Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = NaFeO2-SnO2 system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4895 KiB  
Article
Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
by Hanwen Xue, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang and Haoming Li
Minerals 2025, 15(5), 518; https://doi.org/10.3390/min15050518 - 14 May 2025
Viewed by 497
Abstract
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. [...] Read more.
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. Six mineralization stages are identified: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate ones. Fluid inclusions (FIs) analysis reveals that Stage I garnet and Stage II–III quartz host liquid-rich (VL-type), vapor-rich two-phase (LV-type), and halite-bearing three-phase (SL-type) inclusions. Stage IV quartz and fluorite, along with Stage V quartz, are dominated by VL- and LV-type inclusions, while Stage VI calcite contains exclusively VL-type inclusions. The FIs in Stages I to VI homogenized at 392–513, 317–429, 272–418, 224–347, 201–281, and 163–213 °C, with corresponding salinities of 3.05–56.44, 2.56–47.77, 2.89–45.85, 1.39–12.42, 0.87–10.62, and 4.48–8.54 wt% NaCl equiv., respectively. The H–O–C isotopes data imply that fluids of the anhydrous skarn stage (δD = −101.2 to −91.4‰, δ18OH2O = 5.0 to 6.0‰) were of magmatic origin, the fluids of hydrous skarn and oxide stages (δD = −106.3 to −104.7‰, δ18OH2O = 4.3 to 4.9‰) were characterized by fluid mixing with minor meteoric water, while the fluids of sulfide stages (δD = −117.4 to −108.6‰, δ18OH2O = −3.4 to 0.3‰, δ13CV-PDB= −12.2 to −10.9‰, and δ18OV-SMOW = −2.2 to −0.7‰) were characterized by mixing of significant amount of meteoric water. The ore-forming fluids evolved from a high-temperature, high-salinity NaCl−H2O boiling system to a low-temperature, low-salinity NaCl−H2O mixing system. The garnet U-Pb dating constrains the formation of skarn to 132.1 ± 4.7 Ma (MSWD = 0.64), which aligns, within analytical uncertainty, with the weighted-mean U−Pb age of zircon grains in ore-related K-feldspar granite (132.6 ± 0.9 Ma; MSWD = 1.5). On the basis of these findings, the Huanggang deposit, formed in the Early Cretaceous, is a typical skarn-type system, in which ore precipitation was principally controlled by fluid boiling and mixing. Full article
Show Figures

Figure 1

11 pages, 5406 KiB  
Article
Designing Fe2O3-Ti as Photoanode in H-Type Double-Electrode Coupling Systems for Bidirectional Photocatalytic Production of H2O2
by Danfeng Zhang, Changwei An, Dandan Liu, Tong Liu, Te Wang and Min Wang
Molecules 2025, 30(9), 1908; https://doi.org/10.3390/molecules30091908 - 25 Apr 2025
Viewed by 380
Abstract
Developing high-efficiency photoelectrodes plays an important role in the photoelectrocatalytic generation of hydrogen peroxide (H2O2) in the photoelectrochemical (PEC) water splitting field. In this work, an innovative strategy was proposed, the synergistic photocatalytic production of H2O2 [...] Read more.
Developing high-efficiency photoelectrodes plays an important role in the photoelectrocatalytic generation of hydrogen peroxide (H2O2) in the photoelectrochemical (PEC) water splitting field. In this work, an innovative strategy was proposed, the synergistic photocatalytic production of H2O2 using a bidirectional photoanode–photocathode coupling system under visible-light irradiation. Fe2O3-Ti, as the photoanode, which was built by way of Fe2O3 loaded on Ti-mesh using the hydrothermal-calcination method, was investigated in terms of the suitability of its properties for PEC H2O2 production after optimization of the bias voltage, the type of electrolyte solution, and the concentration of the electrolyte. Afterwards, a H-type double-electrode coupling system with an Fe2O3-Ti photoanode and a WO3@Co2SnO4 photocathode was established for the bidirectional synergistic production of H2O2 under visible-light irradiation. The yield of H2O2 reached 919.56 μmol·L−1·h−1 in 2 h over −0.7 V with 1 mol·L−1 of KHCO3 as the anolyte and 0.1 mol·L−1 Na2SO4 as the catholyte (pH = 3). It was inferred that H2O2 production on the WO3@Co2SnO4 photocathode was in line with the 2e- oxygen reduction reaction (ORR) principle, and on the Fe2O3-Ti photoanode was in line with the 2e- water oxidation reaction (WOR) rule, or it was indirectly promoted by the electrolyte solution KHCO3. This work provides an innovative idea and a reference for anode–cathode double coupling systems for the bidirectional production of H2O2. Full article
Show Figures

Figure 1

22 pages, 12900 KiB  
Article
Origin and Evolution of Ore-Forming Fluid and Metallogenic Mechanism of the Baoshan Cu-Pb-Zn Deposit, South China: Constraints of Fluid Inclusion and C-H-O Isotopes
by Xueling Dai, Yongshun Li, Junke Zhang, Zhongfa Liu, Ke Chen and Mingpeng He
Minerals 2024, 14(10), 961; https://doi.org/10.3390/min14100961 - 24 Sep 2024
Viewed by 1239
Abstract
The Southern Hunan area is located in the superposition of the Qin-Hang Cu-Pb-Zn polymetallic ore belt and the Nanling W-Sn-Mo polymetallic ore belt, which is an important window to study the mineralization of W-Sn-Mo and Cu-Pb-Zn polymetallic deposits. The Baoshan deposit is a [...] Read more.
The Southern Hunan area is located in the superposition of the Qin-Hang Cu-Pb-Zn polymetallic ore belt and the Nanling W-Sn-Mo polymetallic ore belt, which is an important window to study the mineralization of W-Sn-Mo and Cu-Pb-Zn polymetallic deposits. The Baoshan deposit is a large Cu-Pb-Zn polymetallic deposit in Southern Hunan Province with obvious zones of Cu mineralization and Pb-Zn mineralization: the central part of the Baoshan deposit demonstrates contact metasomatic (skarn) Cu mineralization, while the western, northern and eastern parts demonstrate hydrothermal vein Pb-Zn mineralization. However, the origin and evolution of the ore-forming fluid and mechanism of Cu and Pb-Zn mineral precipitation are still unclear. The metallogenic process of the Baoshan Cu-Pb-Zn deposit can be divided into four stages: (1) the early skarn stage (S1); (2) the late skarn stage (S2); (3) the Cu-Fe sulfide stage (S3); and (4) the Pb-Zn sulfide stage (S4). The results of microtemperature measurements and a Raman spectrometric analysis of fluid inclusions show that the ore-forming fluid was the H2O-NaCl (-CO2 ± N2 ± C2H6) system in the skarn stages (S1 + S2) and changed into the H2O-NaCl-CO2 (±N2 ± C2H6) system in the sulfide stages (S3 + S4). The temperature (S1: 436.6~548.2 °C; S2: 344.1~435.1 °C; S3: 134.1~413.1 °C; S4: 183.9~261.0 °C) and salinity (S1: 17.4~51.2 wt.%NaClequiv; S2: 13.6~41.7 wt.%NaClequiv; S3: 1.2~32.3 wt.%NaClequiv; S4: 1.8~9.6 wt.%NaClequiv) showed a downward trend from the early to late stages. From the skarn stages (S1 + S2) to the sulfide stages (S3 + S4), the ore-forming pressure results from the static rock pressure and the hydrostatic pressure, and the ore-forming depth is estimated to be about three to six km. The C-H-O isotopic compositions of hydrothermal minerals such as quartz and calcite indicate that the ore-forming fluid is predominately magmatic fluid, but a significant amount of meteoric water is added in the Pb-Zn sulfide stage (S4). The formation of the mineralization zonation of the Baoshan deposit is the result of many factors (e.g., stratigraphy, structure and metal precipitation mechanism): the Cu mineralization is controlled by the contact zone, and the Pb-Zn mineralization is controlled by the fault. In addition, the precipitation of Cu is mainly controlled by fluid boiling, while the precipitation of Pb and Zn is mainly controlled by the mixing of magmatic fluid and meteoric water. Full article
(This article belongs to the Special Issue Ag-Pb-Zn Deposits: Geology and Geochemistry)
Show Figures

Figure 1

27 pages, 3869 KiB  
Review
Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade
by Mariuca Gartner, Hermine Stroescu, Daiana Mitrea and Madalina Nicolescu
Molecules 2023, 28(12), 4674; https://doi.org/10.3390/molecules28124674 - 9 Jun 2023
Cited by 36 | Viewed by 6723
Abstract
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding [...] Read more.
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding polymers in the oxide systems for piezoelectricity enhancement. We mainly followed the results of studies of the last ten years through chemical routes, especially by sol-gel and hydrothermal synthesis. Zinc is an essential element that has a special importance for developing multifunctional materials with various applications. ZnO can be used for the deposition of thin films or for obtaining mixed layers by combining ZnO with other oxides (ZnO-SnO2, ZnO-CuO). Also, composite films can be achieved by mixing ZnO with polymers. It can be doped with metals (Li, Na, Mg, Al) or non-metals (B, N, P). Zn is easily incorporated in a matrix and therefore it can be used as a dopant for other oxidic materials, such as: ITO, CuO, BiFeO3, and NiO. ZnO can be very useful as a seed layer, for good adherence of the main layer to the substrate, generating nucleation sites for nanowires growth. Thanks to its interesting properties, ZnO is a material with multiple applications in various fields: sensing technology, piezoelectric devices, transparent conductive oxides, solar cells, and photoluminescence applications. Its versatility is the main message of this review. Full article
Show Figures

Figure 1

19 pages, 6519 KiB  
Article
Enhanced Performance of WO3/SnO2 Nanocomposite Electrodes with Redox-Active Electrolytes for Supercapacitors
by Tamiru Deressa Morka and Masaki Ujihara
Int. J. Mol. Sci. 2023, 24(7), 6045; https://doi.org/10.3390/ijms24076045 - 23 Mar 2023
Cited by 18 | Viewed by 3022
Abstract
For effective supercapacitors, we developed a process involving chemical bath deposition, followed by electrochemical deposition and calcination, to produce WO3/SnO2 nanocomposite electrodes. In aqueous solutions, the hexagonal WO3 microspheres were first chemically deposited on a carbon cloth, and then [...] Read more.
For effective supercapacitors, we developed a process involving chemical bath deposition, followed by electrochemical deposition and calcination, to produce WO3/SnO2 nanocomposite electrodes. In aqueous solutions, the hexagonal WO3 microspheres were first chemically deposited on a carbon cloth, and then tin oxides were uniformly electrodeposited. The synthesized WO3/SnO2 nanocomposite was characterized by XRD, XPS, SEM, and EDX techniques. Electrochemical properties of the WO3/SnO2 nanocomposite were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in an aqueous solution of Na2SO4 with/without the redox-active electrolyte K3Fe(CN)6. K3Fe(CN)6 exhibited a synergetic effect on the electrochemical performance of the WO3/SnO2 nanocomposite electrode, with a specific capacitance of 640 F/g at a scan rate of 5 mV/s, while that without K3Fe(CN)6 was 530 F/g. The WO3/SnO2 nanocomposite catalyzed the redox reactions of [Fe(CN)6]3/[Fe(CN)6]4− ions, and the [Fe(CN)6]3−/[Fe(CN)6]4− ions also promoted redox reactions of the WO3/SnO2 nanocomposite. A symmetrical configuration of the nanocomposite electrodes provided good cycling stability (coulombic efficiency of 99.6% over 2000 cycles) and satisfied both energy density (60 Whkg−1) and power density (540 Wkg−1) requirements. Thus, the WO3/SnO2 nanocomposite prepared by this simple process is a promising component for a hybrid pseudocapacitor system with a redox-flow battery mechanism. Full article
(This article belongs to the Special Issue Advances in Nanostructured Materials for Energy Storage Applications)
Show Figures

Graphical abstract

14 pages, 2015 KiB  
Article
Assigning the Geographical Origin of Meat and Animal Rearing System Using Isotopic and Elemental Fingerprints
by Adriana Dehelean, Gabriela Cristea, Romulus Puscas, Ariana Raluca Hategan and Dana Alina Magdas
Appl. Sci. 2022, 12(23), 12391; https://doi.org/10.3390/app122312391 - 3 Dec 2022
Cited by 12 | Viewed by 2531
Abstract
In this study, the stable isotope, and elemental fingerprints of 120 meat samples were determined. The Partial Last Squares-Discriminant Analysis (PLS-DA) method was applied to build classification models for chicken and pork meat samples according to the geographical origin (different Romanian regions) and [...] Read more.
In this study, the stable isotope, and elemental fingerprints of 120 meat samples were determined. The Partial Last Squares-Discriminant Analysis (PLS-DA) method was applied to build classification models for chicken and pork meat samples according to the geographical origin (different Romanian regions) and the animal growing system (animals coming from yard rearing systems versus animals coming from industrial farms). The accuracy of the geographical origin differentiation model was 93.8% for chicken and 71.8% for pork meat. The principal discrimination markers for this classification were: B, Na, K, V, As, Se, Rb, Nb, Cd, Sn, δ13C, δ2H, and δ18O (for chicken meat) and B, Na, Mg, K, Ca, V, Cr, Fe, Ni, Cu, Zn, As, Rb, Sr, Nb, Mo, Sn, Sb, Ba, Pb, δ13C, δ2H, and δ18O (for pork meat). The PLS-DA models were able to differentiate the meat samples according to the animal rearing system with 100% accuracy (for pork meat) and 98% accuracy (for chicken meat), based on the main predictors: B, K, V, Cr, Mn, Fe, Cu, Zn, Se, Rb, Nb, Sn, δ13C, and δ2H (for chicken meat) and Se, Rb, Nb, Sb, Ba, Pb, and δ13C (for pork meat). Full article
(This article belongs to the Special Issue Emerging Technologies in Food and Beverages Authentication)
Show Figures

Figure 1

12 pages, 3323 KiB  
Article
Phase Relations in a NaFeO2-SnO2 (0–50 mol.% SnO2) System and the Crystal Structure and Conductivity of Na0.8Fe0.8Sn0.2O2
by Georgiy S. Shekhtman, Elena A. Sherstobitova, Mariya S. Shchelkanova and Evgenia A. Ilyina
Materials 2022, 15(10), 3612; https://doi.org/10.3390/ma15103612 - 18 May 2022
Viewed by 2501
Abstract
With the view of developing new materials for sodium and sodium-ion power sources, NaFeO2-SnO2 (0–50 mol.% SnO2) powders were synthesized using a solid state method, and their phase composition and crystal structure were studied. A phase of the [...] Read more.
With the view of developing new materials for sodium and sodium-ion power sources, NaFeO2-SnO2 (0–50 mol.% SnO2) powders were synthesized using a solid state method, and their phase composition and crystal structure were studied. A phase of the Na0.8Fe0.8Sn0.2O2 composition with a layered rhombohedral structure of the α-NaFeO2 type was found when the tin dioxide content was 20 mol.%. The phase produced was of an O3 structural type. O3-type phases have sufficiently good performance when used as cathode materials in sodium-ion batteries and, moreover, often have a rather high sodium-cation conductivity. A two-dimensional migration map was built using Voronoi–Dirichlet partition and TOPOS software package. The sodium-ion conductivity of Na0.8Fe0.8Sn0.2O2 at room temperature was rated low (10−8 S × cm−1 at 20 °C), which may be the result of channels too narrow for Na+ migration. The results obtained show that the application of the compound studied in this work as a solid electrolyte in sodium power sources is unlikely. It is the potential use of Na0.8Fe0.8Sn0.2O2 as the active material of cathodes in Na and Na-ion power sources that presents practical interest. Full article
(This article belongs to the Special Issue Electrochemical Processes, Materials and Devices)
Show Figures

Figure 1

20 pages, 13607 KiB  
Article
Assessment of Surface Water Quality in the Podu Iloaiei Dam Lake (North-Eastern Romania): Potential Implications for Aquaculture Activities in the Area
by Cornelia Amarandei, Alina-Giorgiana Negru, Laurentiu-Valentin Soroaga, Simona-Maria Cucu-Man, Romeo-Iulian Olariu and Cecilia Arsene
Water 2021, 13(17), 2395; https://doi.org/10.3390/w13172395 - 31 Aug 2021
Cited by 3 | Viewed by 3200
Abstract
The Podu Iloaiei Dam Lake located on the Bahluet River from Bahlui hydrographic basin, north-eastern Romania, is one of the most important water resources used for aquaculture activities in the region of interest. In the present study, the chemical composition related to water-soluble [...] Read more.
The Podu Iloaiei Dam Lake located on the Bahluet River from Bahlui hydrographic basin, north-eastern Romania, is one of the most important water resources used for aquaculture activities in the region of interest. In the present study, the chemical composition related to water-soluble ions and elements was assessed in both water and sediment samples collected from the area of interest during July 2017 and October 2017, representative months for warm and cold seasons, respectively. Water-soluble ions (H3C2O2, HCO2, C2O42−, F, Cl, NO2, Br, NO3, SO42−, Li+, Na+, NH4+, K+, and Ca2+) were analyzed by ion chromatography, while inductively coupled plasma mass spectrometry was used to quantify water-soluble fractions of elements (Be, B, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Mo, Ru, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ir, Tl, Pb, Bi, and U). Evidence was obtained on the contributions of both anthropogenic and natural (pedologic) related sources in controlling the chemical composition of the water and sediment samples in the area. Analysis of Piper diagrams revealed the existence of CO32−/HCO3 and Ca2+/Mg2+ as dominant species for the sediment samples. The interest water pool was found to be oligotrophic over the warm period and eutrophic over the cold period. Overall, abundances and the association of chemical species in the area seemed to be controlled by a complex interplay between the water body’s main characteristics, meteorological factors, and anthropogenic activities. Moreover, the present results suggest that precautions should be taken for physicochemical parameter monitoring and prevention acts for surface water quality assurance in order to control the potential negative influence of some chemical parameters on fish productivity. Reported data also have a high potential to be used by experts in the field of developing lake water management policies for a sustainable exploitation of various aquatic systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

21 pages, 45586 KiB  
Article
Towards Zn-Dominant Tourmaline: A Case of Zn-Rich Fluor-Elbaite and Elbaite from the Julianna System at Piława Górna, Lower Silesia, SW Poland
by Adam Pieczka, Bożena Gołębiowska, Piotr Jeleń, Adam Włodek, Eligiusz Szełęg and Adam Szuszkiewicz
Minerals 2018, 8(4), 126; https://doi.org/10.3390/min8040126 - 22 Mar 2018
Cited by 11 | Viewed by 4861
Abstract
Tourmalines are a group of minerals which may concentrate various accessory components, e.g., Cu, Ni, Zn, Bi, Ti, and Sn. The paper presents fluor-elbaite and elbaite from a dyke of the Julianna pegmatitic system at Piława Górna, at the NE margin of the [...] Read more.
Tourmalines are a group of minerals which may concentrate various accessory components, e.g., Cu, Ni, Zn, Bi, Ti, and Sn. The paper presents fluor-elbaite and elbaite from a dyke of the Julianna pegmatitic system at Piława Górna, at the NE margin of the Bohemian Massif, SW Poland, containing up to 6.32 and 7.37 wt % ZnO, respectively. Such high amounts of ZnO are almost two times higher than in the second most Zn-enriched tourmaline known to date. The compositions of the Zn-rich tourmalines from Piława Górna, studied by electron micropropy and Raman spectroscopy, correspond to the formulae: X(Na0.733Ca0.0130.254)Σ1Y(Al1.033Li0.792Zn0.755Fe2+0.326Mn0.094)Σ3ZAl6(TSi6O18)(BO3)3V(OH)3W(F0.654OH0.344), and X(Na0.779Ca0.0150.206)Σ1Y(Al1.061Li0.869Zn0.880Fe2+0.098Mn0.094)Σ3ZAl6(TSi6O18)(BO3)3V(OH)3W(OH0.837F0.163), respectively, with Zn as one of the main octahedral occupants. A comparison with other tourmalines and associated Zn-rich fluor-elbaite and elbaite from the pegmatite indicates that atypically high Zn-enrichment is not a result of Zn-Fe fractionation, but dissolution and reprecipitation induced by a late (Na,Li,B,F)-bearing fluid within the assemblage of gahnite spinel and primary schorl-type tourmaline. This strongly suggests Na-Li-B-F metasomatism of gahnite-bearing mineral assemblages as that is the only environment that can promote crystallization of a hypothetical Zn-dominant tourmaline. The compositions of the Zn-rich fluor-elbaite and elbaite suggest three possible end-members for such a hypothetical tourmaline species: NaZn3Al6(Si6O18)(BO3)3(OH)3(OH), ☐(Zn2Al)Al6(Si6O18)(BO3)3(OH)3(OH) and Na(Zn2Al)Al6(Si6O18)(BO3)3(OH)3O by analogy with other tourmalines with divalent Y occupants, such as schorl/foitite/oxy-schorl and dravite/magnesio-foitite/oxy-dravite. Full article
Show Figures

Figure 1

Back to TopTop