
which is a function of latitude and the longitude of a pixel location with respect to the central meridian
of the projection used (i.e., Transverse Mercator). See Table A1 (Appendix A) for values utilized for
modeling solar geometry and Table A2 (Appendix B) for explanation of symbol notation utilized
throughout this paper.

3.2.2. Atmospheric Parameters

Atmospheric absorption and scattering processes account for atmospheric attenuation and the
additive path-radiance components. These processes are wavelength dependent, and we simulated
them from blue to short-wave infra-red wavelengths. We computed the downward and upward total
transmittance parameters based on primary atmospheric constituents and processes. Specifically, they
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include Rayleigh scattering transmittance (Tr) using the parameterization scheme of Gueymard [24]
that is wavelength and pressure dependent. Atmospheric pressure was computed based on the
scale height of the atmosphere, which accounts for the virtual temperature, and the variation in
gravitational acceleration, which is a function of latitude and altitude. Aerosol-scattering transmittance
(Ta) was accounted for using the scheme of Bird and Riordan [25] using a rural aerosol model.
Atmospheric absorption transmittance of water (Tw), ozone (To) and primary gases (Tg) were simulated
using the parameterization schemes of Leckner [89]. All parameterization schemes effectively
accounted for altitude variations in governing the pressure and relative optical air mass given
by Kasten [90]. The atmospheric parameters used in these parameterization schemes to simulate
atmospheric transmittance are listed in Table A1. Finally, the total downward (T↓) and upward (T↑)
atmospheric transmittances were computed using Equation (1).

The additive path radiance (Lp) due to atmospheric scattering can be computed as [79]:

Lp(λ) =
E0(λ) cos θsρa(λ)

π
, (13)

where ρa is the sky reflectance of the atmosphere. Different sky-reflectance models exist, and
we used the parameterization scheme of Gueymard [24]. It accounts for scattering in the sensor
field-of-view due to Rayleigh scattering and aerosol absorption and scattering. It also accounts for the
single-scattering component of the scattering flux which is dependent upon the aerosol asymmetry
factor coefficients found in Table A1. For more details regarding the equations used to compute
ρa, see Gueymard [24]. See Table A1 for all values utilized for modeling atmospheric constituents
and properties.

3.2.3. Surface Irradiance

We accounted for the Eb and Ed in our simulations. We did not account for Et, as an accurate
characterization of this component requires knowledge of the BRDF for each location, as the landcover
structure and topography influence the BRDF [1]. Researchers have indicated that topographic
effects have not been adequately accounted for in BRDF modeling efforts [37]. Although researchers
have indicated that Et should be incorporated into ARC efforts in mountain environments [8,91],
the uncertainties associated with land cover structural and topographic effects precludes accurate
estimation of the magnitude of this component, given the high degree of spatial variability of
morphometric properties at Nanga Parbat.

We computed Eb using Equation (3), such that altitude, local topographic conditions, and the
meso-scale relief structure in the direction of the φs were accounted for. Specifically, we utilized linear
regression as the basis for computing the slope and slope-azimuth angles for the computation of cos i,
and implemented a ray-tracing algorithm that accounts for cast shadows (S).

The diffuse-skylight irradiance was computed on the basis of Equation (6), where we assumed
isotropic scattering. Specifically, we utilized the parameterization scheme of Bird and Riordan [25] to
estimate the diffuse irradiance on a horizontal surface at a particular altitude. Rayleigh and Aerosol
scattering terms are utilized, governed by atmospheric transmittance parameters. We then equally
partitioned the irradiance value over the hemisphere using one-degree zenith and azimuth angle
intervals. The incoming irradiance geometry, in relation to the local topographic conditions were used
to compute the local influence of the topography on incoming diffuse irradiance. We then accounted for
hemispherical topographic shielding based on the maximum relief angle over a 25 km distance for each
hemispherical azimuth direction. Knowing the maximum relief angle enabled us to sum and compute
the diffuse irradiance over the appropriate zenith angle range for each azimuth direction. In this way,
the full computation of local and mesoscale topographic affects were accounted for. Furthermore,
we did this for each wavelength interval, as Ed is highly wavelength dependent.



Remote Sens. 2019, 11, 2728 13 of 41

3.2.4. Surface Reflectance

Surface reflectance was simulated based on characterizing the fundamental spatial structure of
land cover conditions. To accomplish this, we utilized a Level 1A ASTER scene. Our first objective was
to map the basic land cover types that would serve to spatially constrain spectral-mixing modeling
efforts to account for surface biophysical properties. These cover types include water, snow, ice,
vegetation, rocks and sediment, and desert varnish.

The ASTER 3/4 band ratio was utilized to map snow and ice cover distribution similar to other
researchers, e.g., [92,93]. Simple thresholding from 0.18 to 0.35 and >0.35 was used to classify ice and
snow, respectively. The optical-band differential index [94] was used for water mapping with a value
>−0.025 used to identify surface water. For vegetation, we used the normalized-difference vegetation
index (NDVI) for basic mapping [95]. NDVI values greater than 0.1 were used to classify vegetated
areas. For desert varnish, we used unstandardized principal-component analysis on all spectral bands
in the VNIR, SWIR, and TIR regions of the spectrum. The Principal Component 5 image highlights the
spatial distribution of desert varnish very well, located in the arid low-altitude portions of the Indus
and Astor river valleys.

Each individual classification map was sequentially merged to produce a composite map, such
that the remaining unclassified pixels in the composite map were classified as rock and sediment.
A majority filter was iteratively applied to the composite map until reclassification results did not
change. This produced a reasonable distribution of relatively homogeneous land cover classes that
corresponds well to the land cover structure over Nanga Parbat (Figure 2).

Figure 2. Basic land cover structure over the Nanga Parbat Massif in northern Pakistan. The land
cover map has been overlaid on the cosine of the incidence (cos i) image to provide a visual sense of
topographic variation within each land cover class.

Surface reflectance was simulated using a spectral-mixing model based on compositional
variations within each land cover class. The multiple end-member linear spectral-mixing analysis
(LSMA) model suffices to mix the spectra of multiple kinds of matter [96]:

ρc
s(λ) =

N

∑
j=1

f jρj(λ) + ej(λ), (14)
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where ρc
s is the composite surface reflectance, f j is the fraction of end member j, ρj is the reflectance

of end-member j, and ej is an error term that we assume is 0.0. All end-member spectra were
resampled to a common reference: the wavelengths tabulated by Bird and Riordan [25]. For each land
cover class, we accounted for matter composition variation that has been reported in the literature,
and randomly assigned the relative percentages or fractions of matter constituents for each pixel.
In this way, we ensured that the spatial variation of surface reflectance caused by land cover structure
and compositional variations in surface matter are different from the spatial variance structure of
topographic effects that govern other radiation-transfer parameters. This is essential to determine the
effectiveness of empirical ARC methods to remove only topographic effects and accurately represent
spatial variation in surface reflectance, given the possibility of spectral compression or over-correction.

Rock and sediment were both simulated utilizing relative mineral abundances described for
Nanga Parbat leucogranites and sediment [97–99]. The relative mineral abundances provided by these
authors, although not always explicitly stated, were probably determined by petrologic analysis under
a microscope. As such, they represent an areal fraction suitable for spectral mixing. Otherwise, the
assumption was made that relative abundances by weight or volume approximate areal abundances.
Because these studies were primarily interested in rock or river sediment, some extrapolation was
necessary to decrease albedo and qualitatively approach the reference satellite imagery. This was
primarily accomplished by increasing the fraction of clay, iron oxides, and heavy minerals. Illite was
chosen to represent clay minerals, hematite for iron oxides, hornblende for heavy minerals (primarily
amphibole minerals), oligoclase for plagioclase feldspars, orthoclase for non-plagioclase feldspars, and
quartz for lithics (Table 1). Mineral spectra were acquired from the USGS Spectral Library v7 [85] and
resampled via linear interpolation to 0.005 µm.

Table 1. End-member minerals used to simulate reflectance values for rocks and sediment and
desert varnish in the Nanga Parbat region. End-member fractions were randomly determined from
the indicated range in the order shown in the table. The remainder was then divided among the
“remainder” end-members. See Table A3 (Appendix C) for the names of USGS Spectral Library files
utilized for these simulations.

End-Member Rocks and Sediment Desert Varnish

Illite 5–10% 14–23%
Hematite 15–30% 11–24%

Calcite 0–5% 0%
Hornblende 10–25% 0%

Quartz 51% of remainder 18–29%
Oligoclase 25% of remainder 0%
Orthoclase 24% of remainder 0%
Birnessite 0% remainder

Desert Varnish was simulated using relative mineral abundances described by Sarmast et al. [100]
and Potter and Rossman [101]. Desert varnish composition was interpreted from chemical composition,
assuming that relative abundances by weight approximate areal abundance. Spectra were acquired
from the USGS Spectral Library v7 [85]. As the spectral library lacked an entry for Birnessite
(manganese oxide), the spectra for Desert Varnish found in the database was used to represent
the spectra of Birnessite. We did this to introduce compositional variation based on fractional mineral
abundance (Table 1).

For vegetation, we did not account for variation of sagebrush, coniferous, deciduous, and tundra
plant species, as these are generally not available in most spectral libraries. Instead, we utilized the
spectra of the Lodgepole Pine from the USGS Spectral Library v7 [85] as the basis for characterizing
vegetation reflectance, regardless of variations in species. We assumed that the magnitude of the NDVI
was related to the spatial leaf-area coverage for a pixel, and that the remaining coverage represented
sediment with no ground cover vegetation. We randomly assigned the composition of the sediment
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using the minerals presented in Table 1. In this way, we could account for the spatial distribution
of the presence of vegetation, and account for variations in leaf coverage and surface composition.
It is important to note that the objective was not to accurately characterize the biophysical properties
of vegetation canopies at Nanga Parbat, but to account for spatial biophysical variation in surface
reflectance due to leaf-area coverage and different ground matter conditions.

Surface water at Nanga Parbat primarily consists of highly turbid streams that originate at the
termini of glaciers surrounding the mountain. They drain into the Astor River and the Large Indus
River on the north side of Nanga Parbat. Water spectra were acquired from the ASTER Spectral Library
v2.0 [86], and we uses the tap water spectra (tapwater.jhu.becknic.spectrum) rather than distilled water
because of the lack of data for the latter for wavelengths less than 4 µm. Turbid-water spectra for
each pixel is simulated such that the water fraction was randomly set between 0.5 and 0.6 and the
remainder was set as a fixed sediment composition (Table 1).

For snow, we modeled the hemispherical albedo (αH) for non-isotropic scatterers as a function of
grain size and wavelength, according to Hapke [102] as follows:

αH(λ) = r0(λ)
1 + γ(λ)

1 + 2µ0γ(λ)
+ b(λ)

ω(λ)µ0

4(1 + 2µ0)
, (15a)

r0(λ) =
1− γ(λ)

1 + γ(λ)
, (15b)

γ(λ) =
√

1−ω(λ), (15c)

where µ0 = cos θs, b is the asymmetry factor (second coefficient of the phase function expansion in
Legendre polynomials, as shown by Hapke [102]), and ω is the single-scattering albedo. We modeled
b and ω as functions of grain size, wavelength, and complex refractive index, using Mie scattering
theory [103]. Equation (15a) can also be used for isotropic scatterers if the second term is not considered.
For the purposes of this study, we generated a database of hemispherical albedos using Equation (15a),
for both isotropic and anisotropic scatterers. The wavelength ranges from 0.4 to 2.5 µm (with variable
steps with values around 0.005± 0.002), and grain size ranges from 1 to 1000 µm. Finally, we compare
our results with those of Wiscombe [103]. The shape of our curves are extremely similar, with small
differences in the values probably due to the use of a slightly different complex refractive index.
To decrease the degrees of freedom for the simulation, the solar-zenith angle was assumed to be 0.
For each pixel classified as snow, grain size was randomly selected between 1 and 1000 µm. Ice was
simulated using the spectrum for the 1000 µm grain size, and is the only invariant class of land cover
for reflectance simulations.

All of the reflectance spectra were then sampled to conform to the spectral resolution of the
ASTER sensor. We used the spectral response functions of the ASTER spectral bands to produce a
weighted-average spectral reflectance value (ρ̄s) for each pixel. This is required to produce reference
data for validation of ARC methods in reducing topographic effects. Simulated spectra were computed
as follows:

ρ̄s(λ) =
∑n

i=1 wi(λ)ρ
c
i (λ)

∑n
i=1 wi(λ)

, (16)

where n represents the number of wavelengths sampled by the spectral-response function, and
w represents the spectral-response coefficient weight that characterize the nature of the spectral
bandwidth. The spectrally-weighted reflectance images are presented in Figure 3.
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Figure 3. Simulated ASTER spectrally-weighted reflectance values resulting from spectral mixing:
(A) ASTER spectral band 1 (green); (B) ASTER spectral band 2 (red); (C) ASTER spectral band 3 (NIR);
and (D) ASTER spectral band 5 (SWIR).

3.3. Simulated ASTER Imagery

All of the aforementioned radiation-transfer parameters were simulated from 0.4 to 3.0 µm
for each pixel in the scene. We assumed that surface reflectance is Lambertian, and computed the
at-satellite radiance (L0) for the full spectrum as:

L0(λ) = ρc
s(λ)

[
Eb(λ) + Ed(λ)

π

]
T↑(λ) + Lp(λ). (17)

We then applied the ASTER spectral-response functions to each L0 spectra and used Equation (16)
to simulate the ASTER spectral images. The spectral characteristics of the simulated images are
presented in Table 2. Although we recognize that surface reflectance characteristics at Nanga Parbat are
anisotropic in nature, we did not attempt to simulate the BRDF given a lack of data and our objective
to evaluate ARC methods to account for topographic effects in Eb, T↓, Ed, T↑, and Lp.
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Table 2. Spectrally Simulated ASTER imagery characteristics. Mean exoatmospheric irradiance at
1 astronomical unit (E0) from Thome et al. [104].

Band E0 [Wm−2µm−1] λc [µm] Spectral Bandwidth [µm]

1 1848 0.532 0.484–0.644
2 1549 0.638 0.590–0.731
3 1114 0.760 0.720–0.908
5 225.4 1.658 2.120–2.284

It is important to note that we did not simulate the spatial or radiometric resolution of the ASTER
sensor, but forced the spatial resolution to coincide with the resolution of the DEM. We also assumed
that the sensor could account for the magnitude of the simulated at-satellite radiance values, even
though the ASTER sensor exhibits 8-bit radiometric resolution.

3.4. Anisotropic Reflectance Correction

We evaluated a variety of empirical ARC methods. To do so, our evaluation considered an
evaluation of whether atmospheric correction is required for suitable topographic correction. Given our
RTC simulation, perfect atmospheric correction was applied before topographic correction as follows:

L(λ) =
L0(λ)− Lp(λ)

T↑(λ)
. (18)

The ARC methods we evaluated are as follows, where Ln represents normalized imagery after
applying the technique:

1. Statistical-Empirical Correction [55,56]. Assuming a linear correlation between at-satellite radiance
and local topographic conditions:

L0(λ) = β0 + β1 cos i, (19a)

Ln(λ) = L0(λ)− cos iβ1 − β0 + L̄0(λ), (19b)

where β0 and β1 represent the y-intercept and slope coefficient of the linear regression, respectively.
2. B-Correction assuming isotropic reflectance conditions [14].

L0(λ) = β0 + β1 cos i, (20a)

x = L0(λ)− (β0 + β1 cos i) , (20b)

Ln(λ) = L0(λ) + (β1 + x) (cos θs − cos i) , (20c)

where β0 and β1 represent the y-intercept and slope coefficient of the linear regression, respectively,
and x represents the residuals of the radiance data to the predicted regression line.

3. B-Correction assuming a non-linear relationship and an anisotropic reflectance model [105].

ln L0(λ) = β0 + β1 cos i, (21a)

Ln(λ) = L0(λ) exp [β1 (cos θs − cos i)] , (21b)

where β0 and β1 represent the y-intercept and slope coefficient of the linear regression, respectively.
4. Variable Empirical Coefficient Algorithm [14].

L0(λ) = β0 + β1 cos i, (22a)
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fa(λ) =
L̄0(λ)

β1 cos i + β0
, (22b)

Ln(λ) = L0(λ) fa(λ). (22c)

5. Cosine Correction [55].

Ln(λ) = L0(λ)

[
cos θs

cos i

]
. (23)

6. C-Correction [55].
L0(λ) = β0 + β1 cos i, (24a)

C = β0/β1, (24b)

Ln(λ) = L0(λ)

[
cos θs + C
cos i + C

]
. (24c)

7. Sun–Canopy–Sensor Correction [71,72].

Ln(λ) = L0(λ)
cos θt cos θs

cos i
. (25)

8. Sun–Canopy–Sensor + C Correction [72].

Ln(λ) = L0(λ)
cos θt cos θs + C

cos i + C
, (26)

where C is computed using Equation (24b).
9. Global Minnaert Correction [39]:

Ln(λ) =
L0(λ) cos e
cosk i cosk e

, (27)

where e is the exitance angle (e = θt for nadir viewing), and k is a globally-derived dimensionless
Minnaert coefficient that is wavelength dependent and ranges from 0 to 1. It was calculated using
least-squares regression on the variables x and y, where x = log(cos i cos e) and y = log(L0 cos e).
The slope of the regression equation represents k. The correction procedure defaults to the
Lambertian assumption when k = 1.0.

10. Pixel-Based Minnaert Correction [26,76]:

L = L0
[

cos e
(cos e cos i)k

]
, (28)

where k is computed for slope ranges using an interval of five degrees, based on regression
analysis using variables x and y.

3.5. Validation and Statistical Analysis

The evaluation of ARC methods is notoriously difficult due to subjective approaches that have
been typically used. The magnitude and spatial distribution of Ln resulting from topographically-
corrected imagery must be correct to ensure accurate biophysical remote sensing and thematic mapping
capabilities. Subjective approaches including visualization, global image statistics and other techniques
do not make use of reference data and account for magnitude and correlation structure. Therefore,
we compared our simulated surface reflectance values, ρ̄s, to computed surface reflectance values (ρn)
based on the topographically corrected radiance values (Ln). Given that we have the exact magnitude
of the surface irradiance component simulated, under the Lambertian reflectance assumption:

ρn =
πLn(λ)

Eb(λ) + Ed(λ)
. (29)
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Our validation and statistical analysis approach was as follows:

1. First, we evaluated the image magnitude of reflectance differences using the Root Mean Squared
Error (RMSE) as:

RMSE(λ) =

√
∑N

i=1 (ρ̄s,i(λ)− ρn,i(λ))
2

n
. (30)

2. We computed the magnitude of the Pearson-Product Moment correlation coefficient (r), to ensure
that the spatial variability in reflectance accounts for reflectance variation due to land cover
structure and biophysical variation as:

r =
∑N

i=1 (ρ̄s,i − ρ̄s)
2 (ρn,i − ρ̄n)

2√
∑N

i=1 (ρ̄s,i − ρ̄s)
2
√

∑N
i=1 (ρn,i − ρ̄n)

2
. (31)

3. We then utilized a structural-similarity index (SSI) developed and evaluated by Wang et al. [80]
to determine the collective influence of reflectance magnitude (l), global variation (c; contrast)
and the correlation coefficient (r), on the topographically corrected reflectance values compared
to simulated reflectance. It was computed as follows:

µρs =
1
N

N

∑
i=1

ρ̄s,i, (32a)

µρn =
1
N

N

∑
i=1

ρn,i, (32b)

σρs =

√√√√ 1
N − 1

N

∑
i=1

(
ρ̄s,i − µρs

)2, (32c)

σρn =

√√√√ 1
N − 1

N

∑
i=1

(
ρn,i − µρn

)2, (32d)

l(ρs, ρn) =
2µρs µρn + C1

µ2
ρs µ2

ρn + C1
, (32e)

where C1 = (K1R)2, K1 was set to 0.01, and R is the dynamic range of an image, which we set to
255, given scaled reflectance images. The contrast was computed as:

c(ρs, ρn) =
2σρs σρn + C2

σ2
ρs σ2

ρn + C2
, (32f)

where C2 = (K2R)2, K2 was set to 0.03, and R is the dynamic range of an image. Finally, the SSI
was computed as:

SSI(ρs, ρn) = [l(ρs, ρn)]
2.0 [c(ρs, ρn)]

1.0 [r(ρs, ρn)]
2.0 , (32g)

where the SSI index is a coefficient that ranges from 0 to 1, where a 0.0 value indicates no structural
similarity, and a value of 1.0 represents identical values, spatial variance and correlation structure.
We computed this for each topographic-correction procedure for each spectral band. In this way,
we have an integrated metric which accurately evaluates an entire image.

4. Nevertheless, to better characterize the spatial nature of how each topographic-correction
procedure performs under different topographic conditions, we implemented the SSI over an
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arbitrary window size of 11× 11 to ensure an adequate sample size for computing the statistic.
We generated SSI images to evaluate where the topographic-correction procedures worked well,
and where they did not. This provided for better interpretation of the results in terms of what
topographic conditions cause problems for various techniques.

Perfect topographic correction of imagery should result in a RMSE value of 0.0, the correlation
with the surface-reflectance benchmark should be 1.0, and the SSI value should be 1.0 for the globally
and locally computed indices. Evaluating the departures from perfect numbers related to application
requirements was not our objective, although our evaluation strategy permitted us to determine the
degree to which this radiometric calibration issue is addressed over our geographic region.

4. Results

4.1. RTC Simulation

The direct-beam irradiance image is presented in Figure 4. As expected, the magnitude of Eb
decreases with longer wavelengths and local topographic effects cause significant spatial variation in
irradiance. The northern slopes receive less energy than southern slopes, and cast shadows exist at
the highest altitudes on the northern face of Nanga Parbat. Magnitude variations in Eb are larger for
shorter wavelength regions, and decreases at longer wavelengths. This can be seen when comparing
the green and SWIR bands (Figure 4A,D).

Figure 4. Simulated direct-beam irradiance (Eb) component for ASTER imagery: (A) Eb for ASTER
spectral band 1 (green); (B) Eb for ASTER spectral band 2 (red); (C) Eb for ASTER spectral band 3 (NIR);
and (D) Eb for ASTER spectral band 5 (SWIR); Eb is overlaid onto the cos i image.
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The diffuse-skylight irradiance is presented in Figure 5. In general, the magnitude and spatial
variability of Ed decreases with increasing wavelength. This is related to the significant reduction in
atmospheric scattering at longer wavelengths. Meso-scale topographic effects can clearly be seen, as
the magnitude of Ed is greatest at higher altitudes in glacier accumulation areas, where less topographic
shielding occurs. Glacier erosion and river incision generate greater relief that reduces this irradiance
component. This can be seen over the Indus River valley in the northwestern portion of the scene.

Figure 5. Simulated diffuse-skylight irradiance (Ed) component for ASTER imagery: (A) Ed for ASTER
spectral band 1 (green); (B) Ed for ASTER spectral band 2 (red); (C) Ed for ASTER spectral band 3 (NIR);
and (D) Ed for ASTER spectral band 5 (SWIR); Ed is overlaid onto the cos i image.

Figure 6 depicts the atmospheric path-radiance images for ASTER spectral bands. The magnitude
of this component is highly wavelength dependent, as greater atmospheric scattering occurs at
shorter wavelengths, and lower altitudes increase the optical depth that facilitate greater volumetric
atmospheric scattering and higher values of Lp. This can be clearly seen in the Indus Valley that
exhibits the lowest altitudes in the region (Figure 6A).

The at-satellite radiance images (L0) are presented in Figure 7. Simulated images for the ASTER
spectral bands clearly depict the multi-scale topographic effects that are inherent in satellite imagery
acquired over this region. The images are extremely realistic and visually similar to real imagery,
depicting extreme topographic and land cover spectral variations. Univariate statistics for all the
simulated radiation-transfer parameters are presented in Table 3.
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Figure 6. Simulated path radiance (Lp) for ASTER imagery: (A) Lp for ASTER spectral band 1 (green);
(B) Lp for ASTER spectral band 2 (red); (C) Lp for ASTER spectral band 3 (NIR); and (D) Lp for ASTER
spectral band 5 (SWIR). All path radiance images are overlaid onto cos i images.
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Figure 7. Simulated at-satellite radiance (L0) imagery: (A) L0 for ASTER spectral band 1 (green); (B) L0

for ASTER spectral band 2 (red); (C) L0 for ASTER spectral band 3 (NIR); and (D) L0 for ASTER spectral
band 5 (SWIR).

Table 3. Univariate statistical summary of simulated radiation-transfer parameters. These include the
downward total transmittance (T↓, [unitless]), direct-beam irradiance (Eb, [W m−2]), diffuse-skylight
irradiance (Ed, [W m−2]), surface radiance (L, [W m−2 sr−1 µm−1]), upward total transmittance (T↑,
[unitless]), path radiance (Lp, [W m−2 sr−1 µm−1]) and at-satellite radiance (L0, [W m−2 sr−1 µm−1]).

Metric T↓ Eb Ed L T↑ Lp L0

ASTER Band 1 (Green)
min 0.6440 0.0000 29.5013 3.3221 0.7231 7.9265 15.7990
max 0.6961 1267.8566 167.4728 400.6594 0.7640 20.3858 313.9171

µ 0.6684 732.1280 130.6835 122.2610 0.7418 14.8229 105.3889
σ 0.0082 344.5620 18.1674 70.1319 0.0065 2.0040 51.8866

ASTER Band 2 (Red)
min 0.7238 0.0000 19.8067 2.2747 0.7872 3.6063 8.2398
max 0.7565 1145.0496 113.7054 351.3746 0.8124 8.7427 288.0417

µ 0.7392 672.3432 88.3678 114.2206 0.7986 6.4451 97.5879
σ 0.0052 316.2554 12.4042 63.5359 0.0040 0.8287 50.7565

ASTER Band 3 (Near-Infrared, Nadir-Looking)
min 0.7573 0.0000 10.7359 1.7075 0.8081 1.4800 4.3511
max 0.7785 858.5727 62.4444 257.8122 0.8247 3.0548 214.2705

µ 0.7671 507.8256 48.2940 98.6470 0.8153 2.3621 83.2604
σ 0.0033 238.8220 6.8563 46.0054 0.0026 0.2543 37.7731

ASTER Band 5 (Shortwave Infrared)
min 0.9035 0.0000 0.8501 0.1057 0.9259 0.1739 0.2948
max 0.9085 206.6123 5.0140 109.7754 0.9295 0.2169 102.1068

µ 0.9058 123.6449 3.8577 25.3510 0.9274 0.1942 23.7404
σ 0.0008 58.1338 0.5542 13.7359 0.0006 0.0086 12.7587
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4.2. ARC Validation

Validation statistics for characterizing the empirical ARC methods are presented in Table 4.
In general, the so-called statistical-empirical methods did not produce reasonable results. For example,
the SEC method produced results with relative high RMSE and low r2 values for all spectral bands.
Global SSI values were approximately 0.0, with or without the use of atmospheric correction. Similarly,
for the VECA method, global SSI values were 0.0 for all spectral bands, with or without the use of
atmospheric correction, although RMSE and r2 values were exceptionally high, demonstrating that
the scaling factor can account for topographic effects given the Lambertian assumption, although the
technique does not produce reasonable values from a magnitude perspective. Our results indicate
that the B-Correction method performed the best out of this category of approaches. Specifically, the
BNC method outperformed the BLC method with lower RMSE values, and higher r2 and SSI values
for all spectral bands. For both methods, improved results were obtained given that imagery were
atmospherically corrected before applying topographic correction.

Results for so-called semi-empirical methods assuming Lambertian reflectance are also presented
in Table 4. Results were mixed, although several methods generated superior results compared
to the other methods evaluated. The COSC and SCS methods performed the most poorly for
this category, with relatively high RMSE values, and low r2 and SSI values for all spectral bands.
Atmospheric correction before topographic correction did not significantly affect the results for these
methods. Conversely, the CCOR and SCS+C methods performed the best given atmospherically
corrected imagery, with relatively low RMSE values and high r2 and SSI values for all spectral bands.
Both techniques remove almost all the multi-scale topographic variation, and the corrected imagery
represents the inherent spectral variation related to land cover structure and biophysical variation. It is
important to note, however, that atmospheric correction makes a significant difference and accounts
for approximately 10–35% of the explained variability due to topographic coupling that governs
atmospheric conditions, depending on the spectral band.

The results for so-called semi-empirical methods assuming non-Lambertian reflectance are also
presented in Table 4. The GMC method outperformed the PMC method, and atmospheric correction
improved topographic correction results for the GMC method. It did not, however, outperform
the BNC, CCOR and SCS+C methods. These results are not surprising given that we utilized the
Lambertian assumption in our simulations, and that a proxy parameter for Ed is not included in the
GMC and PMC parameterization schemes.

Statistics characterizing the local SSI index for each method (given atmospheric correction)
evaluated are presented in Table 5. The minimum and maximum values of the local SSI index reveal
that all methods produced good and bad correction results, suggesting that these methods produce
highly variable results over a large geographic region depending upon the spatial variability in
morphometric properties. Perhaps the best metric to evaluate is the mean local SSI value that provides
an overall assessment of local topographic-correction effectiveness. In this regard, it is clear that the
CCOR and the SCS+C methods produce the most superior results, with the SCS+C method technically
outperforming the CCOR. Examination of SSI images indicate that both methods effectively correct for
multi-scale topographic effects in simulated imagery. It is interesting to note that these methods do
not perform as well on the SWIR spectral band, compared to the other bands, as numerous locations
exhibit local SSI values <0.5. These locations are associated with relatively high-altitude ridge tops
and steep slopes near ridges throughout the scene. This suggests that the methods do not adequately
account for the diffuse-skylight irradiance at longer wavelengths, given the use of a proxy parameter
that better represents diffuse irradiance at shorter wavelengths given more atmospheric scattering.

Most other methods exhibit relatively low local SSI values throughout the scene. Topographic
correction results are highly variable, and in general, topographic correction is superior on sunlit
slopes. For example, the SEC method that has been noted for being superior for topographic correction
cannot account for multi-scale topographic effects. Figure 8 clearly depicts very low local SSI values
on north, northwestern facing slopes (red), whereas sunlit slopes exhibit higher SSI values (green).
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Methods that produce higher mean SSI values, such as the BNC and the GMC methods produce results
that appear to be wavelength and spatially dependent. For example, the BNC method (Figure 9) works
better for the green and red regions of the spectrum, but the diffuse-irradiance component cannot
be accounted for at high altitude on steep slopes. The results for the NIR and SWIR bands are more
spatially variable than results in shorter wavelengths and the method does not effectively account for
less variation in the diffuse irradiance in these regions of the spectrum. Similarly, Figure 10 depicts
high variability in SSI values for all spectral bands from correction using the GMC method, although
the spatial variability in accuracy is higher in the NIR and SWIR bands.

Figure 8. Local structural-similarity index for SEC corrected imagery given atmospheric correction:
(A) SSI for ASTER spectral band 1 (green); (B) SSI for ASTER spectral band 2 (red); (C) SSI for ASTER
spectral band 3 (NIR); and (D) SSI for ASTER spectral band 5 (SWIR). All SSI images are overlaid onto
the SEC corrected imagery for that spectral band.



Remote Sens. 2019, 11, 2728 26 of 41

Figure 9. Local structural-similarity index for BNC corrected imagery given atmospheric correction:
(A) SSI for ASTER spectral band 1 (green); (B) SSI for ASTER spectral band 2 (red); (C) SSI for ASTER
spectral band 3 (NIR); and (D) SSI for ASTER spectral band 5 (SWIR). All SSI images are overlaid onto
the BNC corrected imagery for that spectral band.
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Figure 10. Local structural-similarity index for GMC corrected imagery given atmospheric correction:
(A) SSI for ASTER spectral band 1 (green); (B) SSI for ASTER spectral band 2 (red); (C) SSI for ASTER
spectral band 3 (NIR); and (D) SSI for ASTER spectral band 5 (SWIR). All SSI images are overlaid onto
the GMC corrected imagery for that spectral band.
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Table 4. Statistical summary of anisotropic-reflectance correction methods for spectrally simulated ASTER imagery. Methods include the statistical-empirical correction
(SEC), B correction (linear form; BLC), B correction (non-linear form; BNC), variable empirical coefficient algorithm (VECA), Cosine Correction (COSC), C correction
(CCOR), sun–canopy–sensor correction (SCS), sun–canopy–sensor plus C correction (SCS+C), global Minnaert Correction (GMC), and pixel-based Minnaert Correction
(PMC). Surface radiance related parameters include the minimum surface radiance (Lmin, [W m−2 sr−1 µm−1]), maximum surface radiance (Lmax, [W m−2 sr−1

µm−1]), surface radiance (L, [W m−2 sr−1 µm−1]), and standard deviation of surface radiance (Lσ). Evaluation metrics include the root-mean-squared-error (RMSE),
coefficient of determination (r2), and structural-similarity index (ssi).

Method Band Lmin Lmax L̄ Lσ RMSE r2 ssi Lmin Lmax L̄ Lσ RMSE r2 ssi
No Atmospheric Correction Atmospheric Correction

SEC

1 121.4288 419.5435 211.0166 51.8859 0.9166 0.0492 0.0119 125.3453 522.8466 244.2519 70.1432 1.0069 0.0778 0.0155
2 106.0620 385.8600 195.4078 50.7557 1.1405 0.0374 0.0065 116.4851 465.6465 228.3897 63.5503 1.3131 0.0457 0.0059
3 87.6831 297.6006 166.5930 37.7716 1.6603 0.0125 0.0008 100.9714 358.5722 198.5007 46.2872 1.9868 0.0134 0.0006
5 24.2230 126.0190 47.6594 12.7547 5.7374 0.0001 0.0000 25.6837 135.3490 50.9608 13.7520 6.1018 0.0001 0.0000

BLC

1 15.4761 249.9005 109.7295 43.1162 0.2329 0.3141 0.2799 3.5475 317.3839 125.2436 60.6536 0.1461 0.7170 0.6662
2 7.8863 227.9336 100.4218 42.0368 0.1874 0.4185 0.3865 2.8053 276.5488 116.5728 53.7447 0.1517 0.6774 0.6243
3 3.7387 167.2680 85.0010 28.3033 0.1732 0.2439 0.1914 1.6250 201.4939 100.9668 35.2306 0.1698 0.3765 0.2975
5 0.3527 78.6198 23.9415 10.3031 0.1911 0.4517 0.4141 0.0546 84.5305 25.5800 11.1444 0.1739 0.5777 0.5325

BNC

1 17.6215 284.3933 107.5298 47.2864 0.1522 0.4693 0.4624 3.7155 372.1765 123.1868 66.4462 0.0454 0.9547 0.9497
2 9.1067 264.8636 98.8073 46.9938 0.1082 0.6558 0.6522 2.5919 327.1211 114.9786 59.9968 0.0450 0.9502 0.9456
3 4.3305 197.0356 84.0492 33.9627 0.0994 0.5129 0.4953 1.6954 240.3360 99.9268 42.2900 0.0534 0.8257 0.8132
5 0.3356 97.1306 23.8060 12.1413 0.0730 0.8254 0.8248 0.1166 104.8507 25.4470 13.1514 0.0358 0.9651 0.9639

VECA

1 6910.8232 13,5382.1875 45,645.3504 22,377.8885 191.5456 0.6596 0.0000 1267.0876 163,968.6562 50,052.4672 28,726.4287 196.1364 1.0000 0.0000
2 3432.5625 11,8064.6562 40,186.5106 20,809.4872 184.0312 0.8269 0.0000 948.3248 152,607.8594 49,711.2010 27,618.7049 218.1850 0.9999 0.0000
3 4499.1143 21,6434.1719 85,997.7968 37,947.9996 510.2392 0.7324 0.0000 1766.3146 26,8510.7812 104,329.7950 47,799.2669 599.3130 0.9922 0.0000
5 36.6951 11,724.8564 2789.3086 1464.8304 72.3405 0.8896 0.0000 13.5308 13,345.3564 3151.5529 1672.4001 79.8865 0.9930 0.0000

COSC

1 15.0438 2941.4138 162.6748 234.3781 7.1156 0.0152 0.0002 3.3901 2654.2244 166.9583 174.2551 5.0594 0.0339 0.0009
2 7.6556 1829.7859 136.2113 140.2343 6.2686 0.0174 0.0003 2.6761 1796.4314 149.3772 120.8023 5.1768 0.0291 0.0007
3 3.6169 947.5345 107.5871 68.1463 5.8571 0.0119 0.0002 1.5613 984.4984 124.3286 63.5167 5.3933 0.0166 0.0002
5 0.3183 148.2510 27.8217 9.7837 6.6391 0.0030 0.0001 0.1754 144.0357 29.4369 10.2294 5.4759 0.0065 0.0002
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Table 4. Cont.

Method Band Lmin Lmax L̄ Lσ RMSE r2 ssi Lmin Lmax L̄ Lσ RMSE r2 ssi
No Atmospheric Correction Atmospheric Correction

CCOR

1 15.9660 312.7744 105.4528 51.6993 0.1070 0.6596 0.6537 3.0886 399.6947 122.0080 70.0239 0.0013 1.0000 1.0000
2 8.3396 286.8495 97.6356 50.5584 0.0843 0.8270 0.8115 2.1766 350.2657 114.0964 63.3904 0.0018 0.9999 0.9999
3 4.3634 209.9650 83.4242 36.8142 0.0883 0.7326 0.7187 1.6812 255.6206 99.3188 45.5049 0.0097 0.9922 0.9920
5 0.3127 99.9152 23.7681 12.4823 0.0591 0.8896 0.8885 0.1091 107.6200 25.4134 13.4861 0.0156 0.9930 0.9928

SCS

1 7.2744 1968.7629 128.1732 137.7535 4.1202 0.0179 0.0007 1.6482 1784.8512 134.9606 107.4268 2.9371 0.0417 0.0030
2 3.5878 1226.2263 109.6218 84.0441 3.6292 0.0208 0.0011 1.2167 1206.5087 121.9616 76.5587 3.0044 0.0358 0.0024
3 1.8233 634.2099 88.1997 41.0922 3.3939 0.0137 0.0005 0.9842 659.8121 102.6753 40.5396 3.1340 0.0193 0.0008
5 0.1532 99.0919 23.3436 8.4348 3.8411 0.0046 0.0003 0.0896 96.4141 24.7673 9.1094 3.1756 0.0096 0.0007

SCS+C

1 15.9117 312.1077 105.2834 51.6205 0.1069 0.6610 0.6547 3.0768 399.1813 121.8911 69.9566 0.0011 1.0000 1.0000
2 8.2875 286.0567 97.4600 50.4690 0.0846 0.8283 0.8122 2.1653 349.5909 113.9490 63.3078 0.0015 0.9999 0.9999
3 4.2623 207.1155 82.6973 36.5041 0.0914 0.7437 0.7272 1.6540 253.1986 98.7162 45.2310 0.0081 0.9929 0.9929
5 0.2975 98.5728 23.5423 12.3672 0.0598 0.8967 0.8945 0.1043 106.2768 25.1924 13.3716 0.0132 0.9937 0.9937

GMC

1 4.1864 280.1595 89.4138 46.3242 0.1422 0.7086 0.6230 1.0210 356.8810 103.6839 61.6958 0.0988 0.8570 0.8223
2 2.4318 256.3222 82.9185 44.9469 0.1456 0.8006 0.6971 0.7351 311.4137 97.0110 55.9102 0.1026 0.8360 0.8036
3 1.2549 189.2264 70.8722 33.6154 0.1693 0.6016 0.5317 0.7256 228.7896 84.4852 41.0439 0.1129 0.5871 0.5686
5 0.0737 90.1524 20.2470 11.2294 0.1444 0.8166 0.7675 0.0258 96.8096 21.6563 12.0971 0.1240 0.8076 0.7815

PMC

1 13.9944 377.0860 141.4583 49.2648 0.8309 0.0894 0.0284 3.7449 1671.5723 186.4410 81.8467 1.4444 0.1198 0.0163
2 7.8235 681.3319 144.2308 51.4382 1.3933 0.0640 0.0099 3.0041 1955.2770 182.9376 76.4928 2.1539 0.0744 0.0053
3 4.4720 848.9163 134.6564 36.3948 2.4773 0.0218 0.0009 1.8724 1847.4973 167.8268 52.2413 3.4374 0.0255 0.0005
5 0.4382 504.4774 47.1432 22.9189 12.6902 0.0033 0.0000 0.2458 838.8116 52.9906 29.7166 17.2102 0.0045 0.0000
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Table 5. Univariate statistics for structural-similarity index (SSI) images based on comparison of
simulated reflectance and normalized reflectance given atmospheric correction. Statistics parameters
include the minimum (Min), maximum (Max), mean (µ), and standard deviation (σ) of local SSI values
in the image.

Method Band Min Max µ σ

SEC

1 0.0000 0.9264 0.2977 0.2856
2 0.0000 0.9173 0.2894 0.2854
3 0.0000 0.8858 0.2160 0.2662
5 0.0000 0.8521 0.2167 0.2667

BLC

1 0.0000 0.9997 0.6382 0.2745
2 0.0000 0.9997 0.6168 0.2807
3 0.0000 0.9988 0.4007 0.2844
5 0.0000 0.9999 0.4838 0.3343

BNC

1 0.0000 1.0000 0.8924 0.2027
2 0.0000 1.0000 0.8967 0.1803
3 0.0000 0.9999 0.7842 0.2231
5 0.0000 1.0000 0.8522 0.2396

VECA

1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0001 0.0000 0.0000

COSC

1 0.0000 0.9996 0.3829 0.3571
2 0.0000 0.9996 0.3681 0.3534
3 0.0000 0.9971 0.2347 0.2969
5 0.0000 0.9996 0.2803 0.3384

CCOR

1 0.0000 1.0000 0.9987 0.0131
2 0.0000 1.0000 0.9969 0.0501
3 0.0000 1.0000 0.9856 0.0274
5 0.0000 1.0000 0.9409 0.1408

SCS

1 0.0000 0.9996 0.3672 0.3163
2 0.0000 0.9997 0.3501 0.3130
3 0.0000 0.9965 0.1969 0.2428
5 0.0000 0.9997 0.2536 0.2989

SCS+C

1 0.0001 1.0000 0.9989 0.0122
2 0.0000 1.0000 0.9970 0.0500
3 0.0000 1.0000 0.9878 0.0248
5 0.0000 1.0000 0.9468 0.1303

GMC

1 0.0000 1.0000 0.7425 0.2576
2 0.0000 1.0000 0.7264 0.2636
3 0.0000 1.0000 0.5297 0.2947
5 0.0000 1.0000 0.5783 0.3327

PMC

1 0.0000 0.9999 0.3593 0.3609
2 0.0000 0.9999 0.3240 0.3539
3 0.0000 0.9997 0.1925 0.2802
5 0.0000 0.9977 0.1734 0.2821

5. Discussion

Radiation-transfer simulations and our theoretical assessment of empirical ARC methods
reveal new insights into the nature of research involving the evaluation of topographic-correction
methods. Our results clearly reveal that the methods we evaluated did not reasonably account
for multi-scale topographic effects, countering results presented in the literature. The magnitude
of reflectance and the correlation structure of biophysical properties were not preserved in the
topographically-corrected imagery. Our best results are obtained by using the CCOR and SCS+C
methods, although comprehensive atmospheric correction is required.

We are surprised that the CCOR and SCS+C methods accounted for multi-scale topographic
effects related to the diffuse-skylight irradiance component. The C parameter is an empirical coefficient
that is thought to be able to account for the variation in Ed. Although the authors who introduced the
CCOR were not definitive in their description of the C parameter [55,72], it has since become commonly
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accepted in the literature that C accounts for Ed, e.g., [16,26,57]. This is not possible, however, because
it is a wavelength dependent constant that does not covary with Ed. It is used to modify θs and cos i,
such that the ratio-scaling factor is highly correlated to Eb + Ed, thereby accounting for the primary
topographic effects in our simulation. This suggests that θs accounts for some variation in Ed related to
diffuse scattering, and that cos i also accounts for variation in topographic shielding given steep slopes,
as Eb is relatively low with steeper slopes. Nevertheless, we should expect both of these methods to be
totally inadequate for removing multi-scale topographic effects in real imagery, given that a multitude
of other topographic factors govern Et, the BRDF, and therefore other secondary radiation-transfer
parameters, as all of the methods evaluated cannot account for these more complex radiation-transfer
parameters due to their limited parameterization schemes.

Our results strongly suggest that these empirical methods cannot be used to address the
problem of multi-scale topographic effects, given the simplicity of their parameterization schemes.
Other multi-scale topographic effects must be accounted for [8], as well as the anisotropic nature
of atmospheric scattering on Ed and the BRDF [8,106]. The literature assumes that there is a best
correction method for different environments and that investigators should evaluate a variety of
methods on a case-by-case basis and use the best one, e.g., [18]. This assumption is most likely false
given that high spatial variability in topographic and land cover conditions governs the magnitude
and spatial variation in wavelength dependent radiation-transfer parameters, as our simulation
demonstrates. Furthermore, this assumption is based on the belief that researchers can accurately
evaluate topographic-correction procedures, accounting for magnitudes and the spectral correlation
structure of land cover and biophysical variations, which is effectively a radiometric calibration issue.
This information over an entire geographic region is generally not available in mountain environments.
Therefore, common evaluation procedures are inadequate. Recently, investigators have begun to
recognize this fact and have utilized a multi-criteria-based approach where numerous evaluation
methods are considered, e.g., [63]. We note, however, that these approaches cannot account for
variations in numerous radiation-transfer parameters that are governed by topographic effects.

Fundamentally, the inherent nature-of-the-problem stems from inadequate parameterization
schemes and inadequate evaluation approaches. ARC is fundamentally a radiometric calibration issue
that requires the removal of spectral variation caused by coupled atmosphere–topography effects.
Evaluation procedures must account for various radiation-transfer parameters in order to remove
those image information components. The use of previously reported evaluation procedures are highly
subjective given unrealistic assumptions. The issues include:

1. The use of the human visualization system to evaluate empirical ARC methods. Decreased
spectral variation is thought to signify effective topographic correction. This approach cannot
be used to evaluate the degree of information compression given the use of a scaling factor, the
correct magnitude of surface reflectance, or the spatial variation structure of surface spectral
reflectance. Furthermore, interpretation is subject to biases resulting from a-priori experience,
generalization caused by 8-bit display monitors, color bins, and graphic production techniques.

2. The concept of similar surface reflectance conditions for homogeneous landcover is assumed to
be the result of effective ARC. This assumption is not realistic in mountain environments because
of biophysical property variation related to topography and land cover structure. Environmental
dynamics in mountain environments determine the magnitude and extent of various processes
which dramatically alter surface irradiance, surface composition and the BRDF. These include
processes such as evapotranspiration, gravitational sediment fluxes, erosion, deposition and slope
stability that governs plant dispersion and mineralogical composition. In addition, climate forcing
and variations in temperature and precipitation govern vegetation density, glaciation and snow
cover. ARC methods need to work over large spatial and temporal scales, therefore the operational
scale dependencies of processes may vary significantly, and the assumption that homogeneous
land cover conditions will exhibit similar reflectance on illuminated and shadowed terrain, which
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serves as a basis for evaluation, does not account for spatial variation in surface-process dynamics
and radiation-transfer theory.

3. The relationship between cos i and L should not be used to evaluate the effectiveness of
topographic correction, as it does not account for numerous radiation-transfer parameters (e.g.,
Ed and Et) that exhibit spectral variation at different scales and magnitudes than cos i. In addition,
land cover patterns are dependent upon topographic variables and residual correlations between
cos i, and spectral reflectance values would be expected following topographic corrections [18,63].
Furthermore, as we have demonstrated, a global image evaluation procedure cannot be used to
account for local effectiveness of a topographic-correction method.

4. It is frequently assumed that spectral homogeneity should increase after topographic correction,
e.g., [18]. This assumption is not consistent with the concept of enhancing the moderate- to
high-frequency surface reflectance conditions, as lower-frequency topographic information is
reduced. This was demonstrated by Bishop and Colby [15], who used semi-variogram analysis
to evaluate surface reflectance variability after topographic correction. This is especially the
case in more dynamic mountain environments where moisture variations, sediment fluxes, and
anthropogenic forcing can cause significant compositional and biophysical variation that can
increase spectral variation over various spatial scales.

5. The utilization of classification accuracy as a way to evaluate topographic correction.
This approach is extremely problematic and does not address numerous radiometric calibration
issues related to the fundamental radiation-transfer components. The magnitude and spatial
variation of reflectance is also not accounted for. It introduces significant uncertainty given
various assumptions, and is influenced by overcorrection or information compression, the nature
of the algorithm, training, as well as dimensionality of the feature space and specific information
components making up that feature space. Therefore, many potential sources of error are intrinsic
in the classification process [19,50]. Given high spectral variability in mountain environments,
and the availability of high resolution imagery, good classification accuracy can be difficult to
obtain given increased spectral variation. Nevertheless, good classification results do not equate
to optimized ARC results that need to be representative of surface biophysical property variation
to enable the prediction of surface parameters and generation of thematic information.

6. Issues of empiricism associated with using parameter values and thresholds to modify results for
a particular geographic region. Often, such attempts are applied over relatively small geographic
areas, and their utilization may become questionable over larger regions due to more spatial
variability in morphometric properties of the topography and RT parameters. We would argue
that, given the paucity of data over large areas by which to formally validate ARC results,
investigators cannot effectively select the appropriate magnitude or interval range of parameters
in an attempt to optimize results. For example, empirically modifying results based on visual
interpretation does not effectively address the removal of radiation-transfer components from the
imagery, as the parameterization schemes and modification procedures cannot deterministically
account for other topographic effects. It also results in non-repeatable results, as such procedures
may not produce consistent results in different environments, at different times, or with different
analysts. Consequently, empiricism is also partially responsible for inconsistent results presented
in the literature.

7. Research involving the ranking of empirical ARC procedures. We would argue that this should
not be a research objective, as traditional statistical and classification evaluation methods do not
account for the reduction of radiation-transfer components encapsulated in multispectral imagery.
As demonstrated in our simulation, radiometric calibration is required and the results are highly
dependent upon the wavelength region, time, and morphometric properties of the topography.
Most of these factors have not been systematically evaluated. Rather, investigators assume that
more evaluation procedures are better and produce reliable results when, in fact, the radiometric
calibration issues are not being addressed using simplistic empirical ARC procedures. Rankings
which are based on different evaluation approaches also lead to inconsistencies in the literature.
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8. Mountain topographic and spectral variability. The literature is ubiquitous with statements
indicating that investigators are evaluating ARC methods in complex topography. Complexity
needs to be semantically defined, as indicated by Bishop and Dobreva [107], who evaluated
the term from morphometric property and system perspectives. Clearly, the magnitude and
spatial variability of morphometric properties govern the multi-scale topographic effects that
partially regulate irradiance and reflectance variations. As demonstrated, even secondary or
tertiary parameters can significantly influence results if they are not formally accounted for (i.e.,
need for atmospheric correction given relief variations). Similarly, the radiation-transfer process
dynamics need to be accounted for in order to represent their variation adequately so that it can be
removed. Consequently, we could expect that various empirical ARC methods will better function
in environments with less topographic and spectral variability. We would argue that the concept
needs to be evaluated from a radiation-transfer systems perspective. Therefore, researchers need
to account for the morphometric properties of the topography within their study areas.

9. Small angle approximation. Most investigators utilize constant solar geometry parameters for
atmospheric correction, the cosine of the incidence angle and ARC methods. Solar geometry
parameters vary for each pixel and are a function of time, latitude, longitude, and altitude.
The computation of these parameters is more important for processing large regions or scenes
compared to small areas. Nevertheless, it is assumed that the variance is insignificant. It is yet
unclear as to the impact that this assumption has on ARC, as it is a parameter that partially
governs atmospheric transmittance, path radiance, direct irradiance, diffuse-skylight irradiance,
adjacent-terrain irradiance and the BRDF.

10. Performance dependence on land cover. Numerous researchers have indicated that
the effectiveness of empirical ARC methods is largely dependent on land-surface types,
e.g., [17,81,108]. We would argue that this is not technically correct, as effective ARC depends
upon a multitude of factors including: (1) parameterization scheme of technique/model;
(2) spatial variability in morphometric properties; (3) landcover type and structure; and (4) sensor
characteristics, such as wavelength. Clearly, the morphometric properties of the topography
coupled with atmospheric conditions and the land cover surface structure will collectively govern
the irradiance fluxes and the BRDF. Sensor-system characteristics will then determine the level
of generalization associated with recording the RTC. Empirical ARC methods do not formally
account for all of the radiation-transfer components that are caused by multi-scale topographic
effects, especially the BRDF. It has yet to be conclusively determined to what degree the BRDF
accounts for spectral variation in imagery. In such dynamic environments, areal and intimate
mixtures of matter must also be accounted for, and is another factor governing the BRDF.

Our simulation results strongly suggest that inconsistencies in research results can be understood
on the basis of environmental complexity, as it governs radiation-transfer parameters. Less complex
topography, and more spatially homogeneous land cover conditions, may dictate that a reduced
number of radiation-transfer parameters need to be accounted for, and that Eb may be the most
dominant factor. Under these conditions, various empirical ARC methods may work to some degree.
As the environmental complexity increases, however, different approaches may need to be used.
Nevertheless, ARC investigations do not generally account for a multitude of multi-scale topographic
effects and parameters related to atmospheric conditions, cast shadows, Ed, Et, or the BRDF. Although
empirical methods that assume non-Lambertian reflectance have been evaluated, the parameters that
govern the BRDF are not fully accounted for. Furthermore, parameterization scheme errors have
propagated in the literature, and researchers may have utilized different or incorrect equations for
some ARC methods. To complicate matters, researchers have demonstrated that results are temporally
variable, e.g., [54].

The aforementioned issues demonstrate the multi-faceted complexity of ARC.
Numerous radiation-transfer components are collectively governed by atmospheric conditions,
multi-scale topographic effects and landcover dynamics. Characterizing and removing these variance
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components from multispectral imagery is notoriously difficult and will require radiation-transfer
modeling. We should not expect the use of a few proxy parameters to address the nature-of-the-problem
given the anisotropic nature of irradiance and reflectance. Furthermore, more research is warranted on
developing and evaluating new parameterization schemes that better account for variations in the
components of the RTC. More research investigating topographic effects on the BRDF is sorely needed.
Only in this way will we be able to better understand which radiation-transfer components must be
accounted for in ARC methods and models.

6. Conclusions

Remote sensing of mountain environments is challenging, as multi-scale topographic effects
govern the anisotropic nature of the radiation-transfer cascade. Although anisotropic-reflectance
correction investigations have been ongoing for approximately 40 years, inconsistent research results
caused by inadequate evaluation approaches have resulted in little progress on effective topographic
correction of multispectral imagery in mountain environments. Consequently, we diagnostically
evaluated commonly used empirical ARC methods using spectrally simulated ASTER imagery
over the Nanga Parbat, Himalaya. Specifically, we used first-order radiation-transfer modeling to
account for a variety of spectral, spatial and temporal factors including orbital dynamics, atmospheric
absorption and scattering, direct- and diffuse-skylight irradiance, land cover structure, and surface
biophysical variations.

As expected, we found that the dominance and spatial variability of various radiation-transfer
components were wavelength dependent. Our results clearly reveal that most of the empirical ARC
methods we evaluated could not effectively or reasonably account for the multi-scale topographic
effects at Nanga Parbat. The magnitude of reflectance and the correlation structure of biophysical
properties were not preserved in the topographically-corrected multispectral imagery. Using a
Lambertian assumption, better results were obtained using the CCOR and SCS+C methods, although
comprehensive atmospheric correction was required, and we did not account for other primary and
secondary topographic effects that are thought to significantly influence spectral variation in imagery
acquired over mountains (adjacent-terrain irradiance and the BRDF). Evaluation of structural-similarity
images revealed spatially variable results that are wavelength dependent. Collectively, our simulation
and evaluation procedures strongly suggest that empirical ARC methods cannot be used to address
the problem of multi-scale topographic effects in mountain environments, given the simplicity of
the parameterization schemes and their inability to adequately account for anisotropic irradiance
and reflectance.

Characterizing and removing radiation-transfer parameter variance components from
multispectral imagery is notoriously difficult and will require radiation-transfer modeling efforts.
More research is warranted on developing and evaluating new parameterization schemes that better
account for variations in the components of the RTC. More research investigating topographic effects
on the BRDF is sorely needed. The next phase of our research will be to incorporate more primary,
secondary and tertiary parameters of the RTC to evaluate ARC methods.
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Abbreviations

The following abbreviations are used in this manuscript:

ARC Anisotropic reflectance correction
BRDF Bidirectional reflectance distribution function
RTC Radiation-transfer cascade
DEM Digital elevation model
SEC Statistical Empirical Correction method
BLC B correction (linear form)
BNC B correction (non-linear form)
VECA Variable empirical coefficient algorithm
COSC Cosine Correction
CCOR C-Correction
SCS Sun–canopy–sensor correction
SCS+C Sun–canopy–sensor plus C correction
GMC Global Minnaert Correction
PMC Pixel-based Minnaert Correction

Appendix A. Atmospheric Constituents and Properties

Table A1. Numerical modeling parameter values used for characterizing atmospheric
constituents and properties for atmospheric transmittance and path radiance components of the
radiation-transfer cascade.

Description Symbol Value Source

Earth–Sun Distance R 1.005711546525589 AU Computed
Earth–Sun Distance Correction Factor D 0.988674032 Computed
U.S. Standard Air Pressure at Sea Level P0 1013.25 mbar Jacobson [22]
U.S. Standard Air Temperature at Sea Level T0 288 K Jacobson [22]
Average mass of one air molecule M̄ 4.8096× 10−26kg Jacobson [22]
Precipitable Water Vapor W 3.4 cm Interpolated from Leckner [89]
Ozone Standard Midlatitude O3 0.3434 atm cm Gueymard [24]
Height of Maximum Ozone Concentration ho 22 km Bird and Riordan [25]
Turbidity Coefficient β 0.1 Gueymard [24]
Turbidity Coefficient α1 1.0274 Bird and Riordan [25]
Turbidity Coefficient α2 1.206 Bird and Riordan [25]
Aerosol Single-Scattering Albedo at λ = 0.4µm ω0.4 0.945 Bird and Riordan [25]
Aerosol Wavelength Variation Factor ω′ 0.095 Bird and Riordan [25]
Aerosol Asymmetry Coefficient k0 0.75141 Gueymard [24]
Aerosol Asymmetry Coefficient k1 −0.35648 Gueymard [24]
Aerosol Asymmetry Coefficient k2 0.29982 Gueymard [24]
Aerosol Asymmetry Coefficient k3 −0.081346 Gueymard [24]
Aerosol Asymmetry Coefficient k4 0.0073038 Gueymard [24]
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Appendix B. Symbol Notation

Table A2. Symbol notation.

Symbol Unit Description

αs [radians] Solar elevation angle
ρ̄s unitless Weighted sensor response surface reflectance
δ [radians] Solar declination
λ [µm] Wavelength of light
λl [radians] True longitude of the Earth relative to the vernal equinox
ω unitless Single-scattering albedo
φi [radians] Hemisphere azimuth angle of incident energy
φs [radians] Solar-azimuth angle
φt [radians] Terrain slope-azimuth angle
φe

i [radians] Effective slope-azimuth angle incident energy accounting for topographic correction
φe

v [radians] Effective slope-azimuth viewing angle accounting for topographic correction
ρc

s unitless Composite surface reflectance
ρbrd f unitless Surface BRDF

ρa unitless Spectral sky reflectance of the atmosphere
ρj unitless Reflectance of end-member j
ρn unitless Normalized surface reflectance after topographic correction

θmax [radians] Maximum relief angle
θi [radians] Hemisphere zenith angle of incident energy
θs [radians] Solar-zenith angle
θt [radians] Terrain slope angle
θv [radians] Viewing zenith angle
θe

i [radians] Effective zenith angle of incident energy accounting for topographic correction
θe

v [radians] Effective viewing zenith angle accounting for topographic correction
ϕ [radians] Latitude
b unitless Snow scattering asymmetry factor
c unitless Contrast variance parameter for SSI
d [km] Earth–Sun distance
E [W m−2] Surface irradiance
e [radians] Exitance angle

E0 [W m−2 µm−1] Exoatmospheric irradiance
Ea [W m−2] Aerosol scattering irradiance component
Eb [W m−2] Direct-beam irradiance from the Sun
Ed [W m−2] Diffuse-skylight irradiance
Eg [W m−2] Ground/sky backscattering irradiance component
ej unitless Error term
Er [W m−2] Irradiance due to Rayleigh scattering
Et [W m−2] Adjacent-terrain irradiance
f j unitless Fraction of end-member j
fr unitless Earth–Sun distance-correction factor
H [radians] Hour angle of the Sun
i [radians] Incidence angle
I [radians] Hemisphere incidence angle
It [radians] Adjacent terrain-incidence angle
k unitless Minnaert coefficient
l unitless Collective influence of reflectance magnitude for SSI
L [W m−2 sr−1 µm−1] Surface radiance
L↓ [W m−2] Hemispherical downward diffuse irradiance
L0 [W m−2 sr−1 µm−1] At-satellite radiance
Ln [W m−2 sr−1 µm−1] Surface radiance after topographic normalization
Lp [W m−2 sr−1 µm−1] Additive path radiance
r unitless Pearson-Product Moment correlation coefficient
S unitless Binary coefficient for cast shadows

SSI unitless Structural-similarity index
St unitless Binary coefficient for terrain blocking
Ta unitless Transmittance due to aerosol scattering
Tg unitless Transmittance due to primary gas absorption
To unitless Transmittance due to ozone absorption
Tr unitless Transmittance due to Rayleigh scattering
Tw unitless Transmittance due to water vapor absorption
T↓ unitless Total downward transmittance
T↑ unitless Total upward transmittance
T↓↑ unitless Total downward/upward transmittance
T↓↑t unitless Total atmospheric transmittance due to terrain relief



Remote Sens. 2019, 11, 2728 37 of 41

Appendix C. Spectral Files

Table A3. Names of files utilized for spectral mixing.

Spectrum USGS Spectral Library v7 File

Illite Illite_IMt-1.b_lt2um_BECKa_AREF
Hematite Hematite_GDS27_BECKa_AREF

Calcite Calcite_WS272_BECKa_AREF
Hornblende Hornblende_Mg_NMNH117329_BECKb_AREF

Quartz Quartz_HS32.4B_BECKa_AREF
Oligoclase Oligoclase_HS110.3B_BECKc_AREF
Orthoclase Orthoclase_NMNH113188_BECKb_AREF

Desert Varnish Desert_Varnish_GDS78A_Rhy_BECKa_AREF
Lodgepole Pine Lodgepole-Pine_YNP-LP2-A_AVIRISb_RTGC
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