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Abstract: With the view of developing new materials for sodium and sodium-ion power sources,
NaFeO2-SnO2 (0–50 mol.% SnO2) powders were synthesized using a solid state method, and their
phase composition and crystal structure were studied. A phase of the Na0.8Fe0.8Sn0.2O2 composition
with a layered rhombohedral structure of the α-NaFeO2 type was found when the tin dioxide content
was 20 mol.%. The phase produced was of an O3 structural type. O3-type phases have sufficiently
good performance when used as cathode materials in sodium-ion batteries and, moreover, often have
a rather high sodium-cation conductivity. A two-dimensional migration map was built using Voronoi–
Dirichlet partition and TOPOS software package. The sodium-ion conductivity of Na0.8Fe0.8Sn0.2O2

at room temperature was rated low (10−8 S × cm−1 at 20 ◦C), which may be the result of channels
too narrow for Na+ migration. The results obtained show that the application of the compound
studied in this work as a solid electrolyte in sodium power sources is unlikely. It is the potential use
of Na0.8Fe0.8Sn0.2O2 as the active material of cathodes in Na and Na-ion power sources that presents
practical interest.

Keywords: NaFeO2-SnO2 system; layered O3-type structure; Na+-ion conductivity; two-dimensional
migration map; the TOPOS program package

1. Introduction

Sodium power sources in which Na-β-Al2O3 and NASICON were used as solid
electrolytes were considered the most promising electrochemical energy storage solution in
the 1980s and 1990s [1]. Sodium–sulfur batteries were successfully developed for electric
vehicles [2], spacecraft [3], and other applications [4,5]. However, they were later replaced
by power sources with lithium-containing anodes, since, in spite of a considerably higher
price of lithium, its use substantially increases the energy efficiency of the power source [6,7].
The appearance of a great number of high-conductivity lithium-cation solid electrolytes
has made a great contribution to the successful development of lithium and lithium-ion
batteries [8–11].

However, lithium is a rare metal, its abundance in the Earth’s crust is low, and the
possibilities of extending the use of lithium-ion batteries to larger devices, for example,
electric vehicles, will be restricted by low lithium availability. Lithium production will
inevitably move to poorer deposits in the near future, which will make lithium more
expensive and later scarce. At the same time, reserves of cheap sodium are practically
inexhaustible (e.g., the World Ocean) [12–14]. For this reason, recently, there has been a
renewal of interest in sodium power sources and, consequently, an appearance of works
dedicated to the investigation of new solid electrolytes with sodium-cation conductivity
and new electrode materials [15–19].

Layered oxides based on NaxMO2 compounds [20,21], where M stands for a transition
element (i.e., Ti, V, Cr, Mn, Fe, Co, and Ni) or a combination of two [22,23] or more [24] tran-
sition elements, are nowadays considered to be promising cathode materials for sodium-ion
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batteries. The structural properties of such compounds are described in detail in [25,26].
It is shown that in the crystal structure of such compounds, edge-sharing MO6 octahedra
form (MO2)n sheets between which sodium cations are inserted. Depending on the arrange-
ment of the octahedral layers, the coordination of alkaline cations can be octahedral (O),
prismatic (P), or tetrahedral (T). The number of layers within the unit cell can be different.
For example, according to the denomination suggested in [25,26], structural type O3 means
that alkaline cations are in octahedral coordination and the unit cell contains three layers in
which they lie. O3-type phases have sufficiently good performance when used as cathode
materials in sodium-ion batteries. Thus, for example, a battery with Na0.8Ni0.6Sb0.4O2 as
its cathode active material delivers the capacity of 107.3 mAh/g in the voltage range of
2–4.5 V and exhibits a good capacity retention of 98.5 mAh/g after 100 cycles [22]. The
Na(Mn0.25Fe0.25Co0.25Ni0.25)O2 cathode compound delivers an initial discharge capacity of
180 mAh/g and a specific energy density of 578 W/kg [24]. Many O3-type phases also have
a rather high sodium-cation conductivity [23], which is important for cathode materials.

The layered low-temperature α-modification of NaFeO2 also belongs to the O3 struc-
tural type [26]. This circumstance, and also the low cost and availability of the starting
materials, prompted research into the electrochemical properties of the α-modification of
NaFeO2 when used as the active material of cathodes in sodium-ion power sources [27–29].
The initial results confirmed the promising outlook of α-NaFeO2-based cathodes: the power
source with the α-NaFeO2-based cathode and sodium anode delivered a stable reversible
capacity of 80–85 mAh/g at voltages below 3.4 V and good thermal stability [28]. However,
at voltages above 3.5 V, α-NaFeO2 undergoes irreversible structural changes related to the
migration of iron ions [27], as a result of which the capacity for sodium ions intercalation
and, consequently, the reversibility of the battery deteriorates considerably. It has been
shown that a partial substitution of iron ions for cations of other transition metals, such
as Mn, Co, Ni [30], and Ti [29,31], improves the stability of α-NaFeO2-structured phases
at elevated voltages. In addition, α-NaFeO2-structured solid solutions in a NaFeO2-TiO2
system have been reported to exhibit a rather high sodium-cation conductivity [32]. The
present paper continues research into the electrical properties and crystal structure of
the phases formed in NaFeO2—MIVO2 systems and deals with the study of phase ratios,
structure, and conductivity in the NaFeO2-SnO2 system.

2. Materials and Methods
2.1. Sample Preparation

Fe2O3, α-modification, (analytical grade), SnO2 (analytical grade), and Na2CO3 (reagent
grade), all REACHIM RF, were used as starting components for synthesizing the materials
under investigation. Calculated amounts of the previously dried starting reagents were
weighed (FX40-CJ analytical balance, Tokyo, Japan, BMI Surplus), within the accuracy of
±0.0001 g, and mixed by grinding with ethanol in a porcelain mortar. The obtained mixtures
were then sintered in Al2O3 crucibles at 700 ◦C to decompose Na2CO3. Afterwards, the
reaction mixtures were ground, pressed into pellets, and heated again. In the case of
NaFeO2, the maximum temperature of synthesis was 700 ◦C, and the time was 24 h. In
compositions containing SnO2, phase formation was accomplished at higher temperatures;
therefore, they were synthesized at 1100–1150 ◦C for 16–20 h and homogenized after 8–10 h
in the process. Sintered substances were crushed into the powder (particle size less than
0.05 mm) and pressed into disks, ~1 cm in diameter and 0.1–0.2 cm thick, to be further used
in electrical resistance measurements. The pressed disks were sintered at 1100 ◦C for 4–6 h
in the powder of the same composition to eliminate the possibility of the loss of sodium
oxides owing to volatility at high temperatures. The open porosity of the resulting samples
did not exceed 8%.

2.2. Characterization and Electrical Measurements

Phase and structural characterization of the samples during various stages of synthesis
was carried out using the X-ray powder method with a Rigaku D/MAX-2200 VL/PC
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X-ray diffractometer (RIGAKU, Tokyo, Japan, monochromatic Cu Kα-radiation generated
at 40 kW, 30 mA (λ = 1.54178 Å), 2θ = 10–80◦ stepwise with a 0.3 s counting time and a
step of 0.02◦). Jade 6.5 software (Materials Data Inc., Livermore, CA, USA) was used to
calculate unit cell parameters. The errors in the cell parameter calculations did not exceed
0.02%. The structural parameters were refined by the Rietveld technique using the Full
Prof program [33].

To determine the migration map of Na+ cations, we used the Voronoi–Dirichlet ap-
proach [34] implemented into the program package TOPOS [35].

The morphology and microstructure of the samples were examined by scanning
electron microscopy (electron microscope TESCAN MIRA 3 LMU, Brno, Czech Republic).

Thermal analysis was carried out using a DSC 204 F1 Phoenix unit (NETZSCH, Selb,
Germany). The measurement was conducted over the temperature range 25–1050 ◦C in air
in Pt crucibles with a rate of heating of 10 ◦C/min. The results obtained were processed by
means of NETZSCH Proteus software (STA 449 F1A 0030-M, Selb, Germany).

The electrical resistance of the samples was measured with Ag electrodes by analysis
of the impedance spectrum obtained using Elins P-40x potentiostat-galvanostat (Elins, Ze-
lenograd, Russia) with the FRA-24M module for electrochemical impedance measurements
over the frequency range of 3 Hz–500 kHz. The electronic component was estimated by the
DC method with gold electrodes at 20–40 mV.

3. Results and Discussion
3.1. XRD Analysis and Phase Relations

Sodium ferrite (NaFeO2) exists in three crystal modifications: α, β, and γ [36]. The
low-temperature α-modification of NaFeO2 undergoes an irreversible transition into the
β-form at 760 ◦C [37], and the latter turns into the γ-form when heated to ~1000 ◦C [38,39].
It is known that the structure of NaFeO2 synthesized at temperatures below 760 ◦C, to a
large extent, depends on the nature and structure of the starting components, especially
iron oxide [36]. For instance, heating a mixture of NaOH and α-Fe2O3 at 200 ◦C yields
α-NaFeO2, while α-Fe2O3 and Na2CO3 used as starting components result in β-NaFeO2,
even if the synthesis is below 760 ◦C [37]. The α-form of sodium ferrite is obtained through
sintering the mixture of Fe3O4 and Na2CO3 [29], and also Fe3O4 and Na2O2 [27] at 650 ◦C.
In [31], sodium oxalate and Fe2O3 were used to produce α-NaFeO2, and the modification of
the second starting component is not specified. In this work, we used Na2CO3 and α-Fe2O3
to synthesize NaFeO2. According to XRD, sintering at 700 ◦C yields β-modification of
NaFeO2, PDF2-76-0243 (Figure 1a), which is in line with the data in [36].

According to [37], β-NaFeO2 should be metastable below 760 ◦C; however, treatment
at 700 ◦C for 600 h did not bring about a change in the structure [36].

When tin dioxide was added to NaFeO2, even in relatively small amounts (~5 mol.%),
extra reflections of a rhombohedral phase with a structure close to α-NaFeO2 appeared on
the XRD patterns together with β-NaFeO2 reflections (Figure 1b). These reflections of the
rhombohedral phase grew in intensity as the tin content increased, and when it reached
20 mol.%, the lines of β-NaFeO2 disappeared, and the XRD pattern for the Na0.8Fe0.8Sn0.2O2
sample contained only the reflections of the rhombohedral phase (Figure 1c). With a further
increase in the content of SnO2 reflections of NaFeSnO4, PDF2-73-0425 existed on the
X-ray patterns of the samples (Figure 1d,e). Thus, unlike a similar titanium-containing
system [31], NaFeO2-SnO2 system was not characterized by a wide region of solid solutions
with an O3-type structure.
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Figure 1. Powder XRD patterns for the samples of the NaFeO2—SnO2 system: (а) NaFeO2; (b) 5; (c) 
20; (d) 35 mol.% SnO2; (e) NaFeSnO4. * Designates the lines for the phases with a rhombohedral 
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3.2. Morphology Study and Thermal Analysis

Figure 2 contains SEM images of the surface for the number of sintered pellets in the
NaFeO2-SnO2 system. One can see that the microstructure of the sample that contained
5 mol.% SnO2 (Figure 2a) was not homogeneous; it had the form of grains 1–10 µm in size
and inclusions of the second phase (NaFeO2-SnO2) can be seen. The structure of the sample
containing 20 mol.% SnO2 (Figure 2b) was more homogeneous and consisted of grains
1–2 µm in size. The sample had a rather high density, though some pores can be seen. The
sample containing 35 mol.% SnO2 had a fine crystalline structure.

Figure 3 shows the DSC curves for the samples with 5, 10, and 20 mol.% SnO2. As one
can see, there were peaks at approximately1000 ◦C on the first two curves, while the third
curve, which corresponds to the Na0.8Fe0.8Sn0.2O2 sample, contained no thermal effects.
The temperature of the peaks on curves 1 and 2 was close to the ones in [38,39], which were
ascribed to the β→ γ transition in NaFeO2. Figure 1 indicates that the content of β-phase
in the samples decreased with an increase in the content of SnO2. Returning to Figure 3, it
is plain to see that the intensity of the thermal effect on the DSC curves also decreased with
an increase in the tin content (Figure 3, curves 1 and 2). The sample with 20 mol.% SnO2
contained no β-phase, and there were no peaks on the DSC curve of this sample (Figure 3,
curve 3). Thus, there is every reason to believe that the thermal effects on the DSC curves
(Figure 3) corresponded to the β→ γ transition, while the α-solid solutions were stable
across the whole temperature range studied.

The higher stability of α-solid solutions in the NaFeO2-SnO2 system, generated by the
introduction and growing increase in the tin oxide content, may be explained as follows:
the α-modification of NaFeO2 has a rhombohedral rock-salt structure, where the Fe3+

ions occupy octahedral positions in the cubic closest packed oxygen layers [36], while
the orthorhombic Pbn21 structure of β-NaFeO2 is derived from the wurtzite structure, in
which Fe cations occupy tetrahedral positions [38]. According to [40], Ti4+ ions often prefer
octahedral coordination to the tetrahedral one. This fact is considered by the authors of [31]
to be the reason for the increased stability of the α-form of NaFeO2 when the ions of iron
are substituted for titanium ions, which is manifested in the growing temperature of the
α→ β transition. The same reason may be true in the situation when iron is replaced by
tin, especially since the radius of Sn4+ ion is bigger than the radius of Fe3+ (0.69 and 0.63 Å,
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respectively, for the tetrahedral coordination [41]); therefore, even small amounts of added
tin induce a partial transition of β-NaFeO2 into α-modification, while the α→ β transition
does not take place with increasing temperature.
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3.3. Crystal Structure of Na0.8Fe0.8Sn0.2O2

Figure 4 shows Rietveld refinement using the X-ray pattern of Na0.8Fe0.8Sn0.2O2.
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The diffraction pattern contained highly intensive reflections from the main phase
with a rhombohedral unit cell and s. g. R-3m (No.166, PDF2-20-1115). The crystal structure
of Na0.8Fe0.8Sn0.2O2 can be represented as layers of (Fe,Sn)O6 octahedra alternating with
layers of NaO6 octahedra. The atoms of Na occupy 3b sites in their layer; the atoms of O
occupy 6c sites. The atoms of Sn and Fe were statistically mixed in 3a sites. The crystal
structure of Na0.8Fe0.8Sn0.2O2 is given in Figure 5. The refined structural parameters for
the rhombohedral O3-type phase are shown in Table 1.
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Figure 5. Rhombohedral crystal structure of Na0.8Fe0.8Sn0.2O2. Red, white, and green spheres
represent oxygen, sodium, and Fe/Sn atoms, respectively.

The X-ray diffraction pattern of the Na0.8Fe0.8Sn0.2O2 sample contained additional
broad reflections of low intensity at 2θ ~ 20◦ (Figure 4), which were not connected with
the main phase of the α-NaFeO2 type and were apparently determined by the honeycomb-
like ordering of the Fe and Sn ions within the layer. Broadening of the reflections can be
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caused either by a nonideal ordering of Fe and Sn ions (the presence of a short-range order)
or by a stacking fault [42]. The phase with Fe and Sn ion ordering can be satisfactorily
described as a monoclinic unit cell, s.g. C2/m, and the structural model suggested for
Na0.89Zn1/3Ir2/3O2 [43].

Table 1. Refined structural parameters for Na0.8Fe0.8Sn0.2O2, rhombohedral cell, s. g. R-3 m (No.
166), a = 3.0381(6), Å,c = 16.3895(4) Å.

Refined Structural Parameters
Atom

Na (3b) Fe/Sn (3a) O (6c)

Atom coordinates 001/2 000 00z

Thermal parameters, Å2 1.31(4) 0.71(2) 0.52(4)

χ2 3.651

Bragg R-factor 2.91

3.4. Conductivity Study

Undoped β-NaFeO2 had a mixed electronic-ionic conductivity, where at 600–700 ◦C
the electronic and ionic components had close values, and at lower temperatures ionic
conductivity prevailed (Figure 6).
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The sodium-cation character of the ionic component of sodium ferrite conductivity
was confirmed in [23]. According to the obtained results, the conductivity of NaFeSnO4
was 10−4–10−3 S × cm−1 over the 500–700 ◦C interval and was mostly ionic in character.

The conductivity of the Na0.8Fe0.8Sn0.2O2 sample was found by analysis of the impedance
spectrum over the temperature range 20–370 ◦C. The typical impedance spectra are shown
in Figure 7. In the low-temperature region, the spectra had the form of a low-frequency
tail and a semicircular arc with a shifted center (Figure 7a). The total resistance, Rb+gb, of
the samples under investigation was found as the values corresponding to the points of
intersection between the semicircle and the Z’-axis. Above 250 ◦C, the spectra contained
only a low-frequency tail (Figure 7b); in this case, the resistance of the sample was found
by extrapolation of the low-frequency linear portion onto the real axis.

The temperature dependences of total and electronic conductivities for Na0.8Fe0.8Sn0.2O2
are given in Figure 8.

One can see that the dependence of the total conductivity in the lgσ—1/T coordinates
was linear across the studied temperature range (Figure 8, line 1). The activation energy
for conduction was 64.2 ± 0.43 kJ × mol−1. The electronic conductivity at 500 ◦C was
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approximately 10−5 S× cm−1 and decreased fast with the decreasing temperature (Figure 8,
line 2). Thus, in the low-temperature region, Na0.8Fe0.8Sn0.2O2 was a practically unipolar
sodium-cation conductor.
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Figure 8. Temperature dependences of electroconductivity for Na0.8Fe0.8Sn0.2O2: (1) total conductiv-
ity; solid circles—heating, open circles—cooling; (2) electronic conductivity.

3.5. Exploration of the Migration Map of Na+ Cations

In order to explore the Na+ cations migration map (i.e., network of cations migra-
tion pathways within the crystal structure framework of the rhombohedral structure of
Na0.8Fe0.8Sn0.2O2), we used the Voronoi–Dirichlet approach [35] implemented into the
program package TOPOS [44]. The elementary voids and channels were searched using
the Voronoi–Dirichlet polyhedra partitioning space as it was described in detail in [35].
According to this approach, vertices of the Voronoi–Dirichletpolyhedral represent centers
of the elementary voids, while the edges of the Voronoi–Dirichletpolyhedral represent
the elementary channel lines connecting the centers of nearby voids. In order to build
the ion migration map, all elementary channels are supposed to be sorted out by using
significance criteria [34]. Only “significant” voids and channels were involved in the
construction of the ion migration map. According to [16], a void was considered to be
significant for Na+ cations in an oxygen environment when the characteristic size of the
void was Rsd ≥ (1.523 ± 0.040) Å. An elementary channel was considered to be significant
when the characteristic size of the channel was Rsd ≥ 2.083 Å. The coordinates of the
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first void, ZA1, coincided with the position of the Na atoms in the NaO6 octahedron. The
coordinates of the second void, ZA2, almost fully coincided with the coordinates of the
center of the vacant tetrahedral interstitial site (2/3 1/3 0.6969) in the NaO layer. The cen-
ters of the ZA1 and ZA2 voids were connected by an elementary channel of conductivity
with the radius r = 2.048 Å. Using the discovered ZA1 and ZA2 voids and one elementary
channel of conductivity, one can build a 2D migration map in which migration channels
connect the centers of NaO6 octahedra with the vacant tetrahedron through the shared
edge (see Figure 9).
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One can easily notice that the radius of the elementary migration channel in the lattice
of the investigated compound (2.048 Å) was rather smaller compared to the critical channel
diameter for Na+ cations in oxide compounds (2.083 Å). Nevertheless, this is not the reason
to exclude such channels from the migration map. Geometrical analysis and, in particular,
Voronoi–Dirichlet partition, characterized the static model of a crystal structure. Migration
of the charge carriers caused the crystal lattice to undergo considerable distortions and,
as a result, mobile ion transfer becomes possible through the channels that are smaller
than the critical size when the structure is static [45]. Insufficient width of migration
channels, nevertheless, may be one of the reasons why sodium-cation conductivity of
Na0.8Fe0.8Sn0.2O2 at low temperatures is rather unremarkable (10−8 S × cm−1 at 20 ◦C,
Figure 8, line 1).

Previously the studies of NaFeO2-TiO2 system reported high sodium-cation con-
ductivity of the obtained solid solutions, which gave reason to consider their potential
application as solid electrolytes in sodium power sources [32]. The conductivity values for
the Na0.8Fe0.8Sn0.2O2 phase obtained in the present work were considerably lower com-
pared with the ones in [32]. It should also be remarked that in reducing environments, Fe3+

can be easily reduced to Fe2+. For instance, the Na4FeO3 compound may form in contact
with metallic sodium [46]. Sn4+ ions can also be reduced to Sn2+. Both of these factors will
lead to a sharp increase in electronic conductivity; therefore, it is highly unlikely that the
compound studied in this work will be used as a solid electrolyte. Na0.8Fe0.8Sn0.2O2 is of
much practical interest as the potential cathode material in Na+ power sources. Additional
electrochemical studies are required to confirm this possibility.



Materials 2022, 15, 3612 10 of 12

4. Conclusions

Samples of the NaFeO2-SnO2 (0–50 mol.% SnO2) system were obtained by solid state
synthesis for the first time, and their phase composition was studied. A novel phase
having a Na0.8Fe0.8Sn0.2O2 composition and an O3-type rhombohedral layered lattice was
found, and Rietveld refinement of its crystal structure was performed. The conductivity
of the Na0.8Fe0.8Sn0.2O2 was of the sodium-cation type and at a room temperature of
10−8 S × cm−1 with the activation energy of 64.2 ± 0.43 kJ·mol−1. A migration map was
built using the Voronoi–Dirichlet approach. The radius of the elementary migration channel
in the Na0.8Fe0.8Sn0.2O2 lattice was slightly smaller than the size critical for Na+ cations in
oxide compounds, which may be the reason why the sodium-cation conductivity of the
Na0.8Fe0.8Sn0.2O2wasrather low at low temperatures. The obtained results show that the
application of the compound studied in this work as a solid electrolyte in sodium power
sources is unlikely. It is the potential use of Na0.8Fe0.8Sn0.2O2 as the active material of
cathodes in Na and Na-ion power sources that presents practical interest.
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