Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Nafion–TMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3812 KiB  
Article
Electrochemical Detection of Adrenaline Using Nafion–Trimethylsilyl and Nafion–Trimethylsilyl–Ru2+-Complex Modified Electrodes
by R. Aguilar-Sánchez, D. A. Durán-Tlachino, S. L. Cabrera-Hilerio and J. L. Gárate-Morales
Electrochem 2025, 6(2), 10; https://doi.org/10.3390/electrochem6020010 - 27 Mar 2025
Cited by 1 | Viewed by 842
Abstract
The preparation and properties of Nafion–TMS (Nafion–trimethylsilyl) and Nafion–TMS–Ru2+-complex modified GC electrodes are reported for the electrochemical oxidation reaction of adrenaline (AD). The structure of Nafion–TMS was studied by atomic force microscopy. The incorporation of [Ru(bpy)3]2+ and [Ru(phen) [...] Read more.
The preparation and properties of Nafion–TMS (Nafion–trimethylsilyl) and Nafion–TMS–Ru2+-complex modified GC electrodes are reported for the electrochemical oxidation reaction of adrenaline (AD). The structure of Nafion–TMS was studied by atomic force microscopy. The incorporation of [Ru(bpy)3]2+ and [Ru(phen)3]2+ complexes into Nafion–TMS was investigated by UV-vis spectroscopy, providing information about the interaction of the modified Nafion–TMS–Ru2+-complex composite. According to electrochemical studies, the electrodes modified with this composite polymer showed a faster electron transfer and greatly improved kinetics for the redox reaction of AD in standard solutions when compared to bare and Nafion–TMS modified electrodes. The oxidation current increased linearly with adrenaline concentration in the range from 1 to 20 mM and 1 to 100 mM for Nafion–TMS and the modified Nafion–TMS–Ru2+ complex, respectively. A strong pH dependence on the electroanalytical parameters was found for adrenaline detection, indicating that electron transfer reaction occurs in tandem with proton transfer. Full article
Show Figures

40 pages, 7643 KiB  
Review
Sulfonated Pentablock Copolymer (NexarTM) for Water Remediation and Other Applications
by Simona Filice, Viviana Scuderi and Silvia Scalese
Polymers 2024, 16(14), 2009; https://doi.org/10.3390/polym16142009 - 13 Jul 2024
Cited by 3 | Viewed by 2189
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing [...] Read more.
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer. Full article
(This article belongs to the Special Issue Advanced Polymer Materials for Water and Wastewater Treatment)
Show Figures

Graphical abstract

17 pages, 1884 KiB  
Article
Electrochemical Characterization of Charged Membranes from Different Materials and Structures via Membrane Potential Analysis
by Virginia Romero, Lourdes Gelde and Juana Benavente
Membranes 2023, 13(8), 739; https://doi.org/10.3390/membranes13080739 - 17 Aug 2023
Cited by 1 | Viewed by 2431
Abstract
Electrochemical characterization of positively and negatively charged membranes is performed by analyzing membrane potential values on the basis of the Teorell–Meyer–Sievers (TMS) model. This analysis allows the separate estimation of Donnan (interfacial effects) and diffusion (differences in ions transport through the membrane) contributions, [...] Read more.
Electrochemical characterization of positively and negatively charged membranes is performed by analyzing membrane potential values on the basis of the Teorell–Meyer–Sievers (TMS) model. This analysis allows the separate estimation of Donnan (interfacial effects) and diffusion (differences in ions transport through the membrane) contributions, and it permits the evaluation of the membrane’s effective fixed charge concentration and the transport number of the ions in the membrane. Typical ion-exchange commercial membranes (AMX, Ionics or Nafion) are analyzed, though other experimental and commercial membranes, which are derived from different materials and have diverse structures (dense, swollen or nanoporous structures), are also considered. Moreover, for some membranes, changes associated with different modifications and other effects (concentration gradient or level, solution stirring, etc.) are also analyzed. Full article
Show Figures

Figure 1

16 pages, 9115 KiB  
Article
Assessment of Graphite, Graphene, and Hydrophilic-Treated Graphene Electrodes to Improve Power Generation and Wastewater Treatment in Microbial Fuel Cells
by Fátima Borja-Maldonado and Miguel Ángel López Zavala
Bioengineering 2023, 10(3), 378; https://doi.org/10.3390/bioengineering10030378 - 19 Mar 2023
Cited by 6 | Viewed by 2766
Abstract
In this study, graphite, graphene, and hydrophilic-treated graphene electrodes were evaluated in a dual-chamber microbial fuel cell (DC-MFC). Free-oxygen conditions were promoted in anodic and cathodic chambers. Hydrochloric acid at 0.1 M and pH 1.1 was used as a catholyte, in addition to [...] Read more.
In this study, graphite, graphene, and hydrophilic-treated graphene electrodes were evaluated in a dual-chamber microbial fuel cell (DC-MFC). Free-oxygen conditions were promoted in anodic and cathodic chambers. Hydrochloric acid at 0.1 M and pH 1.1 was used as a catholyte, in addition to deionized water in the cathodic chamber. Domestic wastewater was used as a substrate, and a DuPontTM Nafion 117 membrane was used as a proton exchange membrane. The maximum power density of 32.07 mW·m2 was obtained using hydrophilic-treated graphene electrodes and hydrochloric acid as catholyte. This power density was 1.4-fold and 32-fold greater than that of graphene (22.15 mW·m2) and graphite (1.02 mW·m2), respectively, under the same operational conditions. In addition, the maximum organic matter removal efficiencies of 69.8% and 75.5% were obtained using hydrophilic-treated graphene electrodes, for hydrochloric acid catholyte and deionized water, respectively. Therefore, the results suggest that the use of hydrophilic-treated graphene functioning as electrodes in DC-MFCs, and hydrochloric acid as a catholyte, favored power density when domestic wastewater is degraded. This opens up new possibilities for improving DC-MFC performance through the selection of suitable new electrode materials and catholytes. Full article
Show Figures

Graphical abstract

19 pages, 2566 KiB  
Article
Development of a Moisture Pretreatment Device for the Accurate Quantitation of Water-Soluble Volatile Organic Compounds in Air
by Sang-Woo Lee, Trieu-Vuong Dinh, Shin-Young Park, In-Young Choi, In-Young Kim, Byeong-Gyu Park, Da-Hyun Baek, Jae-Hyung Park, Ye-Bin Seo and Jo-Chun Kim
Chemosensors 2023, 11(3), 188; https://doi.org/10.3390/chemosensors11030188 - 11 Mar 2023
Cited by 4 | Viewed by 2499
Abstract
In air pollutant monitoring using sensors, moisture can adversely affect the analytical accuracy of volatile organic compounds (VOCs). Therefore, a new moisture pretreatment device (KPASS–Odor) for analyzing VOCs in the air was developed, based on frost and created by a desublimation process inside [...] Read more.
In air pollutant monitoring using sensors, moisture can adversely affect the analytical accuracy of volatile organic compounds (VOCs). Therefore, a new moisture pretreatment device (KPASS–Odor) for analyzing VOCs in the air was developed, based on frost and created by a desublimation process inside a cold tube. The performance of KPASS–Odor was compared with conventional devices (i.e., a NafionTM dryer and a cooler) through the measurements of low water-soluble VOCs (i.e., benzene, toluene, ethyl benzene, p-xylene, and styrene) and relatively high ones (i.e., methyl-ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol) using gas chromatography (GC) and sensor methods. Regarding the GC method, the recovery rates for KPASS–Odor and the cooler were >95% and >80%, respectively, at a flow rate of 500 mL/min for all compounds. For the NafionTM dryer, the recovery rates differed between low and high water-soluble compounds, which exhibited the rates ≥88% and ≤86%, respectively. In terms of the sensor method, the VOC recovery rates of KPASS–Odor and the NafionTM dryer were found to be >90% and <50%, respectively. Therefore, KPASS–Odor was determined to be the most suitable moisture pretreatment device for highly soluble VOCs of concern in this study. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

16 pages, 4880 KiB  
Article
Hybrid Fluoro-Based Polymers/Graphite Foil for H2/Natural Gas Separation
by Angela Malara, Lucio Bonaccorsi, Antonio Fotia, Pier Luigi Antonucci and Patrizia Frontera
Materials 2023, 16(5), 2105; https://doi.org/10.3390/ma16052105 - 5 Mar 2023
Cited by 3 | Viewed by 2041
Abstract
Membrane technologies and materials development appear crucial for the hydrogen/natural gas separation in the impending transition to the hydrogen economy. Transporting hydrogen through the existing natural gas network could result less expensive than a brand-new pipe system. Currently, many studies are focused on [...] Read more.
Membrane technologies and materials development appear crucial for the hydrogen/natural gas separation in the impending transition to the hydrogen economy. Transporting hydrogen through the existing natural gas network could result less expensive than a brand-new pipe system. Currently, many studies are focused on the development of novel structured materials for gas separation applications, including the combination of various kind of additives in polymeric matrix. Numerous gas pairs have been investigated and the gas transport mechanism in those membranes has been elucidated. However, the selective separation of high purity hydrogen from hydrogen/methane mixtures is still a big challenge and nowadays needs a great improvement to promote the transition towards more sustainable energy source. In this context, because of their remarkable properties, fluoro-based polymers, such as PVDF-HFP and NafionTM, are among the most popular membrane materials, even if a further optimization is needed. In this study, hybrid polymer-based membranes were deposited as thin films on large graphite surfaces. Different weight ratios of PVDF-HFP and NafionTM polymers supported over 200 μm thick graphite foils were tested toward hydrogen/methane gas mixture separation. Small punch tests were carried out to study the membrane mechanical behaviour, reproducing the testing conditions. Finally, the permeability and the gas separation activity of hydrogen/methane over membranes were investigated at room temperature (25 °C) and near atmospheric pressure (using a pressure difference of 1.5 bar). The best performance of the developed membranes was registered when the 4:1 polymer PVDF-HFP/NafionTM weight ratio was used. In particular, starting from the 1:1 hydrogen/methane gas mixture, a 32.6% (v%) H2 enrichment was measured. Furthermore, there was a good agreement between the experimental and theoretical selectivity values. Full article
(This article belongs to the Special Issue Advances in Materials Science for Engineering Applications)
Show Figures

Figure 1

22 pages, 9354 KiB  
Review
Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review
by Rajangam Vinodh, Raji Atchudan, Hee-Je Kim and Moonsuk Yi
Polymers 2022, 14(2), 300; https://doi.org/10.3390/polym14020300 - 12 Jan 2022
Cited by 68 | Viewed by 6645
Abstract
In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance. Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane industry in polymer electrolyte membrane [...] Read more.
In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance. Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane industry in polymer electrolyte membrane fuel cells (PEMFCs); however, NafionTM suffers reduced proton conductivity at a higher temperature, requiring noble metal catalyst (Pt, Ru, and Pt-Ru), and catalyst poisoning by CO. Non-fluorinated polymers are a promising substitute. Polysulfone (PSU) is an aromatic polymer with excellent characteristics that have attracted membrane scientists in recent years. The present review provides an up-to-date development of PSU based electrolyte membranes and its composites for PEMFCs, alkaline membrane fuel cells (AMFCs), and direct methanol fuel cells (DMFCs) application. Various fillers encapsulated in the PEM/AEM moiety are appraised according to their preliminary characteristics and their plausible outcome on PEMFC/DMFC/AMFC. The key issues associated with enhancing the ionic conductivity and chemical stability have been elucidated as well. Furthermore, this review addresses the current tasks, and forthcoming directions are briefly summarized of PEM/AEMs for PEMFCs, DMFCs, AMFCs. Full article
(This article belongs to the Special Issue Polymer Nanoparticles: Synthesis and Applications)
Show Figures

Graphical abstract

17 pages, 6333 KiB  
Article
Long-Term Effect of Low-Frequency Electromagnetic Irradiation in Water and Isotonic Aqueous Solutions as Studied by Photoluminescence from Polymer Membrane
by Nikolai F. Bunkin, Polina N. Bolotskova, Elena V. Bondarchuk, Valery G. Gryaznov, Sergey V. Gudkov, Valeriy A. Kozlov, Maria A. Okuneva, Oleg V. Ovchinnikov, Oleg P. Smoliy and Igor F. Turkanov
Polymers 2021, 13(9), 1443; https://doi.org/10.3390/polym13091443 - 29 Apr 2021
Cited by 14 | Viewed by 9074
Abstract
The swelling of a polymer membrane NafionTM in deionized water and isotonic NaCl and Ringer’s solutions was studied by photoluminescent spectroscopy. According to our previous studies, the surface of this membrane could be considered as a model for a cellular surface. Liquid [...] Read more.
The swelling of a polymer membrane NafionTM in deionized water and isotonic NaCl and Ringer’s solutions was studied by photoluminescent spectroscopy. According to our previous studies, the surface of this membrane could be considered as a model for a cellular surface. Liquid samples, in which the membrane was soaked, were subjected to preliminary electromagnetic treatment, which consisted of irradiating these samples with electric rectangular pulses of 1 µs duration using platinum electrodes immersed in the liquid. We used a series of pulses with a repetition rate of 11–125 Hz; the pulse amplitudes were equal to 100 and 500 mV. It turned out that at certain pulse repetition rates and their amplitudes, the characteristic swelling time of the polymer membrane significantly differs from the swelling time in untreated (reference) samples. At the same time, there is no effect for certain frequencies/pulse amplitudes. The time interval between electromagnetic treatment and measurements was about 20 min. Thus, in our experiments the effects associated with the long-term relaxation of liquids on the electromagnetic processing are manifested. The effect of long-term relaxation could be associated with a slight change in the geometric characteristics of bubston clusters during electromagnetic treatment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 6035 KiB  
Article
Stability of Proton Exchange Membranes in Phosphate Buffer for Enzymatic Fuel Cell Application: Hydration, Conductivity and Mechanical Properties
by Luca Pasquini, Botagoz Zhakisheva, Emanuela Sgreccia, Riccardo Narducci, Maria Luisa Di Vona and Philippe Knauth
Polymers 2021, 13(3), 475; https://doi.org/10.3390/polym13030475 - 2 Feb 2021
Cited by 8 | Viewed by 3547
Abstract
Proton-conducting ionomers are widespread materials for application in electrochemical energy storage devices. However, their properties depend strongly on operating conditions. In bio-fuel cells with a separator membrane, the swelling behavior as well as the conductivity need to be optimized with regard to the [...] Read more.
Proton-conducting ionomers are widespread materials for application in electrochemical energy storage devices. However, their properties depend strongly on operating conditions. In bio-fuel cells with a separator membrane, the swelling behavior as well as the conductivity need to be optimized with regard to the use of buffer solutions for the stability of the enzyme catalyst. This work presents a study of the hydrolytic stability, conductivity and mechanical behavior of different proton exchange membranes based on sulfonated poly(ether ether ketone) (SPEEK) and sulfonated poly(phenyl sulfone) (SPPSU) ionomers in phosphate buffer solution. The results show that the membrane stability can be adapted by changing the casting solvent (DMSO, water or ethanol) and procedures, including a crosslinking heat treatment, or by blending the two ionomers. A comparison with NafionTM shows the different behavior of this ionomer versus SPEEK membranes. Full article
(This article belongs to the Special Issue Ionic Conductive Polymers for Electrochemical Devices)
Show Figures

Graphical abstract

14 pages, 5153 KiB  
Article
Development of a Chitosan/PVA/TiO2 Nanocomposite for Application as a Solid Polymeric Electrolyte in Fuel Cells
by Elio Enrique Ruiz Gómez, José Herminsul Mina Hernández and Jesús Evelio Diosa Astaiza
Polymers 2020, 12(8), 1691; https://doi.org/10.3390/polym12081691 - 29 Jul 2020
Cited by 24 | Viewed by 5114
Abstract
The influence of the incorporation of nanoparticles of titanium oxide (TiO2) at a concentration between 1000 and 50,000 ppm on the physicochemical and mechanical properties of a polymer matrix formed from a binary mixture of chitosan (CS) and polyvinyl alcohol (PVA) [...] Read more.
The influence of the incorporation of nanoparticles of titanium oxide (TiO2) at a concentration between 1000 and 50,000 ppm on the physicochemical and mechanical properties of a polymer matrix formed from a binary mixture of chitosan (CS) and polyvinyl alcohol (PVA) at a ratio of 80:20 and the possibility of its use as a solid polymeric electrolyte were evaluated. With the mixture of the precursors, a membrane was formed with the solvent evaporation technique (casting). It was found that the incorporation of the nanoparticles affected the moisture absorption of the material; the samples with the highest concentrations displayed predominantly hydrophobic behavior, while the samples with the lowest content displayed absorption values of 90%. Additionally, thermogravimetric analysis (TGA) showed relatively low dehydration in the materials that contained low concentrations of filler; moreover, differential scanning calorimetry (DSC) showed that the nanoparticles did not significantly affect the thermal transitions (Tg and Tm) of the compound. The ionic conductivity of the compound with a relatively low concentration of 1000 ppm TiO2 nanoparticles was determined by complex impedance spectroscopy. The membranes doped with a 4 M KOH solution demonstrated an increase in conductivity of two orders of magnitude, reaching values of 10−6 S·cm−1 at room temperature in previously dried samples, compared to that of the undoped samples, while their activation energy was reduced by 50% with respect to that of the undoped samples. The voltage–current test in a proton exchange membrane fuel cell (PEMFC) indicated an energy efficiency of 17% and an open circuit voltage of 1.0 V for the undoped compound, and these results were comparable to those obtained for the commercial membrane product Nafion® 117 in evaluations performed under conditions of 90% moisture saturation. However, the tests indicated a low current density in the undoped compound. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cell)
Show Figures

Graphical abstract

18 pages, 1410 KiB  
Article
Short Circuit Characteristics of PEM Fuel Cells for Grid Integration Applications
by Florian Grumm, Marc Schumann, Carsten Cosse, Maik Plenz, Arno Lücken and Detlef Schulz
Electronics 2020, 9(4), 602; https://doi.org/10.3390/electronics9040602 - 1 Apr 2020
Cited by 25 | Viewed by 8887
Abstract
The reduction of greenhouse gas and pollutant emissions is a major issue in modern society. Therefore, environmentally friendly technologies like fuel cells should replace conventional energy generation plants. Today, fuel cells are used in households for CHP (combined heat and power) applications, for [...] Read more.
The reduction of greenhouse gas and pollutant emissions is a major issue in modern society. Therefore, environmentally friendly technologies like fuel cells should replace conventional energy generation plants. Today, fuel cells are used in households for CHP (combined heat and power) applications, for emergency power supply in many stationary applications and for the power supply of cars, buses and ships and emergency power supply of aircrafts. A significant challenge is the optimal electrical grid integration and selection of the appropriate grid protection mechanism for fuel cell applications. For this, the short circuit capability and behavior needs to be known. This paper gives a mathematical estimation of the short circuit behavior of fuel cells. Five main transient and dynamic phenomena are investigated. The impact of the main transient effect for the provision of additional short circuit energy is simulated, and the simulation is experimentally validated. For this purpose, a 25 c m 2 single cell consisting of a NafionTM 212 membrane and carbon cloth electrodes with a catalyst loading of 0 . 5 m g / c m 2 Pt is analyzed. The magnitude of the transient short circuit current depends on the operating point right before the short circuit occurs, whereas the stationary short circuit current of fuel cells is invariably about twice the operational current. Based on these results, a novel fuel cell model for the estimation of the short circuit behavior is proposed. Full article
(This article belongs to the Special Issue Grid Integration of Decentralized Generation Plants)
Show Figures

Graphical abstract

15 pages, 5532 KiB  
Article
Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell
by Miguel Ángel López Zavala, Omar Israel González Peña, Héctor Cabral Ruelas, Cristina Delgado Mena and Mokhtar Guizani
Energies 2019, 12(18), 3532; https://doi.org/10.3390/en12183532 - 14 Sep 2019
Cited by 39 | Viewed by 8177
Abstract
Cyclic voltammetry (CV) was used in this work to describe the electrochemical behavior of a dual-chamber microbial fuel cell (MFC). The system performance was evaluated under vacuum and non-pressurized conditions, different reaction times, two sweep potentials, 25 and 50 mVs−1 and under [...] Read more.
Cyclic voltammetry (CV) was used in this work to describe the electrochemical behavior of a dual-chamber microbial fuel cell (MFC). The system performance was evaluated under vacuum and non-pressurized conditions, different reaction times, two sweep potentials, 25 and 50 mVs−1 and under different analyte solutions, such as distilled water and domestic wastewater. CV experiments were conducted by using a potentiostat with three different configurations to collect the measurements. A dual-chamber MFC system was equipped with a DupontTM Nafion® 117 proton exchange membrane (PEM), graphite electrodes (8.0 cm × 2.5 cm × 0.2 cm) and an external electric circuit with a 100-Ω resistor. An electrolyte (0.1 M HCl, pH ≈ 1.8) was used in the cathode chamber. It was found that the proton exchange membrane plays a major role on the electrochemical behavior of the MFC when CV measurements allow observing the conductivity performance in the MFC in the absence of a reference electrode; under this potentiostat setting, less current density values are obtained on the scanned window potentials. Therefore, potentiostat setting is essential to obtain information in complex electrochemical processes present in biological systems, such as it is the case in the MFCs. Results of the study showed that wastewater constituents and the biomass suspended or attached (biofilm) over the electrode limited the electron charge transfer through the interface electrode-biofilm-liquor. This limitation can be overcome by: (i) Enhancing the conductivity of the liquor, which is a reduction of the ohmic drop, (ii) reducing the activation losses by a better catalysis, and (iii) by limiting the diffusional gradients in the bulk liquor, for instance, by forced convection. The use of the electrolyte (0.1 M HCl, pH ≈ 1.8) and its diffusion from the cathode to the anode chamber reduces the resistance to the flow of ions through the PEM and the flow of electrons through the anodic and cathodic electrolytes. Also reduces the activation losses during the electron transfer from the substrate to the electrode surface due to the electrode catalysis improvement. On the other hand, vacuum also demonstrated that it enhances the electrochemical performance of the dual-chamber MFC due to the fact that higher current densities in the system are favored. Full article
Show Figures

Graphical abstract

14 pages, 3423 KiB  
Article
Improvement of Wastewater Treatment Performance and Power Generation in Microbial Fuel Cells by Enhancing Hydrolysis and Acidogenesis, and by Reducing Internal Losses
by Miguel Ángel López Zavala, Pamela Renée Torres Delenne and Omar Israel González Peña
Energies 2018, 11(9), 2309; https://doi.org/10.3390/en11092309 - 2 Sep 2018
Cited by 12 | Viewed by 6024
Abstract
In this study, biodegradation performance and power generation in MFCs were improved. Domestic wastewater was biodegraded in a dual-chamber MFC system equipped with a DupontTM Nafion® 117 proton exchange membrane, graphite electrodes (8.0 cm × 2.5 cm × 0.2 cm) in both [...] Read more.
In this study, biodegradation performance and power generation in MFCs were improved. Domestic wastewater was biodegraded in a dual-chamber MFC system equipped with a DupontTM Nafion® 117 proton exchange membrane, graphite electrodes (8.0 cm × 2.5 cm × 0.2 cm) in both chambers and an external electric circuit with a 100 Ω resistor. Experiments were conducted using an anaerobic inoculum that was prepared onsite by acclimating mixed liquor from municipal wastewater. Aqueous hydrochloric acid (0.1 M HCl, pH 1.82) was used as the electrolyte in the cathode chamber. Free-oxygen conditions were promoted in both chambers by means of a vacuum (77.3 kPa). Low pH (< 5) and mixing conditions were maintained in the anode chamber and all the tests were carried out at 25 ± 1 °C. These conditions enhanced the hydrolysis and acidogenesis, inhibited the methanogenesis and reduced the internal losses. All of them together contributed to improve the treatment performance and power generation of the MFCs. Results of batch tests show COD reductions of up to 95%, voltages peaks of 0.954 V, maximum power densities on the order of 2.1 W·m−2 and 36.9 W·m3, and energy generation peaks of 99.4 J·mg−1 COD removed. These values are greater than those reported in the MFCs’ literature for municipal wastewater (26 mW·m−2–146 mW·m−2), industrial wastewater (419 mW·m−2) and culture medium solutions (1.17 W·m−2), and similar to those of glucose (3.6 W·m−2). Thus, these results can contribute to further enhancing the energy generated in MFCs and moving forward to make the MFCs more ready for practical applications of bioenergy production. Full article
(This article belongs to the Special Issue Microbial Electrochemical Systems)
Show Figures

Figure 1

13 pages, 521 KiB  
Article
Development of an Ion Sensitive Field Effect Transistor Based Urea Biosensor with Solid State Reference Systems
by Kow-Ming Chang, Chih-Tien Chang and Kun-Mou Chan
Sensors 2010, 10(6), 6115-6127; https://doi.org/10.3390/s100606115 - 21 Jun 2010
Cited by 18 | Viewed by 10264
Abstract
Ion sensitive field-effect transistor (ISFET) based urease biosensors with solid state reference systems for single-ended and two-ended differential readout electronics were investigated. The sensing membranes of the biosensors were fabricated with urease immobilized in a conducting polymer-based matrix. The responses of 12.9~198.1 mV [...] Read more.
Ion sensitive field-effect transistor (ISFET) based urease biosensors with solid state reference systems for single-ended and two-ended differential readout electronics were investigated. The sensing membranes of the biosensors were fabricated with urease immobilized in a conducting polymer-based matrix. The responses of 12.9~198.1 mV for the urea concentrations of 8~240 mg/dL reveal that the activity of the enzyme was not significantly decreased. Biosensors combined with solid state reference systems were fabricated, and the evaluation results demonstrated the feasibility of miniaturization. For the differential system, the optimal transconductance match for biosensor and reference field-effect transistors (REFET) pair was determined through the modification of the membranes of the REFETs and enzyme field-effect transistors (EnFETs). The results show that the transconductance curve of polymer based REFET can match with that of the EnFET by adjusting the photoresist/NafionTM ratio. The match of the transconductance curves for the differential pairs provides a wide dynamic operating measurement range. Accordingly, the miniaturized quasi-reference electrode (QRE)/REFET/EnFET combination with differential arrangement achieved similar urea response curves as those measured by a conventional large sized discrete sensor. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

Back to TopTop